Abstract

Phase spatial light modulators (SLMs) are widely used for generating multifocal three-dimensional (3D) illumination patterns, but these are limited to a field of view constrained by the pixel count or size of the SLM. Further, with two-photon SLM-based excitation, increasing the number of focal spots penalizes the total signal linearly—requiring more laser power than is available or can be tolerated by the sample. Here we analyze and demonstrate a method of using galvanometer mirrors to time-sequentially reposition multiple 3D holograms, both extending the field of view and increasing the total time-averaged two-photon signal. We apply our approach to 3D two-photon in vivo neuronal calcium imaging.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficient multi-site two-photon functional imaging of neuronal circuits

Michael Lawrence Castanares, Vini Gautam, Jack Drury, Hans Bachor, and Vincent R. Daria
Biomed. Opt. Express 7(12) 5325-5334 (2016)

Wide-field multiphoton imaging of cellular dynamics in thick tissue by temporal focusing and patterned illumination

O. D. Therrien, B. Aubé, S. Pagès, P. De Koninck, and D. Côté
Biomed. Opt. Express 2(3) 696-704 (2011)

High speed functional imaging with source localized multifocal two-photon microscopy

Peter Quicke, Stephanie Reynolds, Mark Neil, Thomas Knöpfel, Simon R. Schultz, and Amanda J. Foust
Biomed. Opt. Express 9(8) 3678-3693 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1), 169–175 (2002).
    [Crossref]
  2. A. Linnenberger, D. Peterka, S. Quirin, and R. Yuste, “The Pocketscope: a spatial light modulator based epi-fluorescence microscope for optogenetics,” Proc. SPIE 9164, 91640Y (2014).
  3. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
    [Crossref] [PubMed]
  4. S. Quirin, D. S. Peterka, and R. Yuste, “Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging,” Opt. Express 21(13), 16007–16021 (2013).
    [Crossref] [PubMed]
  5. S. Quirin, J. Jackson, D. S. Peterka, and R. Yuste, “Simultaneous imaging of neural activity in three dimensions,” Front. Neural Circuits 8, 29 (2014).
    [Crossref] [PubMed]
  6. A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
    [Crossref] [PubMed]
  7. S. Paluch-Siegler, T. Mayblum, H. Dana, I. Brosh, I. Gefen, and S. Shoham, “All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation,” Neurophotonics 2(3), 031208 (2015).
    [Crossref] [PubMed]
  8. A. M. Packer, L. E. Russell, H. W. Dalgleish, and M. Häusser, “Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo,” Nat. Methods 12(2), 140–146 (2014).
    [Crossref] [PubMed]
  9. L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009).
    [Crossref] [PubMed]
  10. G. Thalhammer, R. W. Bowman, G. D. Love, M. J. Padgett, and M. Ritsch-Marte, “Speeding up liquid crystal SLMs using overdrive with phase change reduction,” Opt. Express 21(2), 1779–1797 (2013).
    [Crossref] [PubMed]
  11. Meadowlark Optics, “Overdrive Plus,” http://www.meadowlark.com/overdrive-plus-odp-p-125 .
  12. T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
    [Crossref] [PubMed]
  13. J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).
  14. G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. Laczik, M. Padgett, and J. Courtial, “Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping,” Opt. Express 12(8), 1665–1670 (2004).
    [Crossref] [PubMed]
  15. W. J. Alford, R. D. Vanderneut, and V. J. Zaleckas, “Laser scanning microscopy,” Proc. IEEE 70(6), 641–651 (1982).
    [Crossref]
  16. R. D. Hanes, M. C. Jenkins, and S. U. Egelhaaf, “Combined holographic-mechanical optical tweezers: construction, optimization, and calibration,” Rev. Sci. Instrum. 80(8), 083703 (2009).
    [Crossref] [PubMed]
  17. M. Kummer, K. Kirmse, O. W. Witte, J. Haueisen, and K. Holthoff, “Method to quantify accuracy of position feedback signals of a three-dimensional two-photon laser-scanning microscope,” Biomed. Opt. Express 6(10), 3678–3693 (2015).
    [Crossref] [PubMed]
  18. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
    [Crossref]
  19. M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
    [Crossref] [PubMed]
  20. A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
    [Crossref] [PubMed]
  21. E. Ronzitti, M. Guillon, V. de Sars, and V. Emiliani, “LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression,” Opt. Express 20(16), 17843–17855 (2012).
    [Crossref] [PubMed]
  22. G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
    [Crossref] [PubMed]
  23. N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
    [Crossref] [PubMed]
  24. G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
    [Crossref] [PubMed]

2015 (2)

S. Paluch-Siegler, T. Mayblum, H. Dana, I. Brosh, I. Gefen, and S. Shoham, “All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation,” Neurophotonics 2(3), 031208 (2015).
[Crossref] [PubMed]

M. Kummer, K. Kirmse, O. W. Witte, J. Haueisen, and K. Holthoff, “Method to quantify accuracy of position feedback signals of a three-dimensional two-photon laser-scanning microscope,” Biomed. Opt. Express 6(10), 3678–3693 (2015).
[Crossref] [PubMed]

2014 (3)

A. M. Packer, L. E. Russell, H. W. Dalgleish, and M. Häusser, “Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo,” Nat. Methods 12(2), 140–146 (2014).
[Crossref] [PubMed]

A. Linnenberger, D. Peterka, S. Quirin, and R. Yuste, “The Pocketscope: a spatial light modulator based epi-fluorescence microscope for optogenetics,” Proc. SPIE 9164, 91640Y (2014).

S. Quirin, J. Jackson, D. S. Peterka, and R. Yuste, “Simultaneous imaging of neural activity in three dimensions,” Front. Neural Circuits 8, 29 (2014).
[Crossref] [PubMed]

2013 (4)

2012 (3)

E. Ronzitti, M. Guillon, V. de Sars, and V. Emiliani, “LCoS nematic SLM characterization and modeling for diffraction efficiency optimization, zero and ghost orders suppression,” Opt. Express 20(16), 17843–17855 (2012).
[Crossref] [PubMed]

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref] [PubMed]

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

2009 (3)

R. D. Hanes, M. C. Jenkins, and S. U. Egelhaaf, “Combined holographic-mechanical optical tweezers: construction, optimization, and calibration,” Rev. Sci. Instrum. 80(8), 083703 (2009).
[Crossref] [PubMed]

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009).
[Crossref] [PubMed]

2008 (2)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

2007 (1)

G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
[Crossref] [PubMed]

2004 (1)

2002 (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1), 169–175 (2002).
[Crossref]

1996 (1)

1982 (1)

W. J. Alford, R. D. Vanderneut, and V. J. Zaleckas, “Laser scanning microscopy,” Proc. IEEE 70(6), 641–651 (1982).
[Crossref]

Alford, W. J.

W. J. Alford, R. D. Vanderneut, and V. J. Zaleckas, “Laser scanning microscopy,” Proc. IEEE 70(6), 641–651 (1982).
[Crossref]

Andalman, A.

Araya, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Baohan, A.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Betzig, E.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

Bonhoeffer, T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Bowman, R. W.

Brosh, I.

S. Paluch-Siegler, T. Mayblum, H. Dana, I. Brosh, I. Gefen, and S. Shoham, “All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation,” Neurophotonics 2(3), 031208 (2015).
[Crossref] [PubMed]

Broxton, M.

Chen, T. W.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Chiovini, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Chow, D. K.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Chuckowree, J.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Cohen, N.

Courtial, J.

Curtis, J. E.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1), 169–175 (2002).
[Crossref]

Dalgleish, H. W.

A. M. Packer, L. E. Russell, H. W. Dalgleish, and M. Häusser, “Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo,” Nat. Methods 12(2), 140–146 (2014).
[Crossref] [PubMed]

Dana, H.

S. Paluch-Siegler, T. Mayblum, H. Dana, I. Brosh, I. Gefen, and S. Shoham, “All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation,” Neurophotonics 2(3), 031208 (2015).
[Crossref] [PubMed]

De Paola, V.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

de Sars, V.

Deisseroth, K.

M. Broxton, L. Grosenick, S. Yang, N. Cohen, A. Andalman, K. Deisseroth, and M. Levoy, “Wave optics theory and 3-D deconvolution for the light field microscope,” Opt. Express 21(21), 25418–25439 (2013).
[Crossref] [PubMed]

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref] [PubMed]

Donnert, G.

G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
[Crossref] [PubMed]

Egelhaaf, S. U.

R. D. Hanes, M. C. Jenkins, and S. U. Egelhaaf, “Combined holographic-mechanical optical tweezers: construction, optimization, and calibration,” Rev. Sci. Instrum. 80(8), 083703 (2009).
[Crossref] [PubMed]

Eggeling, C.

G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
[Crossref] [PubMed]

Emiliani, V.

Farah, N.

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009).
[Crossref] [PubMed]

Gefen, I.

S. Paluch-Siegler, T. Mayblum, H. Dana, I. Brosh, I. Gefen, and S. Shoham, “All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation,” Neurophotonics 2(3), 031208 (2015).
[Crossref] [PubMed]

Gibson, G.

Golan, L.

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009).
[Crossref] [PubMed]

Grier, D. G.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1), 169–175 (2002).
[Crossref]

Grosenick, L.

Guillon, M.

Hanes, R. D.

R. D. Hanes, M. C. Jenkins, and S. U. Egelhaaf, “Combined holographic-mechanical optical tweezers: construction, optimization, and calibration,” Rev. Sci. Instrum. 80(8), 083703 (2009).
[Crossref] [PubMed]

Haueisen, J.

Häusser, M.

A. M. Packer, L. E. Russell, H. W. Dalgleish, and M. Häusser, “Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo,” Nat. Methods 12(2), 140–146 (2014).
[Crossref] [PubMed]

Hell, S. W.

G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
[Crossref] [PubMed]

Hillier, D.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Hirtz, J. J.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref] [PubMed]

Hofer, S. B.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Holthoff, K.

Holtmaat, A.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Hübener, M.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Jackson, J.

S. Quirin, J. Jackson, D. S. Peterka, and R. Yuste, “Simultaneous imaging of neural activity in three dimensions,” Front. Neural Circuits 8, 29 (2014).
[Crossref] [PubMed]

Jayaraman, V.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Jenkins, M. C.

R. D. Hanes, M. C. Jenkins, and S. U. Egelhaaf, “Combined holographic-mechanical optical tweezers: construction, optimization, and calibration,” Rev. Sci. Instrum. 80(8), 083703 (2009).
[Crossref] [PubMed]

Ji, N.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

Jordan, P.

Kaszás, A.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Katona, G.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Keck, T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Kerr, R. A.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Kim, D. S.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Kirmse, K.

Knott, G.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Koss, B. A.

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1), 169–175 (2002).
[Crossref]

Kummer, M.

Laczik, Z.

Leach, J.

Lee, W. C.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Levoy, M.

Linnenberger, A.

A. Linnenberger, D. Peterka, S. Quirin, and R. Yuste, “The Pocketscope: a spatial light modulator based epi-fluorescence microscope for optogenetics,” Proc. SPIE 9164, 91640Y (2014).

Looger, L. L.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Love, G. D.

Maák, P.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Magee, J. C.

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

Mayblum, T.

S. Paluch-Siegler, T. Mayblum, H. Dana, I. Brosh, I. Gefen, and S. Shoham, “All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation,” Neurophotonics 2(3), 031208 (2015).
[Crossref] [PubMed]

Mostany, R.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Mrsic-Flogel, T. D.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Nedivi, E.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Nikolenko, V.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Orger, M. B.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Packer, A. M.

A. M. Packer, L. E. Russell, H. W. Dalgleish, and M. Häusser, “Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo,” Nat. Methods 12(2), 140–146 (2014).
[Crossref] [PubMed]

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref] [PubMed]

Padgett, M.

Padgett, M. J.

Paluch-Siegler, S.

S. Paluch-Siegler, T. Mayblum, H. Dana, I. Brosh, I. Gefen, and S. Shoham, “All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation,” Neurophotonics 2(3), 031208 (2015).
[Crossref] [PubMed]

Peterka, D.

A. Linnenberger, D. Peterka, S. Quirin, and R. Yuste, “The Pocketscope: a spatial light modulator based epi-fluorescence microscope for optogenetics,” Proc. SPIE 9164, 91640Y (2014).

Peterka, D. S.

S. Quirin, J. Jackson, D. S. Peterka, and R. Yuste, “Simultaneous imaging of neural activity in three dimensions,” Front. Neural Circuits 8, 29 (2014).
[Crossref] [PubMed]

S. Quirin, D. S. Peterka, and R. Yuste, “Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging,” Opt. Express 21(13), 16007–16021 (2013).
[Crossref] [PubMed]

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref] [PubMed]

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Portera-Cailliau, C.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Prakash, R.

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref] [PubMed]

Pulver, S. R.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Quirin, S.

S. Quirin, J. Jackson, D. S. Peterka, and R. Yuste, “Simultaneous imaging of neural activity in three dimensions,” Front. Neural Circuits 8, 29 (2014).
[Crossref] [PubMed]

A. Linnenberger, D. Peterka, S. Quirin, and R. Yuste, “The Pocketscope: a spatial light modulator based epi-fluorescence microscope for optogenetics,” Proc. SPIE 9164, 91640Y (2014).

S. Quirin, D. S. Peterka, and R. Yuste, “Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging,” Opt. Express 21(13), 16007–16021 (2013).
[Crossref] [PubMed]

Renninger, S. L.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Reutsky, I.

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009).
[Crossref] [PubMed]

Ritsch-Marte, M.

Ronzitti, E.

Roska, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Rózsa, B.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Russell, L. E.

A. M. Packer, L. E. Russell, H. W. Dalgleish, and M. Häusser, “Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo,” Nat. Methods 12(2), 140–146 (2014).
[Crossref] [PubMed]

Schreiter, E. R.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Shoham, S.

S. Paluch-Siegler, T. Mayblum, H. Dana, I. Brosh, I. Gefen, and S. Shoham, “All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation,” Neurophotonics 2(3), 031208 (2015).
[Crossref] [PubMed]

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009).
[Crossref] [PubMed]

Sinclair, G.

Sun, Y.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Svoboda, K.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Szalay, G.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Thalhammer, G.

Trachtenberg, J. T.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Vanderneut, R. D.

W. J. Alford, R. D. Vanderneut, and V. J. Zaleckas, “Laser scanning microscopy,” Proc. IEEE 70(6), 641–651 (1982).
[Crossref]

Veress, M.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Vizi, E. S.

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

Wardill, T. J.

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Watson, B. O.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Webb, W. W.

Wilbrecht, L.

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Witte, O. W.

Woodruff, A.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Xu, C.

Yang, S.

Yao, E.

Yuste, R.

S. Quirin, J. Jackson, D. S. Peterka, and R. Yuste, “Simultaneous imaging of neural activity in three dimensions,” Front. Neural Circuits 8, 29 (2014).
[Crossref] [PubMed]

A. Linnenberger, D. Peterka, S. Quirin, and R. Yuste, “The Pocketscope: a spatial light modulator based epi-fluorescence microscope for optogenetics,” Proc. SPIE 9164, 91640Y (2014).

S. Quirin, D. S. Peterka, and R. Yuste, “Instantaneous three-dimensional sensing using spatial light modulator illumination with extended depth of field imaging,” Opt. Express 21(13), 16007–16021 (2013).
[Crossref] [PubMed]

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref] [PubMed]

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Zaleckas, V. J.

W. J. Alford, R. D. Vanderneut, and V. J. Zaleckas, “Laser scanning microscopy,” Proc. IEEE 70(6), 641–651 (1982).
[Crossref]

Biomed. Opt. Express (1)

Front. Neural Circuits (2)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM microscopy: scanless two-photon imaging and photostimulation with spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

S. Quirin, J. Jackson, D. S. Peterka, and R. Yuste, “Simultaneous imaging of neural activity in three dimensions,” Front. Neural Circuits 8, 29 (2014).
[Crossref] [PubMed]

J. Neural Eng. (1)

L. Golan, I. Reutsky, N. Farah, and S. Shoham, “Design and characteristics of holographic neural photo-stimulation systems,” J. Neural Eng. 6(6), 066004 (2009).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (1)

Nat. Methods (5)

A. M. Packer, D. S. Peterka, J. J. Hirtz, R. Prakash, K. Deisseroth, and R. Yuste, “Two-photon optogenetics of dendritic spines and neural circuits,” Nat. Methods 9(12), 1202–1205 (2012).
[Crossref] [PubMed]

G. Katona, G. Szalay, P. Maák, A. Kaszás, M. Veress, D. Hillier, B. Chiovini, E. S. Vizi, B. Roska, and B. Rózsa, “Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes,” Nat. Methods 9(2), 201–208 (2012).
[Crossref] [PubMed]

N. Ji, J. C. Magee, and E. Betzig, “High-speed, low-photodamage nonlinear imaging using passive pulse splitters,” Nat. Methods 5(2), 197–202 (2008).
[Crossref] [PubMed]

G. Donnert, C. Eggeling, and S. W. Hell, “Major signal increase in fluorescence microscopy through dark-state relaxation,” Nat. Methods 4(1), 81–86 (2007).
[Crossref] [PubMed]

A. M. Packer, L. E. Russell, H. W. Dalgleish, and M. Häusser, “Simultaneous all-optical manipulation and recording of neural circuit activity with cellular resolution in vivo,” Nat. Methods 12(2), 140–146 (2014).
[Crossref] [PubMed]

Nat. Protoc. (1)

A. Holtmaat, T. Bonhoeffer, D. K. Chow, J. Chuckowree, V. De Paola, S. B. Hofer, M. Hübener, T. Keck, G. Knott, W. C. Lee, R. Mostany, T. D. Mrsic-Flogel, E. Nedivi, C. Portera-Cailliau, K. Svoboda, J. T. Trachtenberg, and L. Wilbrecht, “Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window,” Nat. Protoc. 4(8), 1128–1144 (2009).
[Crossref] [PubMed]

Nature (1)

T. W. Chen, T. J. Wardill, Y. Sun, S. R. Pulver, S. L. Renninger, A. Baohan, E. R. Schreiter, R. A. Kerr, M. B. Orger, V. Jayaraman, L. L. Looger, K. Svoboda, and D. S. Kim, “Ultrasensitive fluorescent proteins for imaging neuronal activity,” Nature 499(7458), 295–300 (2013).
[Crossref] [PubMed]

Neurophotonics (1)

S. Paluch-Siegler, T. Mayblum, H. Dana, I. Brosh, I. Gefen, and S. Shoham, “All-optical bidirectional neural interfacing using hybrid multiphoton holographic optogenetic stimulation,” Neurophotonics 2(3), 031208 (2015).
[Crossref] [PubMed]

Opt. Commun. (1)

J. E. Curtis, B. A. Koss, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1), 169–175 (2002).
[Crossref]

Opt. Express (5)

Proc. IEEE (1)

W. J. Alford, R. D. Vanderneut, and V. J. Zaleckas, “Laser scanning microscopy,” Proc. IEEE 70(6), 641–651 (1982).
[Crossref]

Proc. SPIE (1)

A. Linnenberger, D. Peterka, S. Quirin, and R. Yuste, “The Pocketscope: a spatial light modulator based epi-fluorescence microscope for optogenetics,” Proc. SPIE 9164, 91640Y (2014).

Rev. Sci. Instrum. (1)

R. D. Hanes, M. C. Jenkins, and S. U. Egelhaaf, “Combined holographic-mechanical optical tweezers: construction, optimization, and calibration,” Rev. Sci. Instrum. 80(8), 083703 (2009).
[Crossref] [PubMed]

Other (2)

J. W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005).

Meadowlark Optics, “Overdrive Plus,” http://www.meadowlark.com/overdrive-plus-odp-p-125 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Illustration of time-division multiplexing strategy for laterally extending the SLM field of view (FOV) from a conventional holographic illumination system (a) to our proposed approach (b), where a pair of galvanometer mirrors at a conjugate pupil plane enable lateral time-sequential scanning of one of 9 different holograms to each of 9 regions. Drawings are to scale for the Nikon 16x 0.8NA objective lens (assuming 20mm field number) and 256 × 256 SLM used in our experiments.
Fig. 2
Fig. 2 Timing considerations for SLM time-division multiplexing. (a) Our particular SLM has an empirically measured 0 to ~97% transition time of 7.5 ms. (b) Timing diagram indicating SLM state throughout a given exposure time, T, for M sequentially illuminated subsets of focal spots. Each subset is laterally repositioned by galvanometer mirrors (y-galvo not shown).
Fig. 3
Fig. 3 Optical layout. The SLM, illuminated by a 920 nm femtosecond laser through a beam expander (BE), is imaged through lenses (L1, L2) and zero-order beam block (ZB) to the midpoint between two galvanometer scanning mirrors, and then to the objective pupil plane through a scan lens (SL), tube lens (TL) and short-pass dichroic mirror (D). Excited fluorescence filtered by an emission filter (F) is captured by either a photomultiplier tube (PMT) or light field microscope (LFM) with sCMOS camera, enabling single-snapshot 3D visualization of the excited fluorescence.
Fig. 4
Fig. 4 Experimentally measured increase in SLM field of view during T = 100 ms exposure. Measured 3D illumination patterns in a fluorescent dye solution (maximum intensity projections shown) illustrate the field of view increase, denoted by dashed lines, from (a) 140 μm × 140 μm without, to (b) 380 μm × 380 μm with, time-sequential galvanometer scanning.
Fig. 5
Fig. 5 Theoretically computed and experimentally measured signal increase with SLM time-division multiplexing, for fixed average laser power, total number of illuminated sites and exposure time (T = 100 ms was used). SLMs with faster transition times will enable larger increases in total time-averaged two-photon signal with a greater number of subsets of focal sites illuminated sequentially. Error bars indicate one standard deviation.
Fig. 6
Fig. 6 3D two-photon in vivo calcium imaging. (a) Neuronal activity in barrel cortex of an awake, head-fixed mouse is recorded. (b) 104 recording sites, centered on neurons, divided into M = 5 subsets (annotated by number and subset) and spanning 600 μm × 600 μm × 200 μm, are selected from a single-beam raster-scanned two-photon image stack, and then illuminated using our time-division multiplexing approach, enabling the sampling of (c) calcium signals across all sites at a rate of 10 Hz (T = 100 ms). (d) Top 10 largest magnitude responses from (c).

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

H(u,v)=A(u,v) e iϕ(u,v) .
x max = y max = λ 4NA N,
ϕ galvos (u,v;Δx,Δy)=c(uΔx+vΔy),
ϕ(u,v)= ϕ SLM (u,v)+ ϕ galvos (u,v;Δx,Δy).
S P 2 T.
S M=1 n ( P n ) 2 T,
S(M)n ( PM n ) 2 ( T M t SLM ),
Z(M; t SLM )=M( 1M t SLM T ).

Metrics