Abstract

A novel fluorescence emission difference method is proposed to improve the lateral resolution of SPCEM without increasing instrument complexity. We discovered the profile of transverse PSF in SPCEM will dramatically change from a hollow spot to a solid spot, when the axial position of sample varies within one wavelength in the vicinity of the focal plane. The subtraction of an image whose PSF is hollow spot and an image with solid PSF will greatly enhance the resolution and contrast of SPCEM images. The mechanism of the distinctive PSF is demonstrated through basic optics theories, and the improvement of lateral resolution is verified by theoretical simulations and experimental results. It is believed that our method will stand out for its pleasant resolution enhancement and its instruments’ simplicity to facilitate many biological cellular observations.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fluorescence emission difference with surface plasmon-coupled emission applied in confocal microscopy

Kang Jiang, Xinrui Lei, Kuanguo Li, Yonghua Lu, and Pei Wang
Opt. Express 26(3) 2380-2389 (2018)

Resolution-enhanced surface plasmon-coupled emission microscopy

Baoliang Ge, Ye Ma, Cuifang Kuang, Douguo Zhang, Kimani C. Toussaint, Shangting You, and Xu Liu
Opt. Express 23(10) 13159-13171 (2015)

Three-dimensional resolution and contrast-enhanced confocal microscopy with array detection

Baoliang Ge, Yifan Wang, Yujia Huang, Cuifang Kuang, Yue Fang, Peng Xiu, Zihao Rong, and Xu Liu
Opt. Lett. 41(9) 2013-2016 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
    [Crossref] [PubMed]
  2. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
    [Crossref] [PubMed]
  3. J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
    [Crossref] [PubMed]
  4. E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of aptamers as sensors,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 2(1), 241–264 (2009).
    [Crossref] [PubMed]
  5. J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
    [Crossref] [PubMed]
  6. E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
    [Crossref] [PubMed]
  7. D. Zhang, X. Wang, Y. Chen, L. Han, P. Wang, and H. Ming, “Polymer based plasmonic elements with dye molecules,” in Photonics Asia(International Society for Optics and Photonics, 2012), pp. 855504–855504–855510.
  8. W. T. Tang, E. Chung, Y.-H. Kim, P. T. So, and C. J. Sheppard, “Investigation of the point spread function of surface plasmon-coupled emission microscopy,” Opt. Express 15(8), 4634–4646 (2007).
    [Crossref] [PubMed]
  9. W. T. Tang, E. Chung, Y.-H. Kim, P. T. So, and C. J. Sheppard, “Surface-plasmon-coupled emission microscopy with a spiral phase plate,” Opt. Lett. 35(4), 517–519 (2010).
    [Crossref] [PubMed]
  10. T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
    [Crossref] [PubMed]
  11. J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
    [Crossref] [PubMed]
  12. J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
    [Crossref] [PubMed]
  13. Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
    [Crossref] [PubMed]
  14. C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
    [Crossref] [PubMed]
  15. S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
    [Crossref]
  16. B. Ge, Y. Ma, C. Kuang, D. Zhang, K. C. Toussaint, S. You, and X. Liu, “Resolution-enhanced surface plasmon-coupled emission microscopy,” Opt. Express 23(10), 13159–13171 (2015).
    [Crossref] [PubMed]
  17. H. F. Arnoldus and J. T. Foley, “Transmission of dipole radiation through interfaces and the phenomenon of anti-critical angles,” J. Opt. Soc. Am. A 21(6), 1109–1117 (2004).
    [Crossref] [PubMed]
  18. P. Török, “Propagation of electromagnetic dipole waves through dielectric interfaces,” Opt. Lett. 25(19), 1463–1465 (2000).
    [Crossref] [PubMed]
  19. H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).
  20. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” J. Opt. Soc. Am. 69(11), 1495–1503 (1979).
    [Crossref]
  21. W. Lukosz and R. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67(12), 1615–1619 (1977).
    [Crossref]
  22. W. Lukosz, “Light emission by multipole sources in thin layers. I. Radiation patterns of electric and magnetic dipoles,” J. Opt. Soc. Am. 71(6), 744–754 (1981).
    [Crossref]
  23. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
    [Crossref]
  24. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 1999).

2015 (1)

2013 (3)

Y. Chen, D. Zhang, L. Han, G. Rui, X. Wang, P. Wang, and H. Ming, “Surface-plasmon-coupled emission microscopy with a polarization converter,” Opt. Lett. 38(5), 736–738 (2013).
[Crossref] [PubMed]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

2010 (1)

2009 (1)

E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of aptamers as sensors,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 2(1), 241–264 (2009).
[Crossref] [PubMed]

2007 (1)

2006 (3)

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
[Crossref] [PubMed]

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
[Crossref] [PubMed]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

2005 (2)

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

2004 (2)

H. F. Arnoldus and J. T. Foley, “Transmission of dipole radiation through interfaces and the phenomenon of anti-critical angles,” J. Opt. Soc. Am. A 21(6), 1109–1117 (2004).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

2003 (2)

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

2000 (1)

1981 (1)

1979 (1)

1977 (1)

1959 (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Ajtai, K.

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
[Crossref] [PubMed]

Arnoldus, H. F.

Berndt, K. W.

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

Borejdo, J.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
[Crossref] [PubMed]

Burghardt, T. P.

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
[Crossref] [PubMed]

Calander, N.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
[Crossref] [PubMed]

Charlesworth, J. E.

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
[Crossref] [PubMed]

Chen, Y.

Cho, E. J.

E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of aptamers as sensors,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 2(1), 241–264 (2009).
[Crossref] [PubMed]

Chung, E.

Ellington, A. D.

E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of aptamers as sensors,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 2(1), 241–264 (2009).
[Crossref] [PubMed]

Foley, J. T.

Ge, B.

Ge, J.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

Goldys, E.

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

Gryczynski, I.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
[Crossref] [PubMed]

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[Crossref] [PubMed]

Gryczynski, Z.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

J. Borejdo, N. Calander, Z. Gryczynski, and I. Gryczynski, “Fluorescence correlation spectroscopy in surface plasmon coupled emission microscope,” Opt. Express 14(17), 7878–7888 (2006).
[Crossref] [PubMed]

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[Crossref] [PubMed]

Gu, Z.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Halstead, M. F.

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
[Crossref] [PubMed]

Han, L.

Hao, X.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

Howe, J.

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

Kim, Y.-H.

Kuang, C.

B. Ge, Y. Ma, C. Kuang, D. Zhang, K. C. Toussaint, S. You, and X. Liu, “Resolution-enhanced surface plasmon-coupled emission microscopy,” Opt. Express 23(10), 13159–13171 (2015).
[Crossref] [PubMed]

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Kunz, R.

Lakowicz, J. R.

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[Crossref] [PubMed]

Lee, J.-W.

E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of aptamers as sensors,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 2(1), 241–264 (2009).
[Crossref] [PubMed]

Li, H.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Li, S.

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Liu, W.

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Liu, X.

B. Ge, Y. Ma, C. Kuang, D. Zhang, K. C. Toussaint, S. You, and X. Liu, “Resolution-enhanced surface plasmon-coupled emission microscopy,” Opt. Express 23(10), 13159–13171 (2015).
[Crossref] [PubMed]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

Lukosz, W.

Ma, Y.

Malicka, J.

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[Crossref] [PubMed]

Matveeva, E.

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

Matveeva, E. G.

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

Ming, H.

Muthu, P.

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Rui, G.

Sheppard, C. J.

So, P. T.

Tang, W. T.

Tarara, J. E.

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
[Crossref] [PubMed]

Török, P.

Toussaint, K. C.

Wang, P.

Wang, X.

Wang, Y.

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

You, S.

Zhang, D.

Anal. Chem. (1)

J. Malicka, I. Gryczynski, Z. Gryczynski, and J. R. Lakowicz, “DNA hybridization using surface plasmon-coupled emission,” Anal. Chem. 75(23), 6629–6633 (2003).
[Crossref] [PubMed]

Annu. Rev. Anal. Chem. (Palo Alto, Calif.) (1)

E. J. Cho, J.-W. Lee, and A. D. Ellington, “Applications of aptamers as sensors,” Annu. Rev. Anal. Chem. (Palo Alto, Calif.) 2(1), 241–264 (2009).
[Crossref] [PubMed]

Biochem. Biophys. Res. Commun. (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[Crossref] [PubMed]

Biophys. J. (2)

T. P. Burghardt, J. E. Charlesworth, M. F. Halstead, J. E. Tarara, and K. Ajtai, “In situ fluorescent protein imaging with metal film-enhanced total internal reflection microscopy,” Biophys. J. 90(12), 4662–4671 (2006).
[Crossref] [PubMed]

J. Borejdo, Z. Gryczynski, N. Calander, P. Muthu, and I. Gryczynski, “Application of surface plasmon coupled emission to study of muscle,” Biophys. J. 91(7), 2626–2635 (2006).
[Crossref] [PubMed]

Clin. Chem. (1)

J. R. Lakowicz, J. Malicka, E. Matveeva, I. Gryczynski, and Z. Gryczynski, “Plasmonic technology: novel approach to ultrasensitive immunoassays,” Clin. Chem. 51(10), 1914–1922 (2005).
[Crossref] [PubMed]

J. Fluoresc. (1)

E. G. Matveeva, I. Gryczynski, J. Malicka, Z. Gryczynski, E. Goldys, J. Howe, K. W. Berndt, and J. R. Lakowicz, “Plastic versus glass support for an immunoassay on metal-coated surfaces in optically dense samples utilizing directional surface plasmon-coupled emission,” J. Fluoresc. 15(6), 865–871 (2005).
[Crossref] [PubMed]

J. Opt. (1)

S. Li, C. Kuang, X. Hao, Y. Wang, J. Ge, and X. Liu, “Enhancing the performance of fluorescence emission difference microscopy using beam modulation,” J. Opt. 15(12), 125708 (2013).
[Crossref]

J. Opt. Soc. Am. (3)

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108(33), 12568–12574 (2004).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Proc. R. Soc. Lond. A Math. Phys. Sci. (1)

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. Lond. A Math. Phys. Sci. 253(1274), 358–379 (1959).
[Crossref]

Sci. Rep. (1)

C. Kuang, S. Li, W. Liu, X. Hao, Z. Gu, Y. Wang, J. Ge, H. Li, and X. Liu, “Breaking the diffraction barrier using fluorescence emission difference microscopy,” Sci. Rep. 3, 1441 (2013).
[Crossref] [PubMed]

Other (3)

H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).

D. Zhang, X. Wang, Y. Chen, L. Han, P. Wang, and H. Ming, “Polymer based plasmonic elements with dye molecules,” in Photonics Asia(International Society for Optics and Photonics, 2012), pp. 855504–855504–855510.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (CUP Archive, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schemes for surface plasmon-coupled emission(SPCE). The propagation direction of SPCE is shown with green arrows. (b) The transmission coefficient of intensity as a function of the emitting angle in the medium of glass. The red line is for the s-polarized electromagnetic wave, while the blue line is for p-polarized waves. The minor flunctuation of the p-wave transmission curve derives from the calculation deviation. (c) the configuration of SPCEM n 1 , n 2 , n 3 , n 4 are the refraction index of the corresponding part of the system, θ 4 is the aperture angle, while φis the azimuthal angle).
Fig. 2
Fig. 2 (a)The three dimensional PSF calculated with the fluorescence above the critical angle; (b) the three dimensional PSF calculated with the fluorescence under the critical angle; (c) Three dimensional point spread function of surface plasmon-coupled emission microscopy. For (a)-(c),the axial range is 700nm in objective space. The transverse range is also 1200nm in objective space. The scale bar shows the length of 200nm and the yellow dashed line shows the position of focus plane. (b)-(e) The simulated transverse point spread function when the imaging axial position is 0nm, 100nm,200nm,300nm away from the ideal image plane on the right side. The scale bar shows the length of 200nm.
Fig. 3
Fig. 3 (a) the cross-section profile of transverse PSF when the imaged particle is 0,400nm away from the focal plane(the solid-spot PSF and the hollow-spot PSF), and the cross-section profile of transverse PSF of FED when the subtraction factor is 0.4. (b) The normalized magnitude of OTF of solid spot PSF, hollow-spot PSF and the PSF of FED with the subtraction factor of 0.4. (c)-(e)the transverse PSF of d-SPCEM in-focus and 400nm away from focal plane, the transverse PSF of FED with subtraction factor of 0.4, respectively. The scale bar is 200nm.
Fig. 4
Fig. 4 the experimental SPCEM scheme for nanoparticle tracking.
Fig. 5
Fig. 5 (a)-(d) Fluorescent beads’ images of a 9.3μm × 8.5μm zone of our detected area when the sample was moved 50nm, 150nm, 250nm and 350nm. The length of the scale bar is 1μm. (e)-(h) The images of a single bead at the axial position of 50nm,150nm, 250nm,350nm.This bead is shown in (a) by a yellow arrow. The whole size of each image is 1.2μm × 1.2μm.The length of the scale bar is 400nm.
Fig. 6
Fig. 6 Simulation results of a sample with spoke-like pattern. (a) the spoke-like sample. (b)the imaing results of exactly in-focus SPCEM(hollow-spot PSF) ;(c) the imaing results of d-SPCEM when the imaged pattern is 300nm away from focal plane(solid-spot PSF) ;(d)the imaging result of SPCEM with vortex phase plate(VPP); (e)-(f) the imaging results of deconvolution process of Figs. 6(b) and 6(c); (g)-(h) The imaging results of FED with subtraction factor of 0.5and 0.7. The whole size of the sample is 4μm × 4μm.The length of the scale bar is 1μm .
Fig. 7
Fig. 7 Experimental results of fluorescence beads. (a) the image of SPCEM right on focal plane (hollow-spot PSF); (b) the image when the particle is 400nm away from the focal plane (solid-spot PSF);(c) the deconvolution result of Fig. 7(a) with 30 iterations. (d) the image of d-SPCEM combined with FED with a subtraction factor of 0.6. A particular area in Figs. 7(a)-7(d) is zoomed in and four particles are marked with dashed line to be further investigated;(e) Intensity profiles along the white dashed line in Figs. 7(a)-7(d). The whole size of each image is 9.3μm × 8.5μm. The scale bar denotes 1μm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k spp = k 0 ε 1 ε 2 ε 1 + ε 2 ,
k 1 = k 0 ε 1 ,
θ c =arcsin( n 1 / n 3 ),
I i (x,y)= I o (x,y)PSF(x,y),
I onfocus (x,y)= I o (x,y)PS F onfocus (x,y),
I offfocus (x,y)= I o (x,y)PS F offfocus (x,y),
I FED = I offfocus s× I onfocus ,
PS F FED =PS F offfocus s×PS F onfocus .

Metrics