Abstract

We propose a polarization-independent single-mode waveguide, using a two-dimensional square photonic crystal with a complete band gap. The waveguide is tuned such that both TE and TM modes have the same group velocity and zero group velocity dispersion at the centergap frequency. We also present results for a 90° bend with transmission values of 98% for both modes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Sharp trench waveguide bends in dual mode operation with ultra-small photonic crystals for suppressing radiation

Cui Xudong, Christian Hafner, Rüdiger Vahldieck, and Franck Robin
Opt. Express 14(10) 4351-4356 (2006)

Highly efficient and broadband light transmission in 90° nanophotonic wire waveguide bends

H. Kurt, I. H. Giden, and K. Ustun
J. Opt. Soc. Am. B 28(3) 495-501 (2011)

On the design of photonic crystal multiplexers

Jasmin Smajic, Christian Hafner, and Daniel Erni
Opt. Express 11(6) 566-571 (2003)

References

  • View by:
  • |
  • |
  • |

  1. L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1), 43–49 (2002).
    [Crossref]
  2. S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” IEEE J. Lightwave Technol. 23(6), 2103 (2005).
    [Crossref]
  3. S. T. Lim, C. E. Png, E. A. Ong, and Y. L. Ang, “Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,” Opt. Express 15(18), 11061–11072 (2007).
    [Crossref] [PubMed]
  4. M. M. Milošević, P. S. Matavulj, B. D. Timotijević, G. T. Reed, and G. Z. Mashanovich, “Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering,” IEEE J. Lightwave Technol. 26(13), 1840–1846 (2008).
    [Crossref]
  5. M. K. Chin, C. Xu, and W. Huang, “Theoretical approach to a polarization-insensitive single-mode microring resonator,” Opt. Express 12(14), 3245–3250 (2004).
    [Crossref] [PubMed]
  6. E. Cassan, L. Vivien, and S. Laval, “Polarization-independent 90-turns in single-mode micro-waveguides on silicon-on-insula-tor wafers for telecommunication wavelengths,” Opt. Commun. 235(1), 83–88 (2004).
    [Crossref]
  7. Y. Vlasov and S. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express 12(8), 1622–1631 (2004).
    [Crossref] [PubMed]
  8. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787 (1996).
    [Crossref] [PubMed]
  9. A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58(8), 4809 (1998).
    [Crossref]
  10. H. S. Sözüer and H. D. Şengün, “Photonic crystal assisted 90 waveguide bend,” Int. J. Mod. Phys. B 25(16), 2167–2182 (2011).
    [Crossref]
  11. K. Y. Lee, C. C. Tsai, T. C. Weng, Y. L. Kuo, C. W. Kao, K. Y. Chen, and Y. J. Lin, “Transmission characteristics of 90 bent photonic crystal waveguides,” Fiber Integrated Opt. 25(1), 29–40 (2006).
    [Crossref]
  12. E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. B 91(2), 19 (2003).
  13. A. Cicek and B. Ulug, “Polarization-independent waveguiding with annular photonic crystals,” Opt. Express 17(20), 18381–18386 (2009).
    [Crossref] [PubMed]
  14. H. Wu, D. S. Citrin, L. Jiang, and X. Li, “Polarization-independent single-mode waveguiding with honeycomb photonic crystals,” IEEE Photonics Technol. Lett. 27(8), 840–843 (2015).
    [Crossref]
  15. S. G. Johnson and J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
    [Crossref] [PubMed]
  16. A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2005).
  17. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
    [Crossref]

2015 (1)

H. Wu, D. S. Citrin, L. Jiang, and X. Li, “Polarization-independent single-mode waveguiding with honeycomb photonic crystals,” IEEE Photonics Technol. Lett. 27(8), 840–843 (2015).
[Crossref]

2011 (1)

H. S. Sözüer and H. D. Şengün, “Photonic crystal assisted 90 waveguide bend,” Int. J. Mod. Phys. B 25(16), 2167–2182 (2011).
[Crossref]

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

2009 (1)

2008 (1)

M. M. Milošević, P. S. Matavulj, B. D. Timotijević, G. T. Reed, and G. Z. Mashanovich, “Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering,” IEEE J. Lightwave Technol. 26(13), 1840–1846 (2008).
[Crossref]

2007 (1)

2006 (1)

K. Y. Lee, C. C. Tsai, T. C. Weng, Y. L. Kuo, C. W. Kao, K. Y. Chen, and Y. J. Lin, “Transmission characteristics of 90 bent photonic crystal waveguides,” Fiber Integrated Opt. 25(1), 29–40 (2006).
[Crossref]

2005 (1)

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” IEEE J. Lightwave Technol. 23(6), 2103 (2005).
[Crossref]

2004 (3)

2003 (1)

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. B 91(2), 19 (2003).

2002 (1)

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1), 43–49 (2002).
[Crossref]

2001 (1)

1998 (1)

A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58(8), 4809 (1998).
[Crossref]

1996 (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787 (1996).
[Crossref] [PubMed]

Ang, Y. L.

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Cassan, E.

E. Cassan, L. Vivien, and S. Laval, “Polarization-independent 90-turns in single-mode micro-waveguides on silicon-on-insula-tor wafers for telecommunication wavelengths,” Opt. Commun. 235(1), 83–88 (2004).
[Crossref]

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1), 43–49 (2002).
[Crossref]

Chan, S. P.

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” IEEE J. Lightwave Technol. 23(6), 2103 (2005).
[Crossref]

Chen, J. C.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787 (1996).
[Crossref] [PubMed]

Chen, K. Y.

K. Y. Lee, C. C. Tsai, T. C. Weng, Y. L. Kuo, C. W. Kao, K. Y. Chen, and Y. J. Lin, “Transmission characteristics of 90 bent photonic crystal waveguides,” Fiber Integrated Opt. 25(1), 29–40 (2006).
[Crossref]

Chin, M. K.

Cicek, A.

Citrin, D. S.

H. Wu, D. S. Citrin, L. Jiang, and X. Li, “Polarization-independent single-mode waveguiding with honeycomb photonic crystals,” IEEE Photonics Technol. Lett. 27(8), 840–843 (2015).
[Crossref]

Dumont, B.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1), 43–49 (2002).
[Crossref]

Fan, S.

A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58(8), 4809 (1998).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787 (1996).
[Crossref] [PubMed]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2005).

Huang, W.

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Jiang, L.

H. Wu, D. S. Citrin, L. Jiang, and X. Li, “Polarization-independent single-mode waveguiding with honeycomb photonic crystals,” IEEE Photonics Technol. Lett. 27(8), 840–843 (2015).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. B 91(2), 19 (2003).

A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58(8), 4809 (1998).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787 (1996).
[Crossref] [PubMed]

Joannopoulos, J.D.

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. B 91(2), 19 (2003).

S. G. Johnson and J.D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001).
[Crossref] [PubMed]

Kao, C. W.

K. Y. Lee, C. C. Tsai, T. C. Weng, Y. L. Kuo, C. W. Kao, K. Y. Chen, and Y. J. Lin, “Transmission characteristics of 90 bent photonic crystal waveguides,” Fiber Integrated Opt. 25(1), 29–40 (2006).
[Crossref]

Koster, A.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1), 43–49 (2002).
[Crossref]

Kuo, Y. L.

K. Y. Lee, C. C. Tsai, T. C. Weng, Y. L. Kuo, C. W. Kao, K. Y. Chen, and Y. J. Lin, “Transmission characteristics of 90 bent photonic crystal waveguides,” Fiber Integrated Opt. 25(1), 29–40 (2006).
[Crossref]

Kurland, I.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787 (1996).
[Crossref] [PubMed]

Lardenois, S.

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1), 43–49 (2002).
[Crossref]

Laval, S.

E. Cassan, L. Vivien, and S. Laval, “Polarization-independent 90-turns in single-mode micro-waveguides on silicon-on-insula-tor wafers for telecommunication wavelengths,” Opt. Commun. 235(1), 83–88 (2004).
[Crossref]

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1), 43–49 (2002).
[Crossref]

Lee, K. Y.

K. Y. Lee, C. C. Tsai, T. C. Weng, Y. L. Kuo, C. W. Kao, K. Y. Chen, and Y. J. Lin, “Transmission characteristics of 90 bent photonic crystal waveguides,” Fiber Integrated Opt. 25(1), 29–40 (2006).
[Crossref]

Li, X.

H. Wu, D. S. Citrin, L. Jiang, and X. Li, “Polarization-independent single-mode waveguiding with honeycomb photonic crystals,” IEEE Photonics Technol. Lett. 27(8), 840–843 (2015).
[Crossref]

Lidorikis, E.

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. B 91(2), 19 (2003).

Lim, S. T.

S. T. Lim, C. E. Png, E. A. Ong, and Y. L. Ang, “Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,” Opt. Express 15(18), 11061–11072 (2007).
[Crossref] [PubMed]

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” IEEE J. Lightwave Technol. 23(6), 2103 (2005).
[Crossref]

Lin, Y. J.

K. Y. Lee, C. C. Tsai, T. C. Weng, Y. L. Kuo, C. W. Kao, K. Y. Chen, and Y. J. Lin, “Transmission characteristics of 90 bent photonic crystal waveguides,” Fiber Integrated Opt. 25(1), 29–40 (2006).
[Crossref]

Mashanovich, G. Z.

M. M. Milošević, P. S. Matavulj, B. D. Timotijević, G. T. Reed, and G. Z. Mashanovich, “Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering,” IEEE J. Lightwave Technol. 26(13), 1840–1846 (2008).
[Crossref]

Matavulj, P. S.

M. M. Milošević, P. S. Matavulj, B. D. Timotijević, G. T. Reed, and G. Z. Mashanovich, “Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering,” IEEE J. Lightwave Technol. 26(13), 1840–1846 (2008).
[Crossref]

McNab, S.

Mekis, A.

A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58(8), 4809 (1998).
[Crossref]

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787 (1996).
[Crossref] [PubMed]

Miloševic, M. M.

M. M. Milošević, P. S. Matavulj, B. D. Timotijević, G. T. Reed, and G. Z. Mashanovich, “Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering,” IEEE J. Lightwave Technol. 26(13), 1840–1846 (2008).
[Crossref]

Ong, E. A.

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Passaro, V.

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” IEEE J. Lightwave Technol. 23(6), 2103 (2005).
[Crossref]

Png, C. E.

S. T. Lim, C. E. Png, E. A. Ong, and Y. L. Ang, “Single mode, polarization-independent submicron silicon waveguides based on geometrical adjustments,” Opt. Express 15(18), 11061–11072 (2007).
[Crossref] [PubMed]

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” IEEE J. Lightwave Technol. 23(6), 2103 (2005).
[Crossref]

Povinelli, M. L.

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. B 91(2), 19 (2003).

Reed, G. T.

M. M. Milošević, P. S. Matavulj, B. D. Timotijević, G. T. Reed, and G. Z. Mashanovich, “Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering,” IEEE J. Lightwave Technol. 26(13), 1840–1846 (2008).
[Crossref]

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” IEEE J. Lightwave Technol. 23(6), 2103 (2005).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Sengün, H. D.

H. S. Sözüer and H. D. Şengün, “Photonic crystal assisted 90 waveguide bend,” Int. J. Mod. Phys. B 25(16), 2167–2182 (2011).
[Crossref]

Sözüer, H. S.

H. S. Sözüer and H. D. Şengün, “Photonic crystal assisted 90 waveguide bend,” Int. J. Mod. Phys. B 25(16), 2167–2182 (2011).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2005).

Timotijevic, B. D.

M. M. Milošević, P. S. Matavulj, B. D. Timotijević, G. T. Reed, and G. Z. Mashanovich, “Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering,” IEEE J. Lightwave Technol. 26(13), 1840–1846 (2008).
[Crossref]

Tsai, C. C.

K. Y. Lee, C. C. Tsai, T. C. Weng, Y. L. Kuo, C. W. Kao, K. Y. Chen, and Y. J. Lin, “Transmission characteristics of 90 bent photonic crystal waveguides,” Fiber Integrated Opt. 25(1), 29–40 (2006).
[Crossref]

Ulug, B.

Villeneuve, P. R.

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787 (1996).
[Crossref] [PubMed]

Vivien, L.

E. Cassan, L. Vivien, and S. Laval, “Polarization-independent 90-turns in single-mode micro-waveguides on silicon-on-insula-tor wafers for telecommunication wavelengths,” Opt. Commun. 235(1), 83–88 (2004).
[Crossref]

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1), 43–49 (2002).
[Crossref]

Vlasov, Y.

Weng, T. C.

K. Y. Lee, C. C. Tsai, T. C. Weng, Y. L. Kuo, C. W. Kao, K. Y. Chen, and Y. J. Lin, “Transmission characteristics of 90 bent photonic crystal waveguides,” Fiber Integrated Opt. 25(1), 29–40 (2006).
[Crossref]

Wu, H.

H. Wu, D. S. Citrin, L. Jiang, and X. Li, “Polarization-independent single-mode waveguiding with honeycomb photonic crystals,” IEEE Photonics Technol. Lett. 27(8), 840–843 (2015).
[Crossref]

Xu, C.

Comput. Phys. Comm. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Comm. 181, 687–702 (2010).
[Crossref]

Fiber Integrated Opt. (1)

K. Y. Lee, C. C. Tsai, T. C. Weng, Y. L. Kuo, C. W. Kao, K. Y. Chen, and Y. J. Lin, “Transmission characteristics of 90 bent photonic crystal waveguides,” Fiber Integrated Opt. 25(1), 29–40 (2006).
[Crossref]

IEEE J. Lightwave Technol. (2)

S. P. Chan, C. E. Png, S. T. Lim, G. T. Reed, and V. Passaro, “Single-mode and polarization-independent silicon-on-insulator waveguides with small cross section,” IEEE J. Lightwave Technol. 23(6), 2103 (2005).
[Crossref]

M. M. Milošević, P. S. Matavulj, B. D. Timotijević, G. T. Reed, and G. Z. Mashanovich, “Design rules for single-mode and polarization-independent silicon-on-insulator rib waveguides using stress engineering,” IEEE J. Lightwave Technol. 26(13), 1840–1846 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Wu, D. S. Citrin, L. Jiang, and X. Li, “Polarization-independent single-mode waveguiding with honeycomb photonic crystals,” IEEE Photonics Technol. Lett. 27(8), 840–843 (2015).
[Crossref]

Int. J. Mod. Phys. B (1)

H. S. Sözüer and H. D. Şengün, “Photonic crystal assisted 90 waveguide bend,” Int. J. Mod. Phys. B 25(16), 2167–2182 (2011).
[Crossref]

Opt. Commun. (2)

E. Cassan, L. Vivien, and S. Laval, “Polarization-independent 90-turns in single-mode micro-waveguides on silicon-on-insula-tor wafers for telecommunication wavelengths,” Opt. Commun. 235(1), 83–88 (2004).
[Crossref]

L. Vivien, S. Laval, B. Dumont, S. Lardenois, A. Koster, and E. Cassan, “Polarization-independent single-mode rib waveguides on silicon-on-insulator for telecommunication wavelengths,” Opt. Commun. 210(1), 43–49 (2002).
[Crossref]

Opt. Express (5)

Phys. Rev. B (2)

E. Lidorikis, M. L. Povinelli, S. G. Johnson, and J. D. Joannopoulos, “Polarization-independent linear waveguides in 3D photonic crystals,” Phys. Rev. B 91(2), 19 (2003).

A. Mekis, S. Fan, and J. D. Joannopoulos, “Bound states in photonic crystal waveguides and waveguide bends,” Phys. Rev. B 58(8), 4809 (1998).
[Crossref]

Phys. Rev. Lett. (1)

A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannopoulos, “High transmission through sharp bends in photonic crystal waveguides,” Phys. Rev. Lett. 77(18), 3787 (1996).
[Crossref] [PubMed]

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics (Artech House, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The gap-midgap ratio between the seventh and eighth bands versus the outer (R1) and the inner (R2) radii of the annular rod (inset) for a square lattice of dielectric rods with ε = 13 in air. The largest gap obtained with R1 = 0.39a and R2 = 0.24a is indicated by the red cross. (b) The corresponding band diagram. The complete photonic band gap of 6.53% is shaded blue. The center inset shows the irreducible Brillouin zone (shaded green).

Fig. 2
Fig. 2

(a)The supercell size of 15a×a and the optimization parameters. (b)The dispersion relation for the unmodified line defect waveguide (dashed curves) and for the optimized line defect waveguide (solid curves). (c)The normalized group velocity versus the normalized frequency for the guided TE and TM modes of the unmodified line defect waveguide (dashed curves) and the optimized line defect waveguide (solid curves) with the optimal parameter set r1 = 0.41a, r2 = 0.28a and d = 0.97a. The green filled circle is zero group velocity dispersion point with the same group velocity for each polarization.

Fig. 3
Fig. 3

(a)Transmission values for eight different diagonal corner elements, each of length ( n + 1 ) 2 a, where n is the corner label. (b)Transmission through the corner element (inset) as a function of the parameter δ. The Gaussian packets passing through the bend at ωa/2πc = 0.5351 with width Δ ( ω a 2 π c ) = 0.02.

Fig. 4
Fig. 4

(a) The supercell size of 10 2 a × A where A = 2 2 a. (b)The dispersion relation for the diagonal element and modal profiles (inset) of TM, TE-1 and TE-2 modes at the normalized frequency ωa/2πc = 0.5351. (c)The normalized group velocity of the TE and TM modes as a function of the normalized frequency.

Fig. 5
Fig. 5

(a)Transmission through the bend as a function of the normalized frequency in the range 0.5184 < ωa/2πc < 0.5533. The range 0.5323 < ωa/2πc < 0.5373 is shown as shaded gray. Also shown are the group velocity curves of the straight waveguide. (b) Incident pulses and transmitted pulses for TE and TM modes.

Metrics