Abstract

Hyperbolic metamaterials (HMMs) have attracted much attention because they allow for broadband enhancement of spontaneous emission and imaging below the diffraction limit. However, HMMs with traditional metals as metallic component are not suitable for applications in the infrared spectral range. Using Ga-doped ZnO, we demonstrate monolithic HMMs operating at infrared wavelengths. We identify the material's hyperbolic character by various optical measurements in combination with theoretical calculations. In particular, negative refraction of the extraordinary wave and propagation of light with wave vector values exceeding that of free-space are demonstrated in the entire telecommunication window. These findings reveal a considerable potential for creating novel functional elements at telecommunication wavelengths.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hyperbolic metamaterials: beyond the effective medium theory

Tengfei Li and Jacob B. Khurgin
Optica 3(12) 1388-1396 (2016)

Single-material semiconductor hyperbolic metamaterials

D. Wei, C. Harris, C. C. Bomberger, J. Zhang, J. Zide, and S. Law
Opt. Express 24(8) 8735-8745 (2016)

Dynamically tunable and active hyperbolic metamaterials

Joseph S. T. Smalley, Felipe Vallini, Xiang Zhang, and Yeshaiahu Fainman
Adv. Opt. Photon. 10(2) 354-408 (2018)

References

  • View by:
  • |
  • |
  • |

  1. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [Crossref]
  2. C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).
  3. A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
    [Crossref]
  4. P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
    [Crossref]
  5. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
    [Crossref]
  6. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
    [Crossref] [PubMed]
  7. C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
    [Crossref]
  8. A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref] [PubMed]
  9. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
    [Crossref] [PubMed]
  10. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
    [Crossref] [PubMed]
  11. S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
    [Crossref]
  12. S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
    [Crossref]
  13. L. D. Landau, E. M. Lifschitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Elsevier, 2000).
  14. G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
    [Crossref]
  15. Note that the Brewster angle for reflection at the interface between air and ZnO with a background dielectric function of εb = 3.7 is αB = 63°.
  16. D. D. Engelsen, “Ellipsometry of anisotropic films,” J. Opt. Soc. Am. 61(11), 1460–1466 (1971).
    [Crossref]
  17. F. Intravaia and K. Busch, “Fluorescence in nonlocal dissipative periodic structures,” Phys. Rev. A 91(5), 053836 (2015).
    [Crossref]
  18. A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
    [Crossref]

2015 (3)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
[Crossref]

F. Intravaia and K. Busch, “Fluorescence in nonlocal dissipative periodic structures,” Phys. Rev. A 91(5), 053836 (2015).
[Crossref]

2014 (2)

A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
[Crossref]

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
[Crossref]

2013 (2)

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

2012 (3)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

2011 (3)

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

2007 (2)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

1971 (1)

Alekseyev, L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Atkinson, J.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
[Crossref]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Belov, P.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Boltasseva, A.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

Busch, K.

F. Intravaia and K. Busch, “Fluorescence in nonlocal dissipative periodic structures,” Phys. Rev. A 91(5), 053836 (2015).
[Crossref]

Cortes, C. L.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

Engelsen, D. D.

Ferrari, L.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Franz, K. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Gmachl, C.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Henneberger, F.

S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
[Crossref]

A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
[Crossref]

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

Hoffman, A. J.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Howard, S. S.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Intravaia, F.

F. Intravaia and K. Busch, “Fluorescence in nonlocal dissipative periodic structures,” Phys. Rev. A 91(5), 053836 (2015).
[Crossref]

Iorsh, I.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Jacob, Z.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
[Crossref]

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

Kalusniak, S.

S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
[Crossref]

A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
[Crossref]

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

Kildishev, A. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Kirmse, H.

S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
[Crossref]

Kivshar, Y.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Kuznetsov, A. S.

A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
[Crossref]

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Liu, J.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Liu, Z.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

Lu, D.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

Molesky, S.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

Naik, G. V.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

Narimanov, E. E.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Newman, W.

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

Poddubny, A.

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Podolskiy, V. A.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Sadofev, S.

S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
[Crossref]

A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
[Crossref]

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

Schäfer, P.

S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
[Crossref]

A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
[Crossref]

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

Shalaev, V. M.

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

Shekhar, P.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
[Crossref]

Sivco, D. L.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Soukoulis, C. M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Wasserman, D.

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Wegener, M.

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

Wu, C.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Zhang, X.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Appl. Phys. Lett. (2)

S. Sadofev, S. Kalusniak, P. Schäfer, and F. Henneberger, “Molecular beam epitaxy of n-Zn(Mg)O as low-damping plasmonic material at telecommunication wavelengths,” Appl. Phys. Lett. 102(18), 181905 (2013).
[Crossref]

A. S. Kuznetsov, S. Sadofev, P. Schäfer, S. Kalusniak, and F. Henneberger, “Single crystalline Er2O3:sapphire films as potentially high-gain amplifiers at telecommunication wavelength,” Appl. Phys. Lett. 105(19), 191111 (2014).
[Crossref]

J. Opt. (1)

C. L. Cortes, W. Newman, S. Molesky, and Z. Jacob, “Quantum nanophotonics using hyperbolic metamaterials,” J. Opt. 14(6), 063001 (2012).
[Crossref]

J. Opt. Soc. Am. (1)

Metamaterials (Amst.) (1)

G. V. Naik and A. Boltasseva, “A comparative study of semiconductor-based plasmonic metamaterials,” Metamaterials (Amst.) 5(1), 1–7 (2011).
[Crossref]

Nano Convergence (1)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Convergence 1(1), 14 (2014).
[Crossref]

Nat. Commun. (1)

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3, 1205 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater. 6(12), 946–950 (2007).
[Crossref] [PubMed]

Nat. Photonics (3)

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[Crossref]

C. M. Soukoulis and M. Wegener, “Past achievements and future challenges in the development of three-dimensional photonic metamaterials,” Nat. Photonics 5, 523–530 (2011).

A. Poddubny, I. Iorsh, P. Belov, and Y. Kivshar, “Hyperbolic metamaterials,” Nat. Photonics 7(12), 948–957 (2013).
[Crossref]

Phys. Rev. A (1)

F. Intravaia and K. Busch, “Fluorescence in nonlocal dissipative periodic structures,” Phys. Rev. A 91(5), 053836 (2015).
[Crossref]

Phys. Status Solidi B (1)

S. Sadofev, S. Kalusniak, P. Schäfer, H. Kirmse, and F. Henneberger, “Free-electron concentration and polarity inversion domains in plasmonic (Zn,Ga)O,” Phys. Status Solidi B 252(3), 607–611 (2015).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials,” Proc. Natl. Acad. Sci. U.S.A. 109(23), 8834–8838 (2012).
[Crossref] [PubMed]

Prog. Quantum Electron. (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Science (1)

A. Boltasseva and H. A. Atwater, “Materials science. Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref] [PubMed]

Other (2)

L. D. Landau, E. M. Lifschitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media (Elsevier, 2000).

Note that the Brewster angle for reflection at the interface between air and ZnO with a background dielectric function of εb = 3.7 is αB = 63°.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Performance of a ZnO/ZnGaO HMM. (a) Schematics of the sample and orientation of the dielectric functions. (b) Calculated real (solid curves) and imaginary (dashed curves) part of the dielectric function parallel (red) and perpendicular (blue) to the crystal axis. The real part of the dielectric function of the sole ZnGaO is plotted for reference (black, dotted). The spectral range where Re[ε] < 0 and Re[ε] > 0 is attained is 0.72 eV – 0.96 eV. (c) Real part of the out-of-plane wave vector component of the extraordinary wave for various angles of incidence. The angle of incidence is increased in steps of 20° from α = 0° to α = 80°. Inset: Isofrequency curve at ħω = 0.92 eV. (d) Same as (c) but imaginary part. All calculations are performed in the effective medium approximation with Drude-parameters ħωp = 1.88 eV and Γ = 112 meV of the ZnGaO layers.
Fig. 2
Fig. 2 Optical properties of ZnO/ZnGaO HMMs. (a) Transmission spectra recorded for various angles of incidence. (b) Reflectance spectra recorded for various angles of incidence. (c) Reflectivity excited at large in-plane wave vectors using a polished ZnSe hemisphere. The in-plane wave vector is set by the angle of incidence through kx = (ω/c) (εZnSe)1/2 sin α. An incidence angle of α = 25° corresponds to the vacuum light line. Inset: Experimental configuration. The residual air gap between sample surface and basis of the hemisphere is less than 80 nm as confirmed by Transfer-Matrix calculations. The angle of incidence is denoted on the curves. (d) Calculated transmission spectra. (e) Calculated reflectance spectra. (f) Transmission spectra of a ZnO/ZnGaO metamaterial with 25 layer pairs and Drude-parameters ħωp = 1.52 eV and Γ = 98 meV of the ZnGaO layers.
Fig. 3
Fig. 3 Negative refraction of the extraordinary wave in a ZnO/ZnGaO HMM. Left: Schematics of the experimental configuration. Right panel: Intensity ratio of the partially blocked transmitted beam and the unblocked transmitted beam for the two different configurations and for TE polarized light in configuration 2 (light gray line). The transmission is shown for reference, too (black, dashed line). The angle of incidence is 25°. For details see text.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ε ZnGaO (ω)= ε b ω p 2 ω(ω+iΓ)
ε = ε ZnGaO ε ZnO ρ ε ZnO +(1ρ) ε ZnGaO
ε =ρ ε ZnGaO +(1ρ) ε ZnO

Metrics