Abstract

The formation and characterization of a switchable volume reflective element fabricated from a polymer liquid crystal (LC) polymer slice (POLICRYPS) structure by holographic photopolymerization at high temperature (65 °C) using a photosensitive/nematic liquid crystal prepolymer mixture is reported. The submicron Bragg structure formed consists of periodic continuous polymeric walls separated by periodic LC channels. The phase separated NLC self-aligns in a homeotropic alignment between the polymer walls as indicated by polarizing optical microscopy analysis (Maltese cross). The resulting periodic grating structure results in a Bragg reflection notch upon illumination with white light due to the periodic variation in refractive index. Electro-optical experiments realized through in-plane electrodes and temperature experiments confirm that the multilayer structure acts as a Bragg mirror whose reflection efficiency can be controlled by either a small (~3V/µm) electric field or temperature.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
POLICRYPS structures as switchable optical phase modulators

L. De Sio, N. Tabiryan, R. Caputo, A. Veltri, and C. Umeton
Opt. Express 16(11) 7619-7624 (2008)

POLYCRYPS visible curing for spatial light modulator based holography

Melissa Infusino, Antonio Ferraro, Antonio De Luca, Roberto Caputo, and Cesare Umeton
J. Opt. Soc. Am. B 29(11) 3170-3176 (2012)

Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material

Roberto Caputo, Luciano De Sio, Alessandro Veltri, Cesare Umeton, and Andrey V. Sukhov
Opt. Lett. 29(11) 1261-1263 (2004)

References

  • View by:
  • |
  • |
  • |

  1. A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
    [Crossref] [PubMed]
  2. T. Bunning, L. Natarajan, V. Tondiglia, and R. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
    [Crossref]
  3. G. Crawford, “Electrically switchable Bragg gratings,” Opt. Photonics News 14(4), 54–59 (2003).
    [Crossref]
  4. R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, and A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure,” Adv. Mater. 9, 257–260 (1997).
    [Crossref]
  5. S. L. Rosen, Fundamental Principles of Polymeric Materials (John Wiley & Sons, 1993).
  6. J. V. Crivello and E. Reichmanis, “Photopolymer materials and processes for advanced technologies,” Chem. Mater. 26(1), 533–548 (2014).
    [Crossref]
  7. V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater. 14(3), 187–191 (2002).
    [Crossref]
  8. K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81(25), 4736–4738 (2002).
    [Crossref]
  9. M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
    [Crossref]
  10. D. E. Lucchetta, L. Criante, and F. Simoni, “Optical characterization of polymer dispersed liquid crystals for holographic recording,” J. Appl. Phys. 93(12), 9669–9674 (2003).
    [Crossref]
  11. R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29(11), 1261–1263 (2004).
    [Crossref] [PubMed]
  12. L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
    [Crossref]
  13. L. De Sio and N. Tabiryan, “Self-aligning liquid crystals in polymer composite systems,” J. Polym. Sci., Part B, Polym. Phys. 52(3), 158–162 (2014).
    [Crossref]
  14. M. Schulte, S. Clarson, L. Natarajan, D. Tomlin, and T. Bunning, “The effect of fluorine-substituted acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystals,” Liq. Cryst. 27(4), 467–475 (2000).
    [Crossref]
  15. V. K. Thakur and M. R. Kessler, Liquid Crystalline Polymers I (Springer, 2015).
  16. V. K. Thakur and M. R. Kessler, Liquid Crystalline Polymers II (Springer, 2015).
  17. M. S. Park, Y. H. Cho, B. K. Kim, and J. S. Jang, “Fabrication of reflective holographic gratings with polyurethane acrylate (PUA),” Curr. Appl. Phys. 2(3), 249–252 (2002).
    [Crossref]
  18. L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
    [Crossref]
  19. R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
    [Crossref]
  20. F. Vita, D. E. Lucchetta, R. Castagna, O. Francescangeli, L. Criante, and F. Simoni, “Detailed investigation of high-resolution reflection gratings through angular-selectivity measurements,” J. Opt. Soc. Am. B 24(3), 471–476 (2007).
    [Crossref]
  21. L. De Sio, N. Tabiryan, R. Caputo, A. Veltri, and C. Umeton, “POLICRYPS structures as switchable optical phase modulators,” Opt. Express 16(11), 7619–7624 (2008).
    [Crossref] [PubMed]
  22. L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic zzo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
    [Crossref]
  23. D. Donisi, L. De Sio, R. Beccherelli, M. A. Caponero, A. d’Alessandro, and C. Umeton, “Optical interrogation system based on holographic soft matter filter,” Appl. Phys. Lett. 98(15), 151103 (2011).
    [Crossref]
  24. L. De Sio, N. Tabiryan, and T. J. Bunning, “Spontaneous radial liquid crystals alignment on curved polymeric surfaces,” Appl. Phys. Lett. 104(22), 221112 (2014).
    [Crossref]
  25. G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(1), 1035–1047 (1997).
    [Crossref]
  26. L. Lu, J. Y. Hwang, and L. C. Chien, “Effect of IPS cell structure on the electro-optical property of a room-temperature blue phase liquid crystal,” Symposium Digest of Technical Papers40, 1608–1610 (2009).
    [Crossref]

2014 (3)

J. V. Crivello and E. Reichmanis, “Photopolymer materials and processes for advanced technologies,” Chem. Mater. 26(1), 533–548 (2014).
[Crossref]

L. De Sio and N. Tabiryan, “Self-aligning liquid crystals in polymer composite systems,” J. Polym. Sci., Part B, Polym. Phys. 52(3), 158–162 (2014).
[Crossref]

L. De Sio, N. Tabiryan, and T. J. Bunning, “Spontaneous radial liquid crystals alignment on curved polymeric surfaces,” Appl. Phys. Lett. 104(22), 221112 (2014).
[Crossref]

2011 (3)

L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
[Crossref]

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic zzo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[Crossref]

D. Donisi, L. De Sio, R. Beccherelli, M. A. Caponero, A. d’Alessandro, and C. Umeton, “Optical interrogation system based on holographic soft matter filter,” Appl. Phys. Lett. 98(15), 151103 (2011).
[Crossref]

2008 (1)

2007 (1)

2006 (1)

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
[Crossref]

2004 (1)

2003 (3)

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

D. E. Lucchetta, L. Criante, and F. Simoni, “Optical characterization of polymer dispersed liquid crystals for holographic recording,” J. Appl. Phys. 93(12), 9669–9674 (2003).
[Crossref]

G. Crawford, “Electrically switchable Bragg gratings,” Opt. Photonics News 14(4), 54–59 (2003).
[Crossref]

2002 (3)

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater. 14(3), 187–191 (2002).
[Crossref]

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81(25), 4736–4738 (2002).
[Crossref]

M. S. Park, Y. H. Cho, B. K. Kim, and J. S. Jang, “Fabrication of reflective holographic gratings with polyurethane acrylate (PUA),” Curr. Appl. Phys. 2(3), 249–252 (2002).
[Crossref]

2001 (1)

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

2000 (3)

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

T. Bunning, L. Natarajan, V. Tondiglia, and R. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

M. Schulte, S. Clarson, L. Natarajan, D. Tomlin, and T. Bunning, “The effect of fluorine-substituted acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystals,” Liq. Cryst. 27(4), 467–475 (2000).
[Crossref]

1997 (2)

R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, and A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure,” Adv. Mater. 9, 257–260 (1997).
[Crossref]

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(1), 1035–1047 (1997).
[Crossref]

Bartolino, R.

L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
[Crossref]

Beccherelli, R.

D. Donisi, L. De Sio, R. Beccherelli, M. A. Caponero, A. d’Alessandro, and C. Umeton, “Optical interrogation system based on holographic soft matter filter,” Appl. Phys. Lett. 98(15), 151103 (2011).
[Crossref]

Blanco, A.

R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, and A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure,” Adv. Mater. 9, 257–260 (1997).
[Crossref]

Brandelik, D. M.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

Bunning, T.

M. Schulte, S. Clarson, L. Natarajan, D. Tomlin, and T. Bunning, “The effect of fluorine-substituted acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystals,” Liq. Cryst. 27(4), 467–475 (2000).
[Crossref]

T. Bunning, L. Natarajan, V. Tondiglia, and R. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Bunning, T. J.

L. De Sio, N. Tabiryan, and T. J. Bunning, “Spontaneous radial liquid crystals alignment on curved polymeric surfaces,” Appl. Phys. Lett. 104(22), 221112 (2014).
[Crossref]

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater. 14(3), 187–191 (2002).
[Crossref]

Campbell, M.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Caponero, M. A.

D. Donisi, L. De Sio, R. Beccherelli, M. A. Caponero, A. d’Alessandro, and C. Umeton, “Optical interrogation system based on holographic soft matter filter,” Appl. Phys. Lett. 98(15), 151103 (2011).
[Crossref]

Caputo, R.

Castagna, R.

Chandra, S.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

Chien, L. C.

L. Lu, J. Y. Hwang, and L. C. Chien, “Effect of IPS cell structure on the electro-optical property of a room-temperature blue phase liquid crystal,” Symposium Digest of Technical Papers40, 1608–1610 (2009).
[Crossref]

Cho, Y. H.

M. S. Park, Y. H. Cho, B. K. Kim, and J. S. Jang, “Fabrication of reflective holographic gratings with polyurethane acrylate (PUA),” Curr. Appl. Phys. 2(3), 249–252 (2002).
[Crossref]

Cintas, A.

R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, and A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure,” Adv. Mater. 9, 257–260 (1997).
[Crossref]

Clarson, S.

M. Schulte, S. Clarson, L. Natarajan, D. Tomlin, and T. Bunning, “The effect of fluorine-substituted acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystals,” Liq. Cryst. 27(4), 467–475 (2000).
[Crossref]

Crawford, G.

G. Crawford, “Electrically switchable Bragg gratings,” Opt. Photonics News 14(4), 54–59 (2003).
[Crossref]

Crawford, G. P.

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81(25), 4736–4738 (2002).
[Crossref]

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

Criante, L.

F. Vita, D. E. Lucchetta, R. Castagna, O. Francescangeli, L. Criante, and F. Simoni, “Detailed investigation of high-resolution reflection gratings through angular-selectivity measurements,” J. Opt. Soc. Am. B 24(3), 471–476 (2007).
[Crossref]

D. E. Lucchetta, L. Criante, and F. Simoni, “Optical characterization of polymer dispersed liquid crystals for holographic recording,” J. Appl. Phys. 93(12), 9669–9674 (2003).
[Crossref]

Crivello, J. V.

J. V. Crivello and E. Reichmanis, “Photopolymer materials and processes for advanced technologies,” Chem. Mater. 26(1), 533–548 (2014).
[Crossref]

d’Alessandro, A.

D. Donisi, L. De Sio, R. Beccherelli, M. A. Caponero, A. d’Alessandro, and C. Umeton, “Optical interrogation system based on holographic soft matter filter,” Appl. Phys. Lett. 98(15), 151103 (2011).
[Crossref]

De Sarkar, M.

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81(25), 4736–4738 (2002).
[Crossref]

De Sio, L.

L. De Sio and N. Tabiryan, “Self-aligning liquid crystals in polymer composite systems,” J. Polym. Sci., Part B, Polym. Phys. 52(3), 158–162 (2014).
[Crossref]

L. De Sio, N. Tabiryan, and T. J. Bunning, “Spontaneous radial liquid crystals alignment on curved polymeric surfaces,” Appl. Phys. Lett. 104(22), 221112 (2014).
[Crossref]

D. Donisi, L. De Sio, R. Beccherelli, M. A. Caponero, A. d’Alessandro, and C. Umeton, “Optical interrogation system based on holographic soft matter filter,” Appl. Phys. Lett. 98(15), 151103 (2011).
[Crossref]

L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
[Crossref]

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic zzo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[Crossref]

L. De Sio, N. Tabiryan, R. Caputo, A. Veltri, and C. Umeton, “POLICRYPS structures as switchable optical phase modulators,” Opt. Express 16(11), 7619–7624 (2008).
[Crossref] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29(11), 1261–1263 (2004).
[Crossref] [PubMed]

Denning, R. G.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Donisi, D.

D. Donisi, L. De Sio, R. Beccherelli, M. A. Caponero, A. d’Alessandro, and C. Umeton, “Optical interrogation system based on holographic soft matter filter,” Appl. Phys. Lett. 98(15), 151103 (2011).
[Crossref]

Drevensek-Olenik, I.

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

Eakin, J. N.

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81(25), 4736–4738 (2002).
[Crossref]

Ferjani, S.

L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
[Crossref]

Fontecchio, A. K.

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

Francescangeli, O.

Harrison, M. T.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Holgado, M.

R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, and A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure,” Adv. Mater. 9, 257–260 (1997).
[Crossref]

Hwang, J. Y.

L. Lu, J. Y. Hwang, and L. C. Chien, “Effect of IPS cell structure on the electro-optical property of a room-temperature blue phase liquid crystal,” Symposium Digest of Technical Papers40, 1608–1610 (2009).
[Crossref]

Jang, J. S.

M. S. Park, Y. H. Cho, B. K. Kim, and J. S. Jang, “Fabrication of reflective holographic gratings with polyurethane acrylate (PUA),” Curr. Appl. Phys. 2(3), 249–252 (2002).
[Crossref]

Jazbinšek, M.

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

Kim, B. K.

M. S. Park, Y. H. Cho, B. K. Kim, and J. S. Jang, “Fabrication of reflective holographic gratings with polyurethane acrylate (PUA),” Curr. Appl. Phys. 2(3), 249–252 (2002).
[Crossref]

López, C.

R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, and A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure,” Adv. Mater. 9, 257–260 (1997).
[Crossref]

Lu, L.

L. Lu, J. Y. Hwang, and L. C. Chien, “Effect of IPS cell structure on the electro-optical property of a room-temperature blue phase liquid crystal,” Symposium Digest of Technical Papers40, 1608–1610 (2009).
[Crossref]

Lucchetta, D. E.

F. Vita, D. E. Lucchetta, R. Castagna, O. Francescangeli, L. Criante, and F. Simoni, “Detailed investigation of high-resolution reflection gratings through angular-selectivity measurements,” J. Opt. Soc. Am. B 24(3), 471–476 (2007).
[Crossref]

D. E. Lucchetta, L. Criante, and F. Simoni, “Optical characterization of polymer dispersed liquid crystals for holographic recording,” J. Appl. Phys. 93(12), 9669–9674 (2003).
[Crossref]

Mayoral, R.

R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, and A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure,” Adv. Mater. 9, 257–260 (1997).
[Crossref]

Meseguer, F.

R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, and A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure,” Adv. Mater. 9, 257–260 (1997).
[Crossref]

Miguez, H.

R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, and A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure,” Adv. Mater. 9, 257–260 (1997).
[Crossref]

Montemezzani, G.

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(1), 1035–1047 (1997).
[Crossref]

Moya, J. S.

R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, and A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure,” Adv. Mater. 9, 257–260 (1997).
[Crossref]

Natarajan, L.

T. Bunning, L. Natarajan, V. Tondiglia, and R. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

M. Schulte, S. Clarson, L. Natarajan, D. Tomlin, and T. Bunning, “The effect of fluorine-substituted acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystals,” Liq. Cryst. 27(4), 467–475 (2000).
[Crossref]

Natarajan, L. V.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater. 14(3), 187–191 (2002).
[Crossref]

Park, M. S.

M. S. Park, Y. H. Cho, B. K. Kim, and J. S. Jang, “Fabrication of reflective holographic gratings with polyurethane acrylate (PUA),” Curr. Appl. Phys. 2(3), 249–252 (2002).
[Crossref]

Qi, J.

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81(25), 4736–4738 (2002).
[Crossref]

Ramsey, R. A.

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
[Crossref]

Reichmanis, E.

J. V. Crivello and E. Reichmanis, “Photopolymer materials and processes for advanced technologies,” Chem. Mater. 26(1), 533–548 (2014).
[Crossref]

Requena, J.

R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, and A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure,” Adv. Mater. 9, 257–260 (1997).
[Crossref]

Schulte, M.

M. Schulte, S. Clarson, L. Natarajan, D. Tomlin, and T. Bunning, “The effect of fluorine-substituted acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystals,” Liq. Cryst. 27(4), 467–475 (2000).
[Crossref]

Serak, S.

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic zzo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[Crossref]

Sharma, S. C.

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
[Crossref]

Sharp, D. N.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Shepherd, C. K.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

Simoni, F.

F. Vita, D. E. Lucchetta, R. Castagna, O. Francescangeli, L. Criante, and F. Simoni, “Detailed investigation of high-resolution reflection gratings through angular-selectivity measurements,” J. Opt. Soc. Am. B 24(3), 471–476 (2007).
[Crossref]

D. E. Lucchetta, L. Criante, and F. Simoni, “Optical characterization of polymer dispersed liquid crystals for holographic recording,” J. Appl. Phys. 93(12), 9669–9674 (2003).
[Crossref]

Strangi, G.

L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
[Crossref]

Sukhov, A. V.

Sutherland, R.

T. Bunning, L. Natarajan, V. Tondiglia, and R. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Sutherland, R. L.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater. 14(3), 187–191 (2002).
[Crossref]

Tabiryan, N.

L. De Sio and N. Tabiryan, “Self-aligning liquid crystals in polymer composite systems,” J. Polym. Sci., Part B, Polym. Phys. 52(3), 158–162 (2014).
[Crossref]

L. De Sio, N. Tabiryan, and T. J. Bunning, “Spontaneous radial liquid crystals alignment on curved polymeric surfaces,” Appl. Phys. Lett. 104(22), 221112 (2014).
[Crossref]

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic zzo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[Crossref]

L. De Sio, N. Tabiryan, R. Caputo, A. Veltri, and C. Umeton, “POLICRYPS structures as switchable optical phase modulators,” Opt. Express 16(11), 7619–7624 (2008).
[Crossref] [PubMed]

Tomlin, D.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater. 14(3), 187–191 (2002).
[Crossref]

M. Schulte, S. Clarson, L. Natarajan, D. Tomlin, and T. Bunning, “The effect of fluorine-substituted acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystals,” Liq. Cryst. 27(4), 467–475 (2000).
[Crossref]

Tondiglia, V.

T. Bunning, L. Natarajan, V. Tondiglia, and R. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Tondiglia, V. P.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater. 14(3), 187–191 (2002).
[Crossref]

Turberfield, A. J.

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Umeton, C.

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic zzo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[Crossref]

L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
[Crossref]

D. Donisi, L. De Sio, R. Beccherelli, M. A. Caponero, A. d’Alessandro, and C. Umeton, “Optical interrogation system based on holographic soft matter filter,” Appl. Phys. Lett. 98(15), 151103 (2011).
[Crossref]

L. De Sio, N. Tabiryan, R. Caputo, A. Veltri, and C. Umeton, “POLICRYPS structures as switchable optical phase modulators,” Opt. Express 16(11), 7619–7624 (2008).
[Crossref] [PubMed]

R. Caputo, L. De Sio, A. Veltri, C. Umeton, and A. V. Sukhov, “Development of a new kind of switchable holographic grating made of liquid-crystal films separated by slices of polymeric material,” Opt. Lett. 29(11), 1261–1263 (2004).
[Crossref] [PubMed]

Vaghela, K.

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
[Crossref]

Vardanyan, K. K.

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81(25), 4736–4738 (2002).
[Crossref]

Vázquez, L.

R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, and A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure,” Adv. Mater. 9, 257–260 (1997).
[Crossref]

Veltri, A.

Vita, F.

Zgonik, M.

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(1), 1035–1047 (1997).
[Crossref]

Adv. Mater. (2)

R. Mayoral, J. Requena, J. S. Moya, C. López, A. Cintas, H. Miguez, F. Meseguer, L. Vázquez, M. Holgado, and A. Blanco, “3D long-range ordering in an SiO2 submicrometer-sphere sintered superstructure,” Adv. Mater. 9, 257–260 (1997).
[Crossref]

V. P. Tondiglia, L. V. Natarajan, R. L. Sutherland, D. Tomlin, and T. J. Bunning, “Holographic formation of electro-optical polymer-liquid crystal photonic crystals,” Adv. Mater. 14(3), 187–191 (2002).
[Crossref]

Annu. Rev. Mater. Sci. (1)

T. Bunning, L. Natarajan, V. Tondiglia, and R. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Appl. Phys. Lett. (4)

K. K. Vardanyan, J. Qi, J. N. Eakin, M. De Sarkar, and G. P. Crawford, “Polymer scaffolding model for holographic polymer-dispersed liquid crystals,” Appl. Phys. Lett. 81(25), 4736–4738 (2002).
[Crossref]

D. Donisi, L. De Sio, R. Beccherelli, M. A. Caponero, A. d’Alessandro, and C. Umeton, “Optical interrogation system based on holographic soft matter filter,” Appl. Phys. Lett. 98(15), 151103 (2011).
[Crossref]

L. De Sio, N. Tabiryan, and T. J. Bunning, “Spontaneous radial liquid crystals alignment on curved polymeric surfaces,” Appl. Phys. Lett. 104(22), 221112 (2014).
[Crossref]

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
[Crossref]

Chem. Mater. (2)

J. V. Crivello and E. Reichmanis, “Photopolymer materials and processes for advanced technologies,” Chem. Mater. 26(1), 533–548 (2014).
[Crossref]

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

Curr. Appl. Phys. (1)

M. S. Park, Y. H. Cho, B. K. Kim, and J. S. Jang, “Fabrication of reflective holographic gratings with polyurethane acrylate (PUA),” Curr. Appl. Phys. 2(3), 249–252 (2002).
[Crossref]

J. Appl. Phys. (2)

M. Jazbinšek, I. Drevensek-Olenik, M. Zgonik, A. K. Fontecchio, and G. P. Crawford, “Characterization of holographic polymer dispersed liquid crystal transmission gratings,” J. Appl. Phys. 90(8), 3831–3837 (2001).
[Crossref]

D. E. Lucchetta, L. Criante, and F. Simoni, “Optical characterization of polymer dispersed liquid crystals for holographic recording,” J. Appl. Phys. 93(12), 9669–9674 (2003).
[Crossref]

J. Mater. Chem. (1)

L. De Sio, S. Serak, N. Tabiryan, and C. Umeton, “Mesogenic versus non-mesogenic zzo dye confined in a soft-matter template for realization of optically switchable diffraction gratings,” J. Mater. Chem. 21(19), 6811–6814 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Polym. Sci., Part B, Polym. Phys. (1)

L. De Sio and N. Tabiryan, “Self-aligning liquid crystals in polymer composite systems,” J. Polym. Sci., Part B, Polym. Phys. 52(3), 158–162 (2014).
[Crossref]

Liq. Cryst. (1)

M. Schulte, S. Clarson, L. Natarajan, D. Tomlin, and T. Bunning, “The effect of fluorine-substituted acrylate monomers on the electro-optical and morphological properties of polymer dispersed liquid crystals,” Liq. Cryst. 27(4), 467–475 (2000).
[Crossref]

Nature (1)

A. J. Turberfield, M. Campbell, D. N. Sharp, M. T. Harrison, and R. G. Denning, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature 404(6773), 53–56 (2000).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Opt. Photonics News (1)

G. Crawford, “Electrically switchable Bragg gratings,” Opt. Photonics News 14(4), 54–59 (2003).
[Crossref]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

G. Montemezzani and M. Zgonik, “Light diffraction at mixed phase and absorption gratings in anisotropic media for arbitrary geometries,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(1), 1035–1047 (1997).
[Crossref]

Soft Matter (1)

L. De Sio, S. Ferjani, G. Strangi, C. Umeton, and R. Bartolino, “Universal soft matter template for photonic applications,” Soft Matter 7(8), 3739–3743 (2011).
[Crossref]

Other (4)

S. L. Rosen, Fundamental Principles of Polymeric Materials (John Wiley & Sons, 1993).

V. K. Thakur and M. R. Kessler, Liquid Crystalline Polymers I (Springer, 2015).

V. K. Thakur and M. R. Kessler, Liquid Crystalline Polymers II (Springer, 2015).

L. Lu, J. Y. Hwang, and L. C. Chien, “Effect of IPS cell structure on the electro-optical property of a room-temperature blue phase liquid crystal,” Symposium Digest of Technical Papers40, 1608–1610 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Holographic setup for the realization of POLICRYPS structures in reflection geometry: BS, beam splitter; M1, M2 mirrors, HS hot stage; S, sample.
Fig. 2
Fig. 2 Schematic of the NLC configuration in reflective POLICRYPS structures (a), a conoscopic image of the sample (b), and an image looking through the sample (c)
Fig. 3
Fig. 3 Reflection spectrum of the sample at room temperature (a) and beyond (b) the NLC clearing temperature (70°C) (b).
Fig. 4
Fig. 4 Schematic of the electrodes in the in-plane switching configuration (a). Sketch of the NLC molecules under the influence of the in-plane electric field (b) along with a detail of the electric field distribution affecting only the NLC molecules in proximity to the electrodes(c).
Fig. 5
Fig. 5 POM images of the sample under the influence of an in-plane electric field.
Fig. 6
Fig. 6 POM images of the structure under the influence of an in-plane electric field (3V/µm) for different angles between the analyzer and the optical axis of the sample.
Fig. 7
Fig. 7 Reflection spectrum of the sample without (red curve) and with (blue curve) an applied electric field.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

2 n eff Λsinϑ=m λ B

Metrics