Abstract

Range-gated active imaging is a well-known technique used for night vision or for vision enhancement in scattering environments. A lot of papers have been published, in which the performance enhancement of range gating has been demonstrated. However, there are no studies which systematically investigate and quantify the real gain brought by range gating, in comparison with a classical imaging system, in controlled smoke densities. In this paper, a systematic investigation of the performance enhancement of range-gated viewing is presented in comparison with a color camera representing the human vision. The influence of range gating and of the gate shape is studied. We have been able to demonstrate that a short-wave infrared (SWIR) range-gated active imaging system can enhance by a factor of 6.9 the penetration depth in dense smoke. On the other hand, we have shown that the combination of a short pulse with a short integration time gives better contrasted images in dense scattering media.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional single-photon imaging through obscurants

Rachael Tobin, Abderrahim Halimi, Aongus McCarthy, Martin Laurenzis, Frank Christnacher, and Gerald S. Buller
Opt. Express 27(4) 4590-4611 (2019)

Lidar system model for use with path obscurants and experimental validation

J. W. Giles, I. N. Bankman, R. M. Sova, T. R. Morgan, D. D. Duncan, J. A. Millard, W. J. Green, and F. J. Marcotte
Appl. Opt. 47(22) 4085-4093 (2008)

Advanced short-wavelength infrared range-gated imaging for ground applications in monostatic and bistatic configurations

Endre Repasi, Peter Lutzmann, Ove Steinvall, Magnus Elmqvist, Benjamin Göhler, and Gregor Anstett
Appl. Opt. 48(31) 5956-5969 (2009)

References

  • View by:
  • |
  • |
  • |

  1. V. Molebny, G. Kamerman, and O. Steinvall, “Laser radar: from early history to new trends,” Proc. SPIE 7835, 783502 (2010).
    [Crossref]
  2. P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
    [Crossref]
  3. O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
    [Crossref]
  4. G. R. Fournier, D. Bonnier, L. J. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32(9), 2185–2190 (1993).
    [Crossref]
  5. J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: Status and prospects,” J. Oceanogr. 14, 66 (2001).
  6. L. F. Gillespie, “Apparent illuminance as a function of range in gated, laser night-viewing systems,” J. Opt. Soc. Am. A 56(7), 883 (1966).
    [Crossref]
  7. J. Busck, “Underwater 3-D optical imaging with a gated viewing laser radar,” Opt. Eng. 44(11), 116001 (2005).
    [Crossref]
  8. P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45(3), 034301 (2006).
    [Crossref]
  9. D. Monnin, A. Schneider, F. Christnacher, and Y. Lutz, “A 3D outdoor scene scanner based on a night-vision range-gated active imaging system,” in Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06), ed. (IEEE Computer Society, 2006).
    [Crossref]
  10. H. Steingold and R. E. Strauch, “Backscatter effects in active night vision systems,” Appl. Opt. 8(1), 147–154 (1969).
    [Crossref] [PubMed]
  11. M. Laurenzis, F. Christnacher, D. Monnin, and Th. Scholz, “Investigation of range-gated imaging in scattering environments,” Opt. Eng. 51(6), 061303 (2012).
    [Crossref]
  12. M. E. Zevallos, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005).
    [Crossref]
  13. E. A. McLean, H. R. Burris, and M. P. Strand, “Short-pulse range-gated optical imaging in turbid water,” Appl. Opt. 34(21), 4343–4351 (1995).
    [Crossref] [PubMed]
  14. “LIVAR M506: High Sensitivity, Short Wave Infrared (SWIR) Gated Camera,” (Intevac) http://www.intevac.com/intevacphotonics/livar-506/
  15. J. Rothman, E. de Borniol, K. Foubert, L. Mollard, N. Péré-Laperne, F. Salvetti, A. Kerlain, and Y. Reibel, “HgCdTe APDs for space applications,” presented at the International Conference on Space Optic (ICSO 2014), Tenerife, Canary Islands, Spain, 7–10 Oct. 2014.
  16. E. de Borniol, J. Rothman, F. Salveti, and P. Feautrier, “SWIR HgCdTe avalanche photodiode focal plan arrays performances evaluation,” presented at the International Conference on Space Optic (ICSO 2014), Tenerife, Canary Islands, Spain, 7–10 Oct. 2014.
  17. H. Koschmieder, “Theorie der horizontalen Sichtweite,” Beitr. Phys. fr. Atm. 12, 33–55 and 171–181 (1924).
  18. F. Christnacher, M. Laurenzis, and S. Schertzer, “Theoretical and experimental comparison of flash and accumulation mode in range-gated active imaging,” Opt. Eng. 53(4), 043106 (2014).
    [Crossref]
  19. “SWIR Image Gallery”, (Sensors Unlimited, UTC Aerospace Systems), http://www.sensorsinc.com/gallery/images

2014 (1)

F. Christnacher, M. Laurenzis, and S. Schertzer, “Theoretical and experimental comparison of flash and accumulation mode in range-gated active imaging,” Opt. Eng. 53(4), 043106 (2014).
[Crossref]

2012 (2)

P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
[Crossref]

M. Laurenzis, F. Christnacher, D. Monnin, and Th. Scholz, “Investigation of range-gated imaging in scattering environments,” Opt. Eng. 51(6), 061303 (2012).
[Crossref]

2010 (1)

V. Molebny, G. Kamerman, and O. Steinvall, “Laser radar: from early history to new trends,” Proc. SPIE 7835, 783502 (2010).
[Crossref]

2006 (1)

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45(3), 034301 (2006).
[Crossref]

2005 (2)

J. Busck, “Underwater 3-D optical imaging with a gated viewing laser radar,” Opt. Eng. 44(11), 116001 (2005).
[Crossref]

M. E. Zevallos, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005).
[Crossref]

2001 (1)

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: Status and prospects,” J. Oceanogr. 14, 66 (2001).

1999 (1)

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
[Crossref]

1995 (1)

1993 (1)

G. R. Fournier, D. Bonnier, L. J. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32(9), 2185–2190 (1993).
[Crossref]

1969 (1)

1966 (1)

L. F. Gillespie, “Apparent illuminance as a function of range in gated, laser night-viewing systems,” J. Opt. Soc. Am. A 56(7), 883 (1966).
[Crossref]

Alfano, R. R.

M. E. Zevallos, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005).
[Crossref]

Alrubaiee, M.

M. E. Zevallos, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005).
[Crossref]

Andersson, P.

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45(3), 034301 (2006).
[Crossref]

Bolander, G.

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
[Crossref]

Bonnier, D.

G. R. Fournier, D. Bonnier, L. J. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32(9), 2185–2190 (1993).
[Crossref]

Burris, H. R.

Busck, J.

J. Busck, “Underwater 3-D optical imaging with a gated viewing laser radar,” Opt. Eng. 44(11), 116001 (2005).
[Crossref]

Christnacher, F.

F. Christnacher, M. Laurenzis, and S. Schertzer, “Theoretical and experimental comparison of flash and accumulation mode in range-gated active imaging,” Opt. Eng. 53(4), 043106 (2014).
[Crossref]

M. Laurenzis, F. Christnacher, D. Monnin, and Th. Scholz, “Investigation of range-gated imaging in scattering environments,” Opt. Eng. 51(6), 061303 (2012).
[Crossref]

Forand, L. J.

G. R. Fournier, D. Bonnier, L. J. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32(9), 2185–2190 (1993).
[Crossref]

Fournier, G. R.

G. R. Fournier, D. Bonnier, L. J. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32(9), 2185–2190 (1993).
[Crossref]

Gayen, S. K.

M. E. Zevallos, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005).
[Crossref]

Gillespie, L. F.

L. F. Gillespie, “Apparent illuminance as a function of range in gated, laser night-viewing systems,” J. Opt. Soc. Am. A 56(7), 883 (1966).
[Crossref]

Groenwall, C. A.

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
[Crossref]

Jaffe, J. S.

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: Status and prospects,” J. Oceanogr. 14, 66 (2001).

Kamerman, G.

V. Molebny, G. Kamerman, and O. Steinvall, “Laser radar: from early history to new trends,” Proc. SPIE 7835, 783502 (2010).
[Crossref]

Laurenzis, M.

F. Christnacher, M. Laurenzis, and S. Schertzer, “Theoretical and experimental comparison of flash and accumulation mode in range-gated active imaging,” Opt. Eng. 53(4), 043106 (2014).
[Crossref]

M. Laurenzis, F. Christnacher, D. Monnin, and Th. Scholz, “Investigation of range-gated imaging in scattering environments,” Opt. Eng. 51(6), 061303 (2012).
[Crossref]

Letalick, D.

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
[Crossref]

McLean, E. A.

McLean, J.

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: Status and prospects,” J. Oceanogr. 14, 66 (2001).

McManamon, P. F.

P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
[Crossref]

Molebny, V.

V. Molebny, G. Kamerman, and O. Steinvall, “Laser radar: from early history to new trends,” Proc. SPIE 7835, 783502 (2010).
[Crossref]

Monnin, D.

M. Laurenzis, F. Christnacher, D. Monnin, and Th. Scholz, “Investigation of range-gated imaging in scattering environments,” Opt. Eng. 51(6), 061303 (2012).
[Crossref]

Moore, K. D.

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: Status and prospects,” J. Oceanogr. 14, 66 (2001).

Olsson, H.

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
[Crossref]

Pace, P. W.

G. R. Fournier, D. Bonnier, L. J. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32(9), 2185–2190 (1993).
[Crossref]

Schertzer, S.

F. Christnacher, M. Laurenzis, and S. Schertzer, “Theoretical and experimental comparison of flash and accumulation mode in range-gated active imaging,” Opt. Eng. 53(4), 043106 (2014).
[Crossref]

Scholz, Th.

M. Laurenzis, F. Christnacher, D. Monnin, and Th. Scholz, “Investigation of range-gated imaging in scattering environments,” Opt. Eng. 51(6), 061303 (2012).
[Crossref]

Steingold, H.

Steinvall, O.

V. Molebny, G. Kamerman, and O. Steinvall, “Laser radar: from early history to new trends,” Proc. SPIE 7835, 783502 (2010).
[Crossref]

Steinvall, O. K.

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
[Crossref]

Strand, M. P.

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: Status and prospects,” J. Oceanogr. 14, 66 (2001).

E. A. McLean, H. R. Burris, and M. P. Strand, “Short-pulse range-gated optical imaging in turbid water,” Appl. Opt. 34(21), 4343–4351 (1995).
[Crossref] [PubMed]

Strauch, R. E.

Zevallos, M. E.

M. E. Zevallos, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

M. E. Zevallos, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005).
[Crossref]

J. Oceanogr. (1)

J. S. Jaffe, K. D. Moore, J. McLean, and M. P. Strand, “Underwater optical imaging: Status and prospects,” J. Oceanogr. 14, 66 (2001).

J. Opt. Soc. Am. A (1)

L. F. Gillespie, “Apparent illuminance as a function of range in gated, laser night-viewing systems,” J. Opt. Soc. Am. A 56(7), 883 (1966).
[Crossref]

Opt. Eng. (6)

J. Busck, “Underwater 3-D optical imaging with a gated viewing laser radar,” Opt. Eng. 44(11), 116001 (2005).
[Crossref]

P. Andersson, “Long-range three-dimensional imaging using range-gated laser radar images,” Opt. Eng. 45(3), 034301 (2006).
[Crossref]

P. F. McManamon, “Review of ladar: a historic, yet emerging, sensor technology with rich phenomenology,” Opt. Eng. 51(6), 060901 (2012).
[Crossref]

G. R. Fournier, D. Bonnier, L. J. Forand, and P. W. Pace, “Range-gated underwater laser imaging system,” Opt. Eng. 32(9), 2185–2190 (1993).
[Crossref]

M. Laurenzis, F. Christnacher, D. Monnin, and Th. Scholz, “Investigation of range-gated imaging in scattering environments,” Opt. Eng. 51(6), 061303 (2012).
[Crossref]

F. Christnacher, M. Laurenzis, and S. Schertzer, “Theoretical and experimental comparison of flash and accumulation mode in range-gated active imaging,” Opt. Eng. 53(4), 043106 (2014).
[Crossref]

Proc. SPIE (2)

V. Molebny, G. Kamerman, and O. Steinvall, “Laser radar: from early history to new trends,” Proc. SPIE 7835, 783502 (2010).
[Crossref]

O. K. Steinvall, H. Olsson, G. Bolander, C. A. Groenwall, and D. Letalick, “Gated viewing for target detection and target recognition,” Proc. SPIE 3707, 432–448 (1999).
[Crossref]

Other (6)

D. Monnin, A. Schneider, F. Christnacher, and Y. Lutz, “A 3D outdoor scene scanner based on a night-vision range-gated active imaging system,” in Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT’06), ed. (IEEE Computer Society, 2006).
[Crossref]

“SWIR Image Gallery”, (Sensors Unlimited, UTC Aerospace Systems), http://www.sensorsinc.com/gallery/images

“LIVAR M506: High Sensitivity, Short Wave Infrared (SWIR) Gated Camera,” (Intevac) http://www.intevac.com/intevacphotonics/livar-506/

J. Rothman, E. de Borniol, K. Foubert, L. Mollard, N. Péré-Laperne, F. Salvetti, A. Kerlain, and Y. Reibel, “HgCdTe APDs for space applications,” presented at the International Conference on Space Optic (ICSO 2014), Tenerife, Canary Islands, Spain, 7–10 Oct. 2014.

E. de Borniol, J. Rothman, F. Salveti, and P. Feautrier, “SWIR HgCdTe avalanche photodiode focal plan arrays performances evaluation,” presented at the International Conference on Space Optic (ICSO 2014), Tenerife, Canary Islands, Spain, 7–10 Oct. 2014.

H. Koschmieder, “Theorie der horizontalen Sichtweite,” Beitr. Phys. fr. Atm. 12, 33–55 and 171–181 (1924).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Principle of range-gated active imaging.
Fig. 2
Fig. 2 Time-space diagram of the active imaging process (here, the laser pulse width and the sensor integration time are equal).
Fig. 3
Fig. 3 Relative transmission spectrum of canister smoke generated by combustion.
Fig. 4
Fig. 4 ISL fog tunnel facility with different fog densities (color camera). (a) α = 2.10−4 m−1, (b) α = 0.05 m−1, (c) α = 0.5 m−1.
Fig. 5
Fig. 5 (a) Measured contrast of the contrast panels at different ranges and at different fog densities (varying from α = 10−4 m−1 without fog to α1 = 0.75 m−1 with very dense fog). (b) The same data represented vs the attenuation length in x-axis, clearly shows the gain brought by active imaging in comparison with the Koschmieder law.
Fig. 6
Fig. 6 Principle of the experiments with a long gate (a) and a short gate (b).
Fig. 7
Fig. 7 Long gate and short gate gains against attenuation length for two types of obscurants.
Fig. 8
Fig. 8 The slope of the rising edge of the gate determines the level of back-reflection in front of a target.
Fig. 9
Fig. 9 Gate temporal intensity-variation: result of the convolution of the laser pulse and the camera shutter functions.
Fig. 10
Fig. 10 Experimental acquisition of the gate intensity variation function.
Fig. 11
Fig. 11 Target contrast versus attenuation length for a system using the EB-CMOS camera and a system using the MCT-APD camera.
Fig. 12
Fig. 12 Illustration of the curves shown in Fig. 11.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I( z )= 0 P( t 2z c ) G( t τ delay )dt
Δ z r =Δ z f = c τ pls 2
S A( z 0 ) z 0 2 ρ t I( z 0 ) S t + 0 z 0 A(z) z 2 ρ SCS I(z) dz S SCS
P R = P T ρ t A t A illum A rec π z 0 2 η atm 2 η sys
V= 1 α ln( C 0 C th )
V= 3 α
V.α=3
C= m ¯ w m ¯ b m ¯ w + m ¯ b
C S w S b S w + S b +2 S SCS

Metrics