Abstract

The fluctuations of the probe light intensity seriously affect the performance of the sensitive atomic magnetometer. Here we propose a novel method for the intensity stabilization based on the second harmonic component of the photoelastic modulator (PEM) detection in the atomic magnetometer. The method not only could be used to eliminate the intensity fluctuations of the laser source, but also remove the fluctuations from the optical components caused by the environment. A relative fluctuation of the light intensity of 0.035% was achieved and the corresponding fluctuation of the output signal of the atomic magnetometer has decreased about two orders of magnitude from 4.06% to 0.041%. As the scheme proposed here only contains optical devices and does not require additional feedback controlled equipments, it is especially suitable for the integration of the atomic magnetometer.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Improved temperature stability of a fiber Sagnac-like detection system for atomic magnetometers

Jingxin Zhang, Xuejing Liu, Yue Niu, Lianjun Ma, Kun Wang, and Ming Ding
Opt. Express 28(7) 9359-9366 (2020)

Reduction of far off-resonance laser frequency drifts based on the second harmonic of electro-optic modulator detection in the optically pumped magnetometer

Yanhui Hu, Zhaohui Hu, Xuejing Liu, Yang Li, Ji Zhang, Han Yao, and Ming Ding
Appl. Opt. 56(21) 5927-5932 (2017)

Acousto-optic modulation detection method in an all-optical K-Rb hybrid atomic magnetometer using uniform design method

Han Yao, Yang Li, Danyue Ma, Jiashu Cai, Junpeng Zhao, and Ming Ding
Opt. Express 26(22) 28682-28692 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
    [Crossref]
  2. I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
    [Crossref] [PubMed]
  3. A. Weis and R. Wynands, “Laser-based precision magnetometry in fundamental and applied research,” Opt. Laser Eng. 43, 387–401 (2005).
    [Crossref]
  4. J. Kitching, S. Knappe, and E. Donley, “Atomic sensors-a review,” IEEE Sensors J. 11, 1749–1758 (2011).
    [Crossref]
  5. H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
    [Crossref]
  6. J. Fang and J. Qin, “In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer,” Rev. Sci. Instrum. 83, 103104 (2012).
    [Crossref] [PubMed]
  7. D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
    [Crossref] [PubMed]
  8. S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
    [Crossref]
  9. V. Shah and M. V. Romalis, “Spin-exchange relaxation-free magnetometry using elliptically polarized light,” Phys. Rev. A 80, 013416 (2009).
    [Crossref]
  10. A. Weis, G. Bison, and A. S. Pazgalev, “Theory of double resonance magnetometers based on atomic alignment,” Phys. Rev. A 74, 033401 (2006).
    [Crossref]
  11. J. M. Brown, “A new limit on Lorentz-and CPT-violating neutron spin interactions using a K-3He comagnetometer,” Ph.D. dissertation (Princeton University, 2011).
  12. T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
    [Crossref] [PubMed]
  13. A. J. Zeng, F. Y. Li, L. L. Zhu, and H. J. Huang, “Simultaneous measurement of retardance and fast axis angle of a quarter-wave plate using one photoelastic modulator,” Appl. Opt. 50(22), 4347–4352 (2011).
    [Crossref] [PubMed]
  14. B. Wang and J. List, “Basic optical properties of the photoelastic modulator: Part I. Useful aperture and acceptance angle,” Proc. SPIE 5888, 58881–58888 (2005).
  15. B. Wang, E. Hinds, and E. Krivoy, “Basic optical properties of the photoelastic modulator part II: residual birefringence in the optical element,” Proc. SPIE 7461, 746110 (2009).
    [Crossref]
  16. J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84, 083108 (2013).
    [Crossref]
  17. L. Xia, F. Yang, X. Zhou, and X. Chen, “Intensity fluctuations of the F = 2 87Rb pulsed atom laser,” Phys. Lett. A 373, 1429–1433 (2009).
    [Crossref]
  18. D. I. Kim, H.-G. Rhee, J.-B. Song, and Y.-W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78, 103110 (2007).
    [Crossref] [PubMed]
  19. F. Liu, C. Wang, L. Li, and L. Chen, “Long-term and wideband laser intensity stabilization with an electro-optic amplitude modulator,” Optics Laser Technol. 45, 775–781 (2013).
    [Crossref]
  20. P. Kwee, B. Willke, and K. Danzmann, “New concepts and results in laser power stabilization,” Appl. Phys. B 102, 515–522 (2011).
    [Crossref]
  21. Eugene Hecht, Optics (Addison Wesley Longman, Inc., 1998).
  22. M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43(2), 827–832 (2004).
    [Crossref]
  23. K. Yang, A. J. Zeng, X. Z. Wang, and H. Wang, “Method for measuring retardation of a quarter-wave plate based on normalized secondary harmonic component,” Optik 120, 558–562 (2009).
    [Crossref]
  24. R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier Science Publishing Co., Inc., 1987).
  25. T. C. Oakberg, “Measurement of waveplate retardation using a photoelastic modulator,” Proc. SPIE 3121, 19 (1997).
    [Crossref]
  26. Y. Zhang, F. Song, H. Li, and X. Yang, “Precise measurement of optical phase retardation of a wave plate using modulated-polarized light,” Appl. Opt. 49(30), 5837–5843 (2010).
    [Crossref] [PubMed]
  27. J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 85, 123104 (2014).
    [Crossref]

2014 (1)

J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 85, 123104 (2014).
[Crossref]

2013 (3)

F. Liu, C. Wang, L. Li, and L. Chen, “Long-term and wideband laser intensity stabilization with an electro-optic amplitude modulator,” Optics Laser Technol. 45, 775–781 (2013).
[Crossref]

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84, 083108 (2013).
[Crossref]

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

2012 (1)

J. Fang and J. Qin, “In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer,” Rev. Sci. Instrum. 83, 103104 (2012).
[Crossref] [PubMed]

2011 (3)

J. Kitching, S. Knappe, and E. Donley, “Atomic sensors-a review,” IEEE Sensors J. 11, 1749–1758 (2011).
[Crossref]

P. Kwee, B. Willke, and K. Danzmann, “New concepts and results in laser power stabilization,” Appl. Phys. B 102, 515–522 (2011).
[Crossref]

A. J. Zeng, F. Y. Li, L. L. Zhu, and H. J. Huang, “Simultaneous measurement of retardance and fast axis angle of a quarter-wave plate using one photoelastic modulator,” Appl. Opt. 50(22), 4347–4352 (2011).
[Crossref] [PubMed]

2010 (3)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

Y. Zhang, F. Song, H. Li, and X. Yang, “Precise measurement of optical phase retardation of a wave plate using modulated-polarized light,” Appl. Opt. 49(30), 5837–5843 (2010).
[Crossref] [PubMed]

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[Crossref]

2009 (4)

B. Wang, E. Hinds, and E. Krivoy, “Basic optical properties of the photoelastic modulator part II: residual birefringence in the optical element,” Proc. SPIE 7461, 746110 (2009).
[Crossref]

K. Yang, A. J. Zeng, X. Z. Wang, and H. Wang, “Method for measuring retardation of a quarter-wave plate based on normalized secondary harmonic component,” Optik 120, 558–562 (2009).
[Crossref]

V. Shah and M. V. Romalis, “Spin-exchange relaxation-free magnetometry using elliptically polarized light,” Phys. Rev. A 80, 013416 (2009).
[Crossref]

L. Xia, F. Yang, X. Zhou, and X. Chen, “Intensity fluctuations of the F = 2 87Rb pulsed atom laser,” Phys. Lett. A 373, 1429–1433 (2009).
[Crossref]

2007 (2)

D. I. Kim, H.-G. Rhee, J.-B. Song, and Y.-W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78, 103110 (2007).
[Crossref] [PubMed]

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

2006 (1)

A. Weis, G. Bison, and A. S. Pazgalev, “Theory of double resonance magnetometers based on atomic alignment,” Phys. Rev. A 74, 033401 (2006).
[Crossref]

2005 (3)

B. Wang and J. List, “Basic optical properties of the photoelastic modulator: Part I. Useful aperture and acceptance angle,” Proc. SPIE 5888, 58881–58888 (2005).

A. Weis and R. Wynands, “Laser-based precision magnetometry in fundamental and applied research,” Opt. Laser Eng. 43, 387–401 (2005).
[Crossref]

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
[Crossref] [PubMed]

2004 (1)

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43(2), 827–832 (2004).
[Crossref]

2003 (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

1997 (1)

T. C. Oakberg, “Measurement of waveplate retardation using a photoelastic modulator,” Proc. SPIE 3121, 19 (1997).
[Crossref]

Allred, J. C.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

Azzam, R. M.

R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier Science Publishing Co., Inc., 1987).

Bashara, N. M.

R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier Science Publishing Co., Inc., 1987).

Bison, G.

A. Weis, G. Bison, and A. S. Pazgalev, “Theory of double resonance magnetometers based on atomic alignment,” Phys. Rev. A 74, 033401 (2006).
[Crossref]

Brown, J. M.

J. M. Brown, “A new limit on Lorentz-and CPT-violating neutron spin interactions using a K-3He comagnetometer,” Ph.D. dissertation (Princeton University, 2011).

Budker, D.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

Chao, Y. F.

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43(2), 827–832 (2004).
[Crossref]

Chen, L.

F. Liu, C. Wang, L. Li, and L. Chen, “Long-term and wideband laser intensity stabilization with an electro-optic amplitude modulator,” Optics Laser Technol. 45, 775–781 (2013).
[Crossref]

Chen, S. S.

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43(2), 827–832 (2004).
[Crossref]

Chen, X.

L. Xia, F. Yang, X. Zhou, and X. Chen, “Intensity fluctuations of the F = 2 87Rb pulsed atom laser,” Phys. Lett. A 373, 1429–1433 (2009).
[Crossref]

Dang, H. B.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

Danzmann, K.

P. Kwee, B. Willke, and K. Danzmann, “New concepts and results in laser power stabilization,” Appl. Phys. B 102, 515–522 (2011).
[Crossref]

Dong, H.

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84, 083108 (2013).
[Crossref]

Donley, E.

J. Kitching, S. Knappe, and E. Donley, “Atomic sensors-a review,” IEEE Sensors J. 11, 1749–1758 (2011).
[Crossref]

Dural, N.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

Fang, J.

J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 85, 123104 (2014).
[Crossref]

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84, 083108 (2013).
[Crossref]

J. Fang and J. Qin, “In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer,” Rev. Sci. Instrum. 83, 103104 (2012).
[Crossref] [PubMed]

Ghosh, R. K.

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
[Crossref] [PubMed]

Hecht, Eugene

Eugene Hecht, Optics (Addison Wesley Longman, Inc., 1998).

Hinds, E.

B. Wang, E. Hinds, and E. Krivoy, “Basic optical properties of the photoelastic modulator part II: residual birefringence in the optical element,” Proc. SPIE 7461, 746110 (2009).
[Crossref]

Huang, H. J.

Kim, D. I.

D. I. Kim, H.-G. Rhee, J.-B. Song, and Y.-W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78, 103110 (2007).
[Crossref] [PubMed]

Kitching, J.

J. Kitching, S. Knappe, and E. Donley, “Atomic sensors-a review,” IEEE Sensors J. 11, 1749–1758 (2011).
[Crossref]

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[Crossref]

Knappe, S.

J. Kitching, S. Knappe, and E. Donley, “Atomic sensors-a review,” IEEE Sensors J. 11, 1749–1758 (2011).
[Crossref]

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[Crossref]

Kominis, I. K.

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

Kornack, T. W.

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
[Crossref] [PubMed]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

Kosch, O.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[Crossref]

Krivoy, E.

B. Wang, E. Hinds, and E. Krivoy, “Basic optical properties of the photoelastic modulator part II: residual birefringence in the optical element,” Proc. SPIE 7461, 746110 (2009).
[Crossref]

Kwee, P.

P. Kwee, B. Willke, and K. Danzmann, “New concepts and results in laser power stabilization,” Appl. Phys. B 102, 515–522 (2011).
[Crossref]

Lee, Y.-W.

D. I. Kim, H.-G. Rhee, J.-B. Song, and Y.-W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78, 103110 (2007).
[Crossref] [PubMed]

Leou, K. C.

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43(2), 827–832 (2004).
[Crossref]

Li, F. Y.

Li, H.

Li, L.

F. Liu, C. Wang, L. Li, and L. Chen, “Long-term and wideband laser intensity stabilization with an electro-optic amplitude modulator,” Optics Laser Technol. 45, 775–781 (2013).
[Crossref]

Li, S.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

Li, Y.

J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 85, 123104 (2014).
[Crossref]

Lin, T. L.

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43(2), 827–832 (2004).
[Crossref]

List, J.

B. Wang and J. List, “Basic optical properties of the photoelastic modulator: Part I. Useful aperture and acceptance angle,” Proc. SPIE 5888, 58881–58888 (2005).

Liu, F.

F. Liu, C. Wang, L. Li, and L. Chen, “Long-term and wideband laser intensity stabilization with an electro-optic amplitude modulator,” Optics Laser Technol. 45, 775–781 (2013).
[Crossref]

Liu, Y. W.

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43(2), 827–832 (2004).
[Crossref]

Maloof, A. C.

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

Oakberg, T. C.

T. C. Oakberg, “Measurement of waveplate retardation using a photoelastic modulator,” Proc. SPIE 3121, 19 (1997).
[Crossref]

Pazgalev, A. S.

A. Weis, G. Bison, and A. S. Pazgalev, “Theory of double resonance magnetometers based on atomic alignment,” Phys. Rev. A 74, 033401 (2006).
[Crossref]

Qin, J.

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84, 083108 (2013).
[Crossref]

J. Fang and J. Qin, “In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer,” Rev. Sci. Instrum. 83, 103104 (2012).
[Crossref] [PubMed]

Quan, W.

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84, 083108 (2013).
[Crossref]

Rhee, H.-G.

D. I. Kim, H.-G. Rhee, J.-B. Song, and Y.-W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78, 103110 (2007).
[Crossref] [PubMed]

Romalis, M.

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

Romalis, M. V.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

V. Shah and M. V. Romalis, “Spin-exchange relaxation-free magnetometry using elliptically polarized light,” Phys. Rev. A 80, 013416 (2009).
[Crossref]

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
[Crossref] [PubMed]

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

Sander, T. H.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[Crossref]

Shah, V.

V. Shah and M. V. Romalis, “Spin-exchange relaxation-free magnetometry using elliptically polarized light,” Phys. Rev. A 80, 013416 (2009).
[Crossref]

Sheng, D.

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

Song, F.

Song, J.-B.

D. I. Kim, H.-G. Rhee, J.-B. Song, and Y.-W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78, 103110 (2007).
[Crossref] [PubMed]

Trahms, L.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[Crossref]

Tsai, F. H.

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43(2), 827–832 (2004).
[Crossref]

Wan, S.

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84, 083108 (2013).
[Crossref]

Wang, B.

B. Wang, E. Hinds, and E. Krivoy, “Basic optical properties of the photoelastic modulator part II: residual birefringence in the optical element,” Proc. SPIE 7461, 746110 (2009).
[Crossref]

B. Wang and J. List, “Basic optical properties of the photoelastic modulator: Part I. Useful aperture and acceptance angle,” Proc. SPIE 5888, 58881–58888 (2005).

Wang, C.

F. Liu, C. Wang, L. Li, and L. Chen, “Long-term and wideband laser intensity stabilization with an electro-optic amplitude modulator,” Optics Laser Technol. 45, 775–781 (2013).
[Crossref]

Wang, H.

K. Yang, A. J. Zeng, X. Z. Wang, and H. Wang, “Method for measuring retardation of a quarter-wave plate based on normalized secondary harmonic component,” Optik 120, 558–562 (2009).
[Crossref]

Wang, M. W.

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43(2), 827–832 (2004).
[Crossref]

Wang, T.

J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 85, 123104 (2014).
[Crossref]

Wang, X. Z.

K. Yang, A. J. Zeng, X. Z. Wang, and H. Wang, “Method for measuring retardation of a quarter-wave plate based on normalized secondary harmonic component,” Optik 120, 558–562 (2009).
[Crossref]

Weis, A.

A. Weis, G. Bison, and A. S. Pazgalev, “Theory of double resonance magnetometers based on atomic alignment,” Phys. Rev. A 74, 033401 (2006).
[Crossref]

A. Weis and R. Wynands, “Laser-based precision magnetometry in fundamental and applied research,” Opt. Laser Eng. 43, 387–401 (2005).
[Crossref]

Wiekhorst, F.

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[Crossref]

Willke, B.

P. Kwee, B. Willke, and K. Danzmann, “New concepts and results in laser power stabilization,” Appl. Phys. B 102, 515–522 (2011).
[Crossref]

Wynands, R.

A. Weis and R. Wynands, “Laser-based precision magnetometry in fundamental and applied research,” Opt. Laser Eng. 43, 387–401 (2005).
[Crossref]

Xia, L.

L. Xia, F. Yang, X. Zhou, and X. Chen, “Intensity fluctuations of the F = 2 87Rb pulsed atom laser,” Phys. Lett. A 373, 1429–1433 (2009).
[Crossref]

Yang, F.

L. Xia, F. Yang, X. Zhou, and X. Chen, “Intensity fluctuations of the F = 2 87Rb pulsed atom laser,” Phys. Lett. A 373, 1429–1433 (2009).
[Crossref]

Yang, K.

K. Yang, A. J. Zeng, X. Z. Wang, and H. Wang, “Method for measuring retardation of a quarter-wave plate based on normalized secondary harmonic component,” Optik 120, 558–562 (2009).
[Crossref]

Yang, X.

Yuan, H.

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84, 083108 (2013).
[Crossref]

Zeng, A. J.

A. J. Zeng, F. Y. Li, L. L. Zhu, and H. J. Huang, “Simultaneous measurement of retardance and fast axis angle of a quarter-wave plate using one photoelastic modulator,” Appl. Opt. 50(22), 4347–4352 (2011).
[Crossref] [PubMed]

K. Yang, A. J. Zeng, X. Z. Wang, and H. Wang, “Method for measuring retardation of a quarter-wave plate based on normalized secondary harmonic component,” Optik 120, 558–562 (2009).
[Crossref]

Zhang, C.

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84, 083108 (2013).
[Crossref]

Zhang, H.

J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 85, 123104 (2014).
[Crossref]

Zhang, Y.

Zhou, X.

L. Xia, F. Yang, X. Zhou, and X. Chen, “Intensity fluctuations of the F = 2 87Rb pulsed atom laser,” Phys. Lett. A 373, 1429–1433 (2009).
[Crossref]

Zhu, L. L.

Zou, S.

J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 85, 123104 (2014).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (1)

P. Kwee, B. Willke, and K. Danzmann, “New concepts and results in laser power stabilization,” Appl. Phys. B 102, 515–522 (2011).
[Crossref]

Appl. Phys. Lett. (2)

H. B. Dang, A. C. Maloof, and M. V. Romalis, “Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer,” Appl. Phys. Lett. 97, 151110 (2010).
[Crossref]

S. Knappe, T. H. Sander, O. Kosch, F. Wiekhorst, J. Kitching, and L. Trahms, “Cross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications,” Appl. Phys. Lett. 97, 133703 (2010).
[Crossref]

IEEE Sensors J. (1)

J. Kitching, S. Knappe, and E. Donley, “Atomic sensors-a review,” IEEE Sensors J. 11, 1749–1758 (2011).
[Crossref]

Jpn. J. Appl. Phys. (1)

M. W. Wang, Y. F. Chao, K. C. Leou, F. H. Tsai, T. L. Lin, S. S. Chen, and Y. W. Liu, “Calibrations of phase modulation amplitude of photoelastic modulator,” Jpn. J. Appl. Phys. 43(2), 827–832 (2004).
[Crossref]

Nat. Phys. (1)

D. Budker and M. Romalis, “Optical magnetometry,” Nat. Phys. 3, 227–234 (2007).
[Crossref]

Nature (1)

I. K. Kominis, T. W. Kornack, J. C. Allred, and M. V. Romalis, “A subfemtotesla multichannel atomic magnetometer,” Nature 422, 596–599 (2003).
[Crossref] [PubMed]

Opt. Laser Eng. (1)

A. Weis and R. Wynands, “Laser-based precision magnetometry in fundamental and applied research,” Opt. Laser Eng. 43, 387–401 (2005).
[Crossref]

Optics Laser Technol. (1)

F. Liu, C. Wang, L. Li, and L. Chen, “Long-term and wideband laser intensity stabilization with an electro-optic amplitude modulator,” Optics Laser Technol. 45, 775–781 (2013).
[Crossref]

Optik (1)

K. Yang, A. J. Zeng, X. Z. Wang, and H. Wang, “Method for measuring retardation of a quarter-wave plate based on normalized secondary harmonic component,” Optik 120, 558–562 (2009).
[Crossref]

Phys. Lett. A (1)

L. Xia, F. Yang, X. Zhou, and X. Chen, “Intensity fluctuations of the F = 2 87Rb pulsed atom laser,” Phys. Lett. A 373, 1429–1433 (2009).
[Crossref]

Phys. Rev. A (2)

V. Shah and M. V. Romalis, “Spin-exchange relaxation-free magnetometry using elliptically polarized light,” Phys. Rev. A 80, 013416 (2009).
[Crossref]

A. Weis, G. Bison, and A. S. Pazgalev, “Theory of double resonance magnetometers based on atomic alignment,” Phys. Rev. A 74, 033401 (2006).
[Crossref]

Phys. Rev. Lett. (2)

D. Sheng, S. Li, N. Dural, and M. V. Romalis, “Subfemtotesla scalar atomic magnetometry using multipass cells,” Phys. Rev. Lett. 110, 160802 (2013).
[Crossref] [PubMed]

T. W. Kornack, R. K. Ghosh, and M. V. Romalis, “Nuclear spin gyroscope based on an atomic comagnetometer,” Phys. Rev. Lett. 95, 230801 (2005).
[Crossref] [PubMed]

Proc. SPIE (3)

T. C. Oakberg, “Measurement of waveplate retardation using a photoelastic modulator,” Proc. SPIE 3121, 19 (1997).
[Crossref]

B. Wang and J. List, “Basic optical properties of the photoelastic modulator: Part I. Useful aperture and acceptance angle,” Proc. SPIE 5888, 58881–58888 (2005).

B. Wang, E. Hinds, and E. Krivoy, “Basic optical properties of the photoelastic modulator part II: residual birefringence in the optical element,” Proc. SPIE 7461, 746110 (2009).
[Crossref]

Rev. Sci. Instrum. (4)

J. Fang, S. Wan, J. Qin, C. Zhang, W. Quan, H. Yuan, and H. Dong, “A novel Cs-129Xe atomic spin gyroscope with closed-loop Faraday modulation,” Rev. Sci. Instrum. 84, 083108 (2013).
[Crossref]

D. I. Kim, H.-G. Rhee, J.-B. Song, and Y.-W. Lee, “Laser output power stabilization for direct laser writing system by using an acousto-optic modulator,” Rev. Sci. Instrum. 78, 103110 (2007).
[Crossref] [PubMed]

J. Fang and J. Qin, “In situ triaxial magnetic field compensation for the spin-exchange-relaxation-free atomic magnetometer,” Rev. Sci. Instrum. 83, 103104 (2012).
[Crossref] [PubMed]

J. Fang, T. Wang, H. Zhang, Y. Li, and S. Zou, “Optimizations of spin-exchange relaxation-free magnetometer based on potassium and rubidium hybrid optical pumping,” Rev. Sci. Instrum. 85, 123104 (2014).
[Crossref]

Other (3)

R. M. Azzam and N. M. Bashara, Ellipsometry and Polarized Light (Elsevier Science Publishing Co., Inc., 1987).

Eugene Hecht, Optics (Addison Wesley Longman, Inc., 1998).

J. M. Brown, “A new limit on Lorentz-and CPT-violating neutron spin interactions using a K-3He comagnetometer,” Ph.D. dissertation (Princeton University, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The optical polarimetry measurements using a PEM in the atomic magnetometer
Fig. 2
Fig. 2 The light intensity stabilization scheme based on the second harmonic component of the PEM detection in the atomic magnetometer. VHW: variable zero-order half waveplate, PBS: polarization beam splitter, λ/2: half waveplate, λ/4: quarter waveplate, PD: photodetector, lock-in Amp: lock-in amplifier, DAQ: the unit including the LabView program and the associated National Instruments data acquisition cards and the processing of the data, Stepper Motor: driving and control the VHW for fine rotation.
Fig. 3
Fig. 3 The light intensity stabilization scheme using the traditional stabilization method. VHW: variable zero-order half waveplate, PBS: polarization beam splitter, λ/2: half waveplate, λ/4: quarter waveplate, PD: photodetector, lock-in Amp: lock-in amplifier, DAQ: the unit including the LabView program and the associated National Instruments data acquisition cards and the processing of the data, Stepper Motor: driving and control the VHW for fine rotation.
Fig. 4
Fig. 4 The fluctuations of light intensity under different conditions: free running mode, traditional method, and PEM SH method: the method based on the second harmonic of the PEM detection. These curves reflect the stability of light intensity for the atomic magnetometer detection system.
Fig. 5
Fig. 5 The fluctuations of the output signal of the atomic magnetometer applying different stabilization methods: free running mode, traditional method, and PEM SH method: the method based on the second harmonic component of the PEM detection. They reflect the stability of the atomic magnetometer detection system.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

G 0 = E 0 [ 1 0 ]
G cell = [ cos θ s sin θ s sin θ s cos θ s ]
G λ / 4 = e i π / 4 [ 1 0 0 i ]
G PEM = [ cos α ( t ) 2 i sin α ( t ) 2 i sin α ( t ) 2 cos α ( t ) 2 ]
G AP = [ 0 0 0 1 ]
E = G AP G PEM G λ / 4 G cell G 0
I = E E * = 1 2 I 0 [ 1 cos ( α ( t ) + 2 θ s ) ] = 1 2 I 0 [ 1 cos ( α ( t ) ) cos ( 2 θ s ) + sin ( α ( t ) ) sin ( 2 θ s ) ]
α ( t ) = α m sin ( ω m t )
sin ( α ( t ) ) = 2 k 1 2 J 2 k 1 ( α m ) sin [ ( 2 k 1 ) ω m t ]
cos ( α ( t ) ) = J 0 ( α m ) + 2 k 2 J 2 k ( α m ) cos [ ( 2 k ω m t ) ]
I = I 0 2 { 1 J 0 ( α m ) cos ( 2 θ s ) + 2 J 1 ( α m ) sin ( ω m t ) sin ( 2 θ s ) 2 J 2 ( α m ) cos ( 2 ω m t ) cos ( 2 θ s ) + O ( 3 ω m ) }
I I 0 α m 2 8 + I 0 θ s α m sin ( ω m t ) I 0 α m 2 8 cos ( 2 ω m t )
V 1 f = η M ac I 0 θ s α m
V 2 f = η M ac I 0 α m 2 8

Metrics