Abstract

We demonstrate the increasing applicability of compact ultra-fast laser inscribed glass guided-wave lasers and report the highest-power glass waveguide laser with over 1.1 W of output power in monolithic operation in the short-infrared near 2070 nm achieved (51% incident slope efficiency). The holmium doped ZBLAN chip laser is in-band pumped by a 1945 nm thulium fiber laser. When operated in an extended-cavity configuration, over 1 W of output power is realized in a linearly polarized beam. Broad and continuous tunability of the extended-cavity laser is demonstrated from 2004 nm to 2099 nm. Considering its excellent beam quality of M2 = 1.08, this laser shows potential as a flexible master oscillator for single frequency and mode-locking applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers

D.G. Lancaster, S. Gross, M. J. Withford, and T. M. Monro
Opt. Express 22(21) 25286-25294 (2014)

Intra-cavity side-pumped Ho:YAG laser

S. So, J. I. Mackenzie, D. P. Shepherd, W. A. Clarkson, J. G. Betterton, E. K. Gorton, and J. A. C. Terry
Opt. Express 14(22) 10481-10487 (2006)

A cladding-pumped, tunable holmium doped fiber laser

Nikita Simakov, Alexander Hemming, W. Andrew Clarkson, John Haub, and Adrian Carter
Opt. Express 21(23) 28415-28422 (2013)

References

  • View by:
  • |
  • |
  • |

  1. Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
    [Crossref] [PubMed]
  2. T. Y. Fan, G. Huber, R. L. Byer, and P. Mitzscherlich, “Continuous-wave operation at 2.1 μm of a diode-laser-pumped,Tm-sensitized Ho:Y3AI5012 laser at 300 K,” Opt. Lett. 12(9), 678–680 (1987).
    [Crossref] [PubMed]
  3. X. Zhang, L. Yu, S. Zhang, L. Li, J. Zhao, and J. Cui, “Diode-pumped continuous wave and passively Q-switched Tm,Ho:LLF laser at 2 µm,” Opt. Express 21(10), 12629–12634 (2013).
    [Crossref] [PubMed]
  4. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+, Tm3+:ZBLAN glass,” Opt. Lett. 37(6), 996–998 (2012).
    [Crossref] [PubMed]
  5. A. Hemming, N. Simakov, A. Davidson, S. Bennetts, M. Hughes, N. Carmody, P. Davies, L. Corena, D. Stepanov, J. Haub, R. Swain, and A. Carter, “A monolithic cladding pumped holmium-doped fibre laser,” in Proceedings of CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW1M.1.
    [Crossref]
  6. P. Loiko, J. M. Serres, X. Mateos, K. Yumashev, N. Kuleshov, V. Petrov, U. Griebner, M. Aguiló, and F. Díaz, “In-band-pumped Ho:KLu(WO4)2 microchip laser with 84% slope efficiency,” Opt. Lett. 40(3), 344–347 (2015).
    [Crossref] [PubMed]
  7. C. Grivas, “Optically pumped planar waveguide lasers, Part 1: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
    [Crossref]
  8. P. A. Berry, J. R. Macdonald, S. J. Beecher, S. A. McDaniel, K. L. Schepler, and A. K. Kar, “Fabrication and power scaling of a 1.7 W Cr:ZnSe waveguide laser,” Opt. Mater. Express 3(9), 1250 (2013).
    [Crossref]
  9. K. van Dalfsen, S. Aravazhi, C. Grivas, S. M. García-Blanco, and M. Pollnau, “Thulium channel waveguide laser with 1.6 W of output power and ∼80% slope efficiency,” Opt. Lett. 39(15), 4380–4383 (2014).
    [Crossref] [PubMed]
  10. D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20(25), 27503–27509 (2012).
    [Crossref] [PubMed]
  11. P. Dekker, M. Ams, T. Calmano, S. Gross, C. Kränkel, G. Huber, and M. J. Withford, “Spectral narrowing of Yb:YAG waveguide lasers through hybrid integration with ultrafast laser written Bragg gratings,” Opt. Express 23(15), 20195–20202 (2015).
    [Crossref] [PubMed]
  12. G. Della Valle, S. Taccheo, R. Osellame, A. Festa, G. Cerullo, and P. Laporta, “1.5 mum single longitudinal mode waveguide laser fabricated by femtosecond laser writing,” Opt. Express 15(6), 3190–3194 (2007).
    [Crossref] [PubMed]
  13. Y. Duan, P. Dekker, E. Jaatinen, S. Foster, M. Ams, M. Steel, and M. J. Withford, “Narrow linewidth DFB waveguide laser fabricated via ultrafast laser inscription,” IEEE Photonics Technol. Lett. 26(24), 2499–2502 (2014).
    [Crossref]
  14. S. Gross, D. G. Lancaster, H. Ebendorff-Heidepriem, T. M. Monro, A. Fuerbach, and M. J. Withford, “Femtosecond laser induced structural changes in fluorozirconate glass,” Opt. Mater. Express 3(5), 574 (2013).
    [Crossref]
  15. D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
    [Crossref] [PubMed]
  16. D. G. Lancaster, S. Gross, M. J. Withford, and T. M. Monro, “Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers,” Opt. Express 22(21), 25286–25294 (2014).
    [Crossref] [PubMed]
  17. W. Koechner, Solid State Laser Engineering, (Springer-Verlag, 4th edition, 1996).
  18. U. N. Singh, B. M. Walsh, J. Yu, M. Petros, M. J. Kavaya, T. F. Refaat, and N. P. Barnes, “Twenty years of Tm:Ho:YLF and LuLiF laser development for global wind and carbon dioxide active remote sensing,” Opt. Mater. Express 5(4), 827–837 (2015).
    [Crossref]

2015 (3)

2014 (3)

2013 (5)

2012 (2)

2011 (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part 1: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

2007 (1)

1987 (1)

Aguiló, M.

Alam, S. U.

Ams, M.

P. Dekker, M. Ams, T. Calmano, S. Gross, C. Kränkel, G. Huber, and M. J. Withford, “Spectral narrowing of Yb:YAG waveguide lasers through hybrid integration with ultrafast laser written Bragg gratings,” Opt. Express 23(15), 20195–20202 (2015).
[Crossref] [PubMed]

Y. Duan, P. Dekker, E. Jaatinen, S. Foster, M. Ams, M. Steel, and M. J. Withford, “Narrow linewidth DFB waveguide laser fabricated via ultrafast laser inscription,” IEEE Photonics Technol. Lett. 26(24), 2499–2502 (2014).
[Crossref]

Aravazhi, S.

Barnes, N. P.

Beecher, S. J.

Berry, P. A.

Byer, R. L.

Calmano, T.

Cerullo, G.

Cui, J.

Daniel, J. M. O.

Dekker, P.

P. Dekker, M. Ams, T. Calmano, S. Gross, C. Kränkel, G. Huber, and M. J. Withford, “Spectral narrowing of Yb:YAG waveguide lasers through hybrid integration with ultrafast laser written Bragg gratings,” Opt. Express 23(15), 20195–20202 (2015).
[Crossref] [PubMed]

Y. Duan, P. Dekker, E. Jaatinen, S. Foster, M. Ams, M. Steel, and M. J. Withford, “Narrow linewidth DFB waveguide laser fabricated via ultrafast laser inscription,” IEEE Photonics Technol. Lett. 26(24), 2499–2502 (2014).
[Crossref]

Della Valle, G.

Díaz, F.

Duan, Y.

Y. Duan, P. Dekker, E. Jaatinen, S. Foster, M. Ams, M. Steel, and M. J. Withford, “Narrow linewidth DFB waveguide laser fabricated via ultrafast laser inscription,” IEEE Photonics Technol. Lett. 26(24), 2499–2502 (2014).
[Crossref]

Ebendorff-Heidepriem, H.

Fan, T. Y.

Festa, A.

Foster, S.

Y. Duan, P. Dekker, E. Jaatinen, S. Foster, M. Ams, M. Steel, and M. J. Withford, “Narrow linewidth DFB waveguide laser fabricated via ultrafast laser inscription,” IEEE Photonics Technol. Lett. 26(24), 2499–2502 (2014).
[Crossref]

Fuerbach, A.

García-Blanco, S. M.

Griebner, U.

Grivas, C.

Gross, S.

Heidepriem, H. E.

Heidt, A. M.

Huber, G.

Jaatinen, E.

Y. Duan, P. Dekker, E. Jaatinen, S. Foster, M. Ams, M. Steel, and M. J. Withford, “Narrow linewidth DFB waveguide laser fabricated via ultrafast laser inscription,” IEEE Photonics Technol. Lett. 26(24), 2499–2502 (2014).
[Crossref]

Jackson, S. D.

Jung, Y.

Kar, A. K.

Kavaya, M. J.

Kränkel, C.

Kuleshov, N.

Lancaster, D. G.

Laporta, P.

Li, L.

Li, Z.

Loiko, P.

Macdonald, J. R.

Mateos, X.

McDaniel, S. A.

Mitzscherlich, P.

Monro, T. M.

Osellame, R.

Petros, M.

Petrov, V.

Pollnau, M.

Refaat, T. F.

Richardson, D. J.

Schepler, K. L.

Serres, J. M.

Singh, U. N.

Steel, M.

Y. Duan, P. Dekker, E. Jaatinen, S. Foster, M. Ams, M. Steel, and M. J. Withford, “Narrow linewidth DFB waveguide laser fabricated via ultrafast laser inscription,” IEEE Photonics Technol. Lett. 26(24), 2499–2502 (2014).
[Crossref]

Taccheo, S.

van Dalfsen, K.

Walsh, B. M.

Withford, M. J.

P. Dekker, M. Ams, T. Calmano, S. Gross, C. Kränkel, G. Huber, and M. J. Withford, “Spectral narrowing of Yb:YAG waveguide lasers through hybrid integration with ultrafast laser written Bragg gratings,” Opt. Express 23(15), 20195–20202 (2015).
[Crossref] [PubMed]

D. G. Lancaster, S. Gross, M. J. Withford, and T. M. Monro, “Widely tunable short-infrared thulium and holmium doped fluorozirconate waveguide chip lasers,” Opt. Express 22(21), 25286–25294 (2014).
[Crossref] [PubMed]

Y. Duan, P. Dekker, E. Jaatinen, S. Foster, M. Ams, M. Steel, and M. J. Withford, “Narrow linewidth DFB waveguide laser fabricated via ultrafast laser inscription,” IEEE Photonics Technol. Lett. 26(24), 2499–2502 (2014).
[Crossref]

S. Gross, D. G. Lancaster, H. Ebendorff-Heidepriem, T. M. Monro, A. Fuerbach, and M. J. Withford, “Femtosecond laser induced structural changes in fluorozirconate glass,” Opt. Mater. Express 3(5), 574 (2013).
[Crossref]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, M. J. Withford, T. M. Monro, and S. D. Jackson, “Efficient 2.9 μm fluorozirconate glass waveguide chip laser,” Opt. Lett. 38(14), 2588–2591 (2013).
[Crossref] [PubMed]

D. G. Lancaster, S. Gross, H. Ebendorff-Heidepriem, A. Fuerbach, M. J. Withford, and T. M. Monro, “2.1 μm waveguide laser fabricated by femtosecond laser direct-writing in Ho3+, Tm3+:ZBLAN glass,” Opt. Lett. 37(6), 996–998 (2012).
[Crossref] [PubMed]

D. G. Lancaster, S. Gross, A. Fuerbach, H. E. Heidepriem, T. M. Monro, and M. J. Withford, “Versatile large-mode-area femtosecond laser-written Tm:ZBLAN glass chip lasers,” Opt. Express 20(25), 27503–27509 (2012).
[Crossref] [PubMed]

Yu, J.

Yu, L.

Yumashev, K.

Zhang, S.

Zhang, X.

Zhao, J.

IEEE Photonics Technol. Lett. (1)

Y. Duan, P. Dekker, E. Jaatinen, S. Foster, M. Ams, M. Steel, and M. J. Withford, “Narrow linewidth DFB waveguide laser fabricated via ultrafast laser inscription,” IEEE Photonics Technol. Lett. 26(24), 2499–2502 (2014).
[Crossref]

Opt. Express (6)

Opt. Lett. (5)

Opt. Mater. Express (3)

Prog. Quantum Electron. (1)

C. Grivas, “Optically pumped planar waveguide lasers, Part 1: Fundamentals and fabrication techniques,” Prog. Quantum Electron. 35(6), 159–239 (2011).
[Crossref]

Other (2)

A. Hemming, N. Simakov, A. Davidson, S. Bennetts, M. Hughes, N. Carmody, P. Davies, L. Corena, D. Stepanov, J. Haub, R. Swain, and A. Carter, “A monolithic cladding pumped holmium-doped fibre laser,” in Proceedings of CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW1M.1.
[Crossref]

W. Koechner, Solid State Laser Engineering, (Springer-Verlag, 4th edition, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Ho:ZBLAN waveguide laser configured for monolithic cavity operation. PM: powermeter, IC: input coupler, OC: output coupler. (b) Slope efficiency of the monolithic configured holmium ZBLAN waveguide laser. Insets include a near-field image of the output beam (D~3mm), as well as the 52 µm diameter waveguide written into the ZBLAN chip.
Fig. 2
Fig. 2 Ho: ZBLAN chip laser configured for extended cavity operation. pol: polarizer, PM: power meter.
Fig. 3
Fig. 3 (a) Measured slope efficiencies for extended cavity operation. (b) Measured beam-quality of the extended cavity laser at an output power of 100 mW. Inset is the far-field profile of the beam at the waist.
Fig. 4
Fig. 4 (a) Measured tuning range of the Ho:ZBLAN chip. (b) Laser spectrum recorded when the laser is operating in a Littrow tuning configuration.

Metrics