Abstract

We report a highly sensitive, high Q-factor, label free and selective glucose sensor by using excessively tilted fiber grating (Ex-TFG) inscribed in the thin-cladding optical fiber (TCOF). Glucose oxidase (GOD) was covalently immobilized on optical fiber surface and the effectiveness of GOD immobilization was investigated by the fluorescence microscopy and highly accurate spectral interrogation method. In contrast to the long period grating (LPG) and optical fiber (OF) surface Plasmon resonance (SPR) based glucose sensors, the Ex-TFG configuration has merits of nearly independent cross sensitivity of the environmental temperature, simple fabrication method (no noble metal deposition or cladding etching) and high detection accuracy (or Q-factor). Our experimental results have shown that Ex-TFG in TCOF based sensor has a reliable and fast detection for the glucose concentration as low as 0.1~2.5mg/ml and a high sensitivity of ~1.514nm·(mg/ml)−1, which the detection accuracy is ~0.2857nm−1 at pH 5.2, and the limit of detection (LOD) is 0.013~0.02mg/ml at the pH range of 5.2~7.4 by using an optical spectrum analyzer with a resolution of 0.02nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Novel glucose sensor based on enzyme-immobilized 81° tilted fiber grating

Binbin Luo, Zhijun Yan, Zhongyuan Sun, Jianfeng Li, and Lin Zhang
Opt. Express 22(25) 30571-30578 (2014)

Fabrication of glucose fiber sensor based on immobilized GOD technique for rapid measurement

Ting-Qian Lin, Yin-Lin Lu, and Cheng-Chih Hsu
Opt. Express 18(26) 27560-27566 (2010)

Investigation for terminal reflection optical fiber SPR glucose sensor and glucose sensitive membrane with immobilized GODs

Yinquan Yuan, Xi Yang, Dejing Gong, Fang Liu, Wenbin Hu, Weiquan Cai, Jun Huang, and Minghong Yang
Opt. Express 25(4) 3884-3898 (2017)

References

  • View by:
  • |
  • |
  • |

  1. X. D. Wang and O. S. Wolfbeis, “Fiber-Optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
    [Crossref] [PubMed]
  2. B. D. Gupta, “Evanescent wave absorption sensors based on uniform and tapers fibers. A comparative study of their sensitivities,” Int. J. Optoelectron. 8(4), 409–418 (1993).
  3. S. K. Khijwania and B. D. Gupta, “Fiber-optic evanescent field absorption sensor based on tapered probe: Effect of fiber parameters on the response curve,” Proc. SPIE 3666, 578–584 (1999).
    [Crossref]
  4. J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 37(1), 67–69 (2012).
    [Crossref] [PubMed]
  5. G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B Chem. 152(2), 196–205 (2011).
    [Crossref]
  6. K. Zhou, X. Chen, L. Zhang, and I. Bennion, “Implementation of optical chemsensors based on HF-etched fibre Bragg grating structures,” Meas. Sci. Technol. 17(5), 1140–1145 (2006).
    [Crossref]
  7. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]
  8. S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
    [Crossref] [PubMed]
  9. X. Chen, L. Zhang, K. Zhou, E. Davies, K. Sugden, I. Bennion, M. Hughes, and A. Hine, “Real-time detection of DNA interactions with long-period fiber-grating-based biosensor,” Opt. Lett. 32(17), 2541–2543 (2007).
    [Crossref] [PubMed]
  10. Z. Y. Wang, J. R. Heflin, K. Van Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, “Biosensors employing ionic self-assembled multilayers adsorbed on long-period fiber gratings,” Sens. Actuators B Chem. 139(2), 618–623 (2009).
    [Crossref]
  11. J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182, 16–24 (2013).
    [Crossref]
  12. L. Rindorf and O. Bang, “Highly sensitive refractometer with a photonic-crystal-fiber long-period grating,” Opt. Lett. 33(6), 563–565 (2008).
    [Crossref] [PubMed]
  13. J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108(2), 462–493 (2008).
    [Crossref] [PubMed]
  14. R. Bharadwaj and S. Mukherji, “Gold nanoparticle coated U-bend fibre optic probe for localized surface plasmon resonance based detection of explosive vapours,” Sens. Actuators B Chem. 192, 804–811 (2014).
    [Crossref]
  15. N. Cennamo, G. D’ Agostino, R. Galatus, L. Bibbò, M. Pesavento, and L. Zeni, “Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene,” Sens. Actuators B Chem. 188, 221–226 (2013).
    [Crossref]
  16. B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
    [PubMed]
  17. H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
    [Crossref] [PubMed]
  18. Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
    [Crossref] [PubMed]
  19. B. Luo, Z. Yan, Z. Sun, J. Li, and L. Zhang, “Novel glucose sensor based on enzyme-immobilized 81° tilted fiber grating,” Opt. Express 22(25), 30571–30578 (2014).
    [Crossref] [PubMed]
  20. Z. Yan, Z. Sun, K. Zhou, B. Luo, J. Li, H. Wang, Y. Wang, W. Zhao, and L. Zhang, “Numerical and experimental analysis of sensitivity-enhanced RI sensor based on Ex-TFG in thin cladding Fiber,” J. Lightwave Technol. 33(14), 3023–3027 (2015).
  21. A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
    [Crossref] [PubMed]
  22. S. Singh and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration,” Sens. Actuators B Chem. 177, 589–595 (2013).
    [Crossref]
  23. I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Opt. Express 16(2), 1020–1028 (2008).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

B. Luo, Z. Yan, Z. Sun, J. Li, and L. Zhang, “Novel glucose sensor based on enzyme-immobilized 81° tilted fiber grating,” Opt. Express 22(25), 30571–30578 (2014).
[Crossref] [PubMed]

R. Bharadwaj and S. Mukherji, “Gold nanoparticle coated U-bend fibre optic probe for localized surface plasmon resonance based detection of explosive vapours,” Sens. Actuators B Chem. 192, 804–811 (2014).
[Crossref]

2013 (6)

N. Cennamo, G. D’ Agostino, R. Galatus, L. Bibbò, M. Pesavento, and L. Zeni, “Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene,” Sens. Actuators B Chem. 188, 221–226 (2013).
[Crossref]

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref] [PubMed]

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182, 16–24 (2013).
[Crossref]

S. Singh and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration,” Sens. Actuators B Chem. 177, 589–595 (2013).
[Crossref]

2012 (3)

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. P. Shum, and D. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 37(1), 67–69 (2012).
[Crossref] [PubMed]

2011 (2)

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B Chem. 152(2), 196–205 (2011).
[Crossref]

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

2009 (1)

Z. Y. Wang, J. R. Heflin, K. Van Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, “Biosensors employing ionic self-assembled multilayers adsorbed on long-period fiber gratings,” Sens. Actuators B Chem. 139(2), 618–623 (2009).
[Crossref]

2008 (3)

2007 (1)

2006 (1)

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “Implementation of optical chemsensors based on HF-etched fibre Bragg grating structures,” Meas. Sci. Technol. 17(5), 1140–1145 (2006).
[Crossref]

2002 (1)

1999 (1)

S. K. Khijwania and B. D. Gupta, “Fiber-optic evanescent field absorption sensor based on tapered probe: Effect of fiber parameters on the response curve,” Proc. SPIE 3666, 578–584 (1999).
[Crossref]

1993 (1)

B. D. Gupta, “Evanescent wave absorption sensors based on uniform and tapers fibers. A comparative study of their sensitivities,” Int. J. Optoelectron. 8(4), 409–418 (1993).

Albert, J.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Bang, O.

Bennion, I.

Bharadwaj, L. M.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Bharadwaj, R.

R. Bharadwaj and S. Mukherji, “Gold nanoparticle coated U-bend fibre optic probe for localized surface plasmon resonance based detection of explosive vapours,” Sens. Actuators B Chem. 192, 804–811 (2014).
[Crossref]

Bibbò, L.

N. Cennamo, G. D’ Agostino, R. Galatus, L. Bibbò, M. Pesavento, and L. Zeni, “Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene,” Sens. Actuators B Chem. 188, 221–226 (2013).
[Crossref]

Blair, D. A. D.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Bock, W. J.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Brazzatti, J.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

Buosciolo, A.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B Chem. 152(2), 196–205 (2011).
[Crossref]

Cennamo, N.

N. Cennamo, G. D’ Agostino, R. Galatus, L. Bibbò, M. Pesavento, and L. Zeni, “Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene,” Sens. Actuators B Chem. 188, 221–226 (2013).
[Crossref]

Chen, X.

X. Chen, L. Zhang, K. Zhou, E. Davies, K. Sugden, I. Bennion, M. Hughes, and A. Hine, “Real-time detection of DNA interactions with long-period fiber-grating-based biosensor,” Opt. Lett. 32(17), 2541–2543 (2007).
[Crossref] [PubMed]

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “Implementation of optical chemsensors based on HF-etched fibre Bragg grating structures,” Meas. Sci. Technol. 17(5), 1140–1145 (2006).
[Crossref]

Chinnappan, R.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Consales, M.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B Chem. 152(2), 196–205 (2011).
[Crossref]

Crescitelli, A.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B Chem. 152(2), 196–205 (2011).
[Crossref]

Cui, Y.

Cusano, A.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B Chem. 152(2), 196–205 (2011).
[Crossref]

Cutolo, A.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B Chem. 152(2), 196–205 (2011).
[Crossref]

D’ Agostino, G.

N. Cennamo, G. D’ Agostino, R. Galatus, L. Bibbò, M. Pesavento, and L. Zeni, “Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene,” Sens. Actuators B Chem. 188, 221–226 (2013).
[Crossref]

Davies, E.

Deep, A.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

DeRosa, M. C.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Erdene, N.

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref] [PubMed]

Fan, X.

Francis, T. J.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

François, A.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

Galatus, R.

N. Cennamo, G. D’ Agostino, R. Galatus, L. Bibbò, M. Pesavento, and L. Zeni, “Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene,” Sens. Actuators B Chem. 188, 221–226 (2013).
[Crossref]

Ghalmi, S.

Z. Y. Wang, J. R. Heflin, K. Van Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, “Biosensors employing ionic self-assembled multilayers adsorbed on long-period fiber gratings,” Sens. Actuators B Chem. 139(2), 618–623 (2009).
[Crossref]

Giordano, M.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B Chem. 152(2), 196–205 (2011).
[Crossref]

Gupta, B. D.

S. Singh and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration,” Sens. Actuators B Chem. 177, 589–595 (2013).
[Crossref]

S. K. Khijwania and B. D. Gupta, “Fiber-optic evanescent field absorption sensor based on tapered probe: Effect of fiber parameters on the response curve,” Proc. SPIE 3666, 578–584 (1999).
[Crossref]

B. D. Gupta, “Evanescent wave absorption sensors based on uniform and tapers fibers. A comparative study of their sensitivities,” Int. J. Optoelectron. 8(4), 409–418 (1993).

Heflin, J. R.

Z. Y. Wang, J. R. Heflin, K. Van Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, “Biosensors employing ionic self-assembled multilayers adsorbed on long-period fiber gratings,” Sens. Actuators B Chem. 139(2), 618–623 (2009).
[Crossref]

Hine, A.

Hoffmann, P.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

Homola, J.

J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Hughes, M.

Jain, S. C.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Jeong, D. H.

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref] [PubMed]

Jeong, H. H.

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref] [PubMed]

Kanka, J.

J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182, 16–24 (2013).
[Crossref]

Kapur, P.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Khijwania, S. K.

S. K. Khijwania and B. D. Gupta, “Fiber-optic evanescent field absorption sensor based on tapered probe: Effect of fiber parameters on the response curve,” Proc. SPIE 3666, 578–584 (1999).
[Crossref]

Klingler-Hoffmann, M.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

Kumar, P.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Lee, H. Y.

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref] [PubMed]

Lee, S. K.

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref] [PubMed]

Li, J.

Liang, R.

Liu, D.

Luo, B.

Mikulic, P.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Mishra, V.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Monro, T. M.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

Mukherji, S.

R. Bharadwaj and S. Mukherji, “Gold nanoparticle coated U-bend fibre optic probe for localized surface plasmon resonance based detection of explosive vapours,” Sens. Actuators B Chem. 192, 804–811 (2014).
[Crossref]

Ng, A.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Paladino, D.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B Chem. 152(2), 196–205 (2011).
[Crossref]

Park, J. H.

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref] [PubMed]

Penno, M.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

Pesavento, M.

N. Cennamo, G. D’ Agostino, R. Galatus, L. Bibbò, M. Pesavento, and L. Zeni, “Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene,” Sens. Actuators B Chem. 188, 221–226 (2013).
[Crossref]

Quero, G.

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B Chem. 152(2), 196–205 (2011).
[Crossref]

Ramachandran, S.

Z. Y. Wang, J. R. Heflin, K. Van Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, “Biosensors employing ionic self-assembled multilayers adsorbed on long-period fiber gratings,” Sens. Actuators B Chem. 139(2), 618–623 (2009).
[Crossref]

Rindorf, L.

Sciacca, B.

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

Shevchenko, Y.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Shu, X.

Shum, P. P.

Singh, N.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Singh, S.

S. Singh and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration,” Sens. Actuators B Chem. 177, 589–595 (2013).
[Crossref]

Stolen, R. H.

Z. Y. Wang, J. R. Heflin, K. Van Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, “Biosensors employing ionic self-assembled multilayers adsorbed on long-period fiber gratings,” Sens. Actuators B Chem. 139(2), 618–623 (2009).
[Crossref]

Sugden, K.

Sun, Q.

Sun, Z.

Tiwari, U.

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Tolba, M.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Tripathi, S. M.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Van Cott, K.

Z. Y. Wang, J. R. Heflin, K. Van Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, “Biosensors employing ionic self-assembled multilayers adsorbed on long-period fiber gratings,” Sens. Actuators B Chem. 139(2), 618–623 (2009).
[Crossref]

Walsh, R.

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Wang, G.

Wang, H.

Wang, X. D.

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Wang, Y.

Wang, Z. Y.

Z. Y. Wang, J. R. Heflin, K. Van Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, “Biosensors employing ionic self-assembled multilayers adsorbed on long-period fiber gratings,” Sens. Actuators B Chem. 139(2), 618–623 (2009).
[Crossref]

White, I. M.

Wo, J.

Wolfbeis, O. S.

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Yan, Z.

Zeni, L.

N. Cennamo, G. D’ Agostino, R. Galatus, L. Bibbò, M. Pesavento, and L. Zeni, “Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene,” Sens. Actuators B Chem. 188, 221–226 (2013).
[Crossref]

Zhang, L.

Zhao, W.

Zhou, K.

Zourob, M.

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

Anal. Chem. (2)

X. D. Wang and O. S. Wolfbeis, “Fiber-Optic chemical sensors and biosensors (2008-2012),” Anal. Chem. 85(2), 487–508 (2013).
[Crossref] [PubMed]

Y. Shevchenko, T. J. Francis, D. A. D. Blair, R. Walsh, M. C. DeRosa, and J. Albert, “In situ biosensing with a surface plasmon resonance fiber grating aptasensor,” Anal. Chem. 83(18), 7027–7034 (2011).
[Crossref] [PubMed]

Biosens. Bioelectron. (3)

S. M. Tripathi, W. J. Bock, P. Mikulic, R. Chinnappan, A. Ng, M. Tolba, and M. Zourob, “Long period grating based biosensor for the detection of escherichia coli bacteria,” Biosens. Bioelectron. 35(1), 308–312 (2012).
[Crossref] [PubMed]

H. H. Jeong, N. Erdene, J. H. Park, D. H. Jeong, H. Y. Lee, and S. K. Lee, “Real-time label-free immunoassay of interferon-gamma and prostate-specific antigen using a Fiber-Optic Localized Surface Plasmon Resonance sensor,” Biosens. Bioelectron. 39(1), 346–351 (2013).
[Crossref] [PubMed]

A. Deep, U. Tiwari, P. Kumar, V. Mishra, S. C. Jain, N. Singh, P. Kapur, and L. M. Bharadwaj, “Immobilization of enzyme on long period grating fibers for sensitive glucose detection,” Biosens. Bioelectron. 33(1), 190–195 (2012).
[Crossref] [PubMed]

Chem. Rev. (1)

J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108(2), 462–493 (2008).
[Crossref] [PubMed]

Int. J. Optoelectron. (1)

B. D. Gupta, “Evanescent wave absorption sensors based on uniform and tapers fibers. A comparative study of their sensitivities,” Int. J. Optoelectron. 8(4), 409–418 (1993).

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

K. Zhou, X. Chen, L. Zhang, and I. Bennion, “Implementation of optical chemsensors based on HF-etched fibre Bragg grating structures,” Meas. Sci. Technol. 17(5), 1140–1145 (2006).
[Crossref]

Nanomedicine (Lond.) (1)

B. Sciacca, A. François, M. Klingler-Hoffmann, J. Brazzatti, M. Penno, P. Hoffmann, and T. M. Monro, “Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications,” Nanomedicine (Lond.) 9(4), 550–557 (2013).
[PubMed]

Opt. Express (2)

Opt. Lett. (3)

Proc. SPIE (1)

S. K. Khijwania and B. D. Gupta, “Fiber-optic evanescent field absorption sensor based on tapered probe: Effect of fiber parameters on the response curve,” Proc. SPIE 3666, 578–584 (1999).
[Crossref]

Sens. Actuators B Chem. (6)

G. Quero, A. Crescitelli, D. Paladino, M. Consales, A. Buosciolo, M. Giordano, A. Cutolo, and A. Cusano, “Evanescent wave long-period fiber grating within D-shaped optical fibers for high sensitivity refractive index detection,” Sens. Actuators B Chem. 152(2), 196–205 (2011).
[Crossref]

Z. Y. Wang, J. R. Heflin, K. Van Cott, R. H. Stolen, S. Ramachandran, and S. Ghalmi, “Biosensors employing ionic self-assembled multilayers adsorbed on long-period fiber gratings,” Sens. Actuators B Chem. 139(2), 618–623 (2009).
[Crossref]

J. Kanka, “Design of turn-around-point long-period gratings in a photonic crystal fiber for refractometry of gases,” Sens. Actuators B Chem. 182, 16–24 (2013).
[Crossref]

R. Bharadwaj and S. Mukherji, “Gold nanoparticle coated U-bend fibre optic probe for localized surface plasmon resonance based detection of explosive vapours,” Sens. Actuators B Chem. 192, 804–811 (2014).
[Crossref]

N. Cennamo, G. D’ Agostino, R. Galatus, L. Bibbò, M. Pesavento, and L. Zeni, “Sensors based on surface plasmon resonance in a plastic optical fiber for the detection of trinitrotoluene,” Sens. Actuators B Chem. 188, 221–226 (2013).
[Crossref]

S. Singh and B. D. Gupta, “Fabrication and characterization of a surface plasmon resonance based fiber optic sensor using gel entrapment technique for the detection of low glucose concentration,” Sens. Actuators B Chem. 177, 589–595 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Structure, (b) Micro image of the core region of the Ex-TFG in TCOF.
Fig. 2
Fig. 2 (a) Transmission spectrum of the Ex-TFG in TCOF. Inset: Zoomed a pair of resonances showing excitation of both TM or TE mode, and equal-polarized light. (b) Experimental results of RI and temperature sensing using a pair of resonances of Ex-TFG in TCOF excited by the light with TM and TE polarization at 1555nm~1585nm in the RI range from 1.305 to 1.355.
Fig. 3
Fig. 3 Micro image of the (a) cleaned TCOF, (b) silanized TCOF, (c) GOD-immobilized TCOF, and (d) fluorescence of the GOD-immobilized TCOF.
Fig. 4
Fig. 4 (a) Transmission spectra of the Ex-TFG in TCOF when exposed in air, immersed in de-ionized water and in blank AA/SA buffer solution (pH 5.2). Inset: spectrum evolution of the TM mode (at ~1380nm) of the bare, silanized and GOD-immoblized Ex-TFGs as immersed in a blank AA/SA buffer solution (pH 5.2). (b) Experimental RI sensing properties of the TM mode (at ~1380nm) in the RI range from ~1.347 to ~1.370.
Fig. 5
Fig. 5 Experimental setup to detect the glucose concentration by using the GOD-immobilized Ex-TFG in TCOF. Inset: the chemical link mechanism of GOD on the TCOF surface.
Fig. 6
Fig. 6 (a) Spectrum evolution of the Ex-TFG in TCOF with the glucose concentration from 0.1mg/ml to 2.5mg/ml with pH 5.2. (b) Resonance wavelength shift against glucose concentration from 0.1mg/ml to 5.0 mg/ml by using GOD-immobilized sensor (blue circle) and non-modified sensor (red triangle), and the respond time (green star) against glucose concentration by using GOD-immobilized sensor.
Fig. 7
Fig. 7 (a) Variations of the sensitivity (blue circle) and detection accuracy (green rectangle) of the GOD-immobilized Ex-TFG sensor with the pH of the buffer solution of glucose changing from 5.2 to 8.0. (b) Variation of the FOM (blue triangle) and LOD (green rectangle) of the GOD-immobilized Ex-TFG sensor with the pH changing from 5.2 to 8.0 as the glucose concentration range being 0.1~2.5mg/ml.

Tables (2)

Tables Icon

Table 1 Comparison of the Sensing Parameters among LPG based, OF-SPR based, Ex-TFG in standard SMF based and Ex-TFG in TCOF based Glucose Sensors

Tables Icon

Table 2 Glucose Concentration of Plasma Samples Analyzed by the GOD-immobilized Ex-TFG in TCOF

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δλ=γ u m 2 λ 2 Λ n sur 8 π 3 r 3 n eff_cl,m ( n cl 2 n sur 2 ) 3/2 λ.
D-Glucose+ H 2 O+ O 2 GOD Gluconic acid + H 2 O 2 .
D.A.=1/ δλ .
FOM=S/ FWHM= S/ δλ= SensitivityD.A..

Metrics