Abstract

Simulated emission depletion (STED) microscopy is very powerful, but still suffers from small tissue penetration depth, photobleaching of fluorescent probes and complicated imaging systems. Here, we propose an optical luminescence depletion mechanism employing upconverting nanoparticles (UCNPs) and explore its potential for multi-photon STED-like microscopy. With the addition of Yb3+ ions in NaYF4:Er3+ UCNPs, the two-photon green emission of Er3+ under 795-nm excitation was successfully depleted by 1140-nm laser through the synergetic effect of the excited state absorption and the interionic energy transfer. This STED-like depletion mechanism was systematically investigated using steady-state rate equations, evidenced by the surprising emerging of 478-nm emission. The green emission depletion efficiency was about 30%, limited by the current laser source. Our work indicates that NaYF4:Yb3+/Er3+ UCNPs will be potential probes for multi-photon super-resolution microscopy with many advantages, including long-wavelength-induced large penetration, non-photobleaching and non-photoblinking properties, cost-effective and simplified imaging systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Two-photon excitation and stimulated emission depletion by a single wavelength

Teodora Scheul, Ciro D’Amico, Irène Wang, and Jean-Claude Vial
Opt. Express 19(19) 18036-18048 (2011)

Inorganic nanoparticles for optical bioimaging

Daniel Jaque, Cyrille Richard, Bruno Viana, Kohei Soga, Xiaogang Liu, and Jose García Solé
Adv. Opt. Photon. 8(1) 1-103 (2016)

Non-bleaching fluorescence emission difference microscopy using single 808-nm laser excited red upconversion emission

Qiusheng Wu, Bingru Huang, Xingyun Peng, Sailing He, and Qiuqiang Zhan
Opt. Express 25(25) 30885-30894 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell, “Nanoscopy with Focused Light (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 54(28), 8054–8066 (2015).
    [Crossref] [PubMed]
  2. V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
    [Crossref] [PubMed]
  3. G. Moneron and S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009).
    [Crossref] [PubMed]
  4. F. Gorlitz, P. Hoyer, H. Falk, L. Kastrup, J. Engelhardt, and S. W. Hell, “A STED microscope designed for routine biomedical applications,” Prog. Electromagnetics Res. 147, 57–68 (2014).
    [Crossref]
  5. S. J. Sigrist and B. L. Sabatini, “Optical super-resolution microscopy in neurobiology,” Curr. Opin. Neurobiol. 22(1), 86–93 (2012).
    [Crossref] [PubMed]
  6. C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
    [Crossref]
  7. J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
    [Crossref] [PubMed]
  8. F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
    [Crossref] [PubMed]
  9. R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
    [Crossref] [PubMed]
  10. L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47(4), 1001–1009 (2014).
    [Crossref] [PubMed]
  11. R. Kolesov, R. Reuter, K. Xia, R. Stöhr, A. Zappe, and J. Wrachtrup, “Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles,” Phys. Rev. B 84(15), 153413 (2011).
    [Crossref]
  12. T. Catunda, L. A. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
    [Crossref] [PubMed]
  13. J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
    [Crossref]
  14. G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
    [Crossref] [PubMed]
  15. M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
    [Crossref]
  16. Y. Zhao, Q. Zhan, J. Liu, and S. He, “Optically investigating Nd3+-Yb3+ cascade sensitized upconversion nanoparticles for high resolution, rapid scanning, deep and damage-free bio-imaging,” Biomed. Opt. Express 6(3), 838–848 (2015).
    [Crossref] [PubMed]
  17. J. Liu, R. Wu, N. Li, X. Zhang, Q. Zhan, and S. He, “Deep, high contrast microscopic cell imaging using three-photon luminescence of β-(NaYF4:Er3+/NaYF4) nanoprobe excited by 1480-nm CW laser of only 1.5-mW,” Biomed. Opt. Express 6(5), 1857–1866 (2015).
    [Crossref] [PubMed]
  18. F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+ co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).
  19. G. H. Dieke and H. Crosswhite, “The spectra of the doubly and triply ionized rare earths,” Appl. Opt. 2(7), 675–686 (1963).
    [Crossref]
  20. M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Effect of Yb3+ doping on upconversion emission intensity and mechanism in Er3+/Yb3+-codoped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 86(11), 6143–6149 (1999).
    [Crossref]
  21. R. B. Anderson, S. J. Smith, P. S. May, and M. T. Berry, “Revisiting the NIR-to-Visible Upconversion Mechanism in β-NaYF4:Yb3+,Er3+,” J. Phys. Chem. Lett. 5(1), 36–42 (2014).
    [Crossref] [PubMed]
  22. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
    [Crossref] [PubMed]
  23. J. Liu, N. Li, R. Wu, Y. Zhao, Q. Zhan, and S. He, “Sub-5-nm lanthanide-doped ZrO 2@ NaYF 4 nanodots as efficient upconverting probes for rapid scanning microscopy and aptamer-mediated bioimaging,” Opt. Mater. Express 5(8), 1759–1771 (2015).
    [Crossref]
  24. J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
    [Crossref] [PubMed]
  25. M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
    [Crossref] [PubMed]
  26. S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10917–10921 (2009).
    [Crossref] [PubMed]
  27. E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
    [Crossref]
  28. N. T. Urban, K. I. Willig, S. W. Hell, and U. V. Nägerl, “STED nanoscopy of actin dynamics in synapses deep inside living brain slices,” Biophys. J. 101(5), 1277–1284 (2011).
    [Crossref] [PubMed]
  29. P. Theer and W. Denk, “On the fundamental imaging-depth limit in two-photon microscopy,” J. Opt. Soc. Am. A 23(12), 3139–3149 (2006).
    [Crossref] [PubMed]
  30. D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
    [Crossref] [PubMed]
  31. N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
    [Crossref] [PubMed]
  32. F. Cai and S. He, “Electric field Monte Carlo simulation of focused stimulated emission depletion beam, radially and azimuthally polarized beams for in vivo deep bioimaging,” J. Biomed. Opt. 19(1), 11022 (2014).
    [Crossref] [PubMed]
  33. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
    [Crossref] [PubMed]
  34. T. V. Esipova, X. Ye, J. E. Collins, S. Sakadžić, E. T. Mandeville, C. B. Murray, and S. A. Vinogradov, “Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 20826–20831 (2012).
    [Crossref] [PubMed]
  35. D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6(24), 2781–2795 (2010).
    [Crossref] [PubMed]
  36. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-μm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).
    [Crossref] [PubMed]
  37. J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
    [Crossref] [PubMed]
  38. S. Sinha, C. Langrock, M. J. Digonnet, M. M. Fejer, and R. L. Byer, “Efficient yellow-light generation by frequency doubling a narrow-linewidth 1150 nm ytterbium fiber oscillator,” Opt. Lett. 31(3), 347–349 (2006).
    [Crossref] [PubMed]
  39. D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
    [Crossref] [PubMed]

2015 (6)

2014 (5)

R. B. Anderson, S. J. Smith, P. S. May, and M. T. Berry, “Revisiting the NIR-to-Visible Upconversion Mechanism in β-NaYF4:Yb3+,Er3+,” J. Phys. Chem. Lett. 5(1), 36–42 (2014).
[Crossref] [PubMed]

F. Cai and S. He, “Electric field Monte Carlo simulation of focused stimulated emission depletion beam, radially and azimuthally polarized beams for in vivo deep bioimaging,” J. Biomed. Opt. 19(1), 11022 (2014).
[Crossref] [PubMed]

L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47(4), 1001–1009 (2014).
[Crossref] [PubMed]

F. Gorlitz, P. Hoyer, H. Falk, L. Kastrup, J. Engelhardt, and S. W. Hell, “A STED microscope designed for routine biomedical applications,” Prog. Electromagnetics Res. 147, 57–68 (2014).
[Crossref]

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

2013 (3)

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

2012 (3)

T. V. Esipova, X. Ye, J. E. Collins, S. Sakadžić, E. T. Mandeville, C. B. Murray, and S. A. Vinogradov, “Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 20826–20831 (2012).
[Crossref] [PubMed]

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

S. J. Sigrist and B. L. Sabatini, “Optical super-resolution microscopy in neurobiology,” Curr. Opin. Neurobiol. 22(1), 86–93 (2012).
[Crossref] [PubMed]

2011 (3)

R. Kolesov, R. Reuter, K. Xia, R. Stöhr, A. Zappe, and J. Wrachtrup, “Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles,” Phys. Rev. B 84(15), 153413 (2011).
[Crossref]

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

N. T. Urban, K. I. Willig, S. W. Hell, and U. V. Nägerl, “STED nanoscopy of actin dynamics in synapses deep inside living brain slices,” Biophys. J. 101(5), 1277–1284 (2011).
[Crossref] [PubMed]

2010 (2)

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6(24), 2781–2795 (2010).
[Crossref] [PubMed]

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

2009 (6)

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10917–10921 (2009).
[Crossref] [PubMed]

G. Moneron and S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009).
[Crossref] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
[Crossref] [PubMed]

2008 (1)

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

2007 (1)

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

2006 (2)

2004 (1)

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[Crossref]

1999 (2)

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Effect of Yb3+ doping on upconversion emission intensity and mechanism in Er3+/Yb3+-codoped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 86(11), 6143–6149 (1999).
[Crossref]

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
[Crossref]

1996 (1)

T. Catunda, L. A. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[Crossref] [PubMed]

1995 (1)

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

1973 (1)

1963 (1)

Aegerter, M. A.

T. Catunda, L. A. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[Crossref] [PubMed]

Ågren, H.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Alexandrou, A.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[Crossref]

Aloni, S.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10917–10921 (2009).
[Crossref] [PubMed]

Altoe, M. V. P.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Altoe, V.

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10917–10921 (2009).
[Crossref] [PubMed]

Anderson, R. B.

R. B. Anderson, S. J. Smith, P. S. May, and M. T. Berry, “Revisiting the NIR-to-Visible Upconversion Mechanism in β-NaYF4:Yb3+,Er3+,” J. Phys. Chem. Lett. 5(1), 36–42 (2014).
[Crossref] [PubMed]

Andersson-Engels, S.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Barnard, E. S.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Beaurepaire, E.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[Crossref]

Berry, M. T.

R. B. Anderson, S. J. Smith, P. S. May, and M. T. Berry, “Revisiting the NIR-to-Visible Upconversion Mechanism in β-NaYF4:Yb3+,Er3+,” J. Phys. Chem. Lett. 5(1), 36–42 (2014).
[Crossref] [PubMed]

Betzig, E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Boilot, J.-P.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[Crossref]

Buissette, V.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[Crossref]

Byer, R. L.

Cai, F.

F. Cai and S. He, “Electric field Monte Carlo simulation of focused stimulated emission depletion beam, radially and azimuthally polarized beams for in vivo deep bioimaging,” J. Biomed. Opt. 19(1), 11022 (2014).
[Crossref] [PubMed]

Casanova, D.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[Crossref]

Catunda, T.

T. Catunda, L. A. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[Crossref] [PubMed]

Chan, E. M.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Chatterjee, D. K.

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6(24), 2781–2795 (2010).
[Crossref] [PubMed]

Chen, D.

F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+ co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).

Chen, G.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Chen, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Chen, Z.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

Clark, C. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Cohen, B. E.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10917–10921 (2009).
[Crossref] [PubMed]

Collins, J. E.

T. V. Esipova, X. Ye, J. E. Collins, S. Sakadžić, E. T. Mandeville, C. B. Murray, and S. A. Vinogradov, “Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 20826–20831 (2012).
[Crossref] [PubMed]

Crosswhite, H.

Dawes, J. M.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Deng, R.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Denk, W.

Dieke, G. H.

Digonnet, M. J.

Ding, J. B.

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
[Crossref] [PubMed]

Durst, M. E.

Engelhardt, J.

F. Gorlitz, P. Hoyer, H. Falk, L. Kastrup, J. Engelhardt, and S. W. Hell, “A STED microscope designed for routine biomedical applications,” Prog. Electromagnetics Res. 147, 57–68 (2014).
[Crossref]

Esipova, T. V.

T. V. Esipova, X. Ye, J. E. Collins, S. Sakadžić, E. T. Mandeville, C. B. Murray, and S. A. Vinogradov, “Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 20826–20831 (2012).
[Crossref] [PubMed]

Falk, H.

F. Gorlitz, P. Hoyer, H. Falk, L. Kastrup, J. Engelhardt, and S. W. Hell, “A STED microscope designed for routine biomedical applications,” Prog. Electromagnetics Res. 147, 57–68 (2014).
[Crossref]

Fejer, M. M.

Florez, A.

T. Catunda, L. A. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[Crossref] [PubMed]

Gacoin, T.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[Crossref]

Gargas, D. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Giaume, D.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[Crossref]

Gnanasammandhan, M. K.

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6(24), 2781–2795 (2010).
[Crossref] [PubMed]

Goldys, E. M.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Gorlitz, F.

F. Gorlitz, P. Hoyer, H. Falk, L. Kastrup, J. Engelhardt, and S. W. Hell, “A STED microscope designed for routine biomedical applications,” Prog. Electromagnetics Res. 147, 57–68 (2014).
[Crossref]

Hale, G. M.

Han, G.

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10917–10921 (2009).
[Crossref] [PubMed]

He, S.

Hell, S. W.

S. W. Hell, “Nanoscopy with Focused Light (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 54(28), 8054–8066 (2015).
[Crossref] [PubMed]

F. Gorlitz, P. Hoyer, H. Falk, L. Kastrup, J. Engelhardt, and S. W. Hell, “A STED microscope designed for routine biomedical applications,” Prog. Electromagnetics Res. 147, 57–68 (2014).
[Crossref]

N. T. Urban, K. I. Willig, S. W. Hell, and U. V. Nägerl, “STED nanoscopy of actin dynamics in synapses deep inside living brain slices,” Biophys. J. 101(5), 1277–1284 (2011).
[Crossref] [PubMed]

G. Moneron and S. W. Hell, “Two-photon excitation STED microscopy,” Opt. Express 17(17), 14567–14573 (2009).
[Crossref] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

Hong, M.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Horton, N. G.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Hoyer, P.

F. Gorlitz, P. Hoyer, H. Falk, L. Kastrup, J. Engelhardt, and S. W. Hell, “A STED microscope designed for routine biomedical applications,” Prog. Electromagnetics Res. 147, 57–68 (2014).
[Crossref]

Hu, H.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

Hu, L.

F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+ co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).

Huang, C.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

Huang, F.

F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+ co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).

Huang, W.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Huber, G.

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

Huignard, A.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[Crossref]

Inoue, H.

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
[Crossref]

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Effect of Yb3+ doping on upconversion emission intensity and mechanism in Er3+/Yb3+-codoped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 86(11), 6143–6149 (1999).
[Crossref]

Inoue, S.

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Effect of Yb3+ doping on upconversion emission intensity and mechanism in Er3+/Yb3+-codoped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 86(11), 6143–6149 (1999).
[Crossref]

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
[Crossref]

Jahn, R.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

Ji, N.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Jin, D.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Kachynski, A.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Kamin, D.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

Kang, S.

F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+ co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).

Kastrup, L.

F. Gorlitz, P. Hoyer, H. Falk, L. Kastrup, J. Engelhardt, and S. W. Hell, “A STED microscope designed for routine biomedical applications,” Prog. Electromagnetics Res. 147, 57–68 (2014).
[Crossref]

Kobat, D.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Koetke, J.

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

Kolesov, R.

R. Kolesov, R. Reuter, K. Xia, R. Stöhr, A. Zappe, and J. Wrachtrup, “Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles,” Phys. Rev. B 84(15), 153413 (2011).
[Crossref]

Lahlil, K.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[Crossref]

Langrock, C.

Lauterbach, M. A.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

Li, F.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

Li, N.

Liu, H.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Liu, J.

Liu, X.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+ co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

Liu, Z.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Lu, Z.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Ma, Y.

F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+ co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).

Makishima, A.

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Effect of Yb3+ doping on upconversion emission intensity and mechanism in Er3+/Yb3+-codoped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 86(11), 6143–6149 (1999).
[Crossref]

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
[Crossref]

Mandeville, E. T.

T. V. Esipova, X. Ye, J. E. Collins, S. Sakadžić, E. T. Mandeville, C. B. Murray, and S. A. Vinogradov, “Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 20826–20831 (2012).
[Crossref] [PubMed]

Martin, J.-L.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[Crossref]

May, P. S.

R. B. Anderson, S. J. Smith, P. S. May, and M. T. Berry, “Revisiting the NIR-to-Visible Upconversion Mechanism in β-NaYF4:Yb3+,Er3+,” J. Phys. Chem. Lett. 5(1), 36–42 (2014).
[Crossref] [PubMed]

McRae, C.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Mercuri, A.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[Crossref]

Messaddeq, Y.

T. Catunda, L. A. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[Crossref] [PubMed]

Milkie, D. E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Milliron, D. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10917–10921 (2009).
[Crossref] [PubMed]

Moneron, G.

Murray, C. B.

T. V. Esipova, X. Ye, J. E. Collins, S. Sakadžić, E. T. Mandeville, C. B. Murray, and S. A. Vinogradov, “Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 20826–20831 (2012).
[Crossref] [PubMed]

Nägerl, U. V.

N. T. Urban, K. I. Willig, S. W. Hell, and U. V. Nägerl, “STED nanoscopy of actin dynamics in synapses deep inside living brain slices,” Biophys. J. 101(5), 1277–1284 (2011).
[Crossref] [PubMed]

Nishimura, N.

Nunes, L. A.

T. Catunda, L. A. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[Crossref] [PubMed]

Ohulchanskyy, T. Y.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Ostrowski, A. D.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Piper, J. A.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Prasad, P. N.

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Qian, J.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Qin, F.

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

Querry, M. R.

Reuter, R.

R. Kolesov, R. Reuter, K. Xia, R. Stöhr, A. Zappe, and J. Wrachtrup, “Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles,” Phys. Rev. B 84(15), 153413 (2011).
[Crossref]

Rizzoli, S. O.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

Sabatini, B. L.

S. J. Sigrist and B. L. Sabatini, “Optical super-resolution microscopy in neurobiology,” Curr. Opin. Neurobiol. 22(1), 86–93 (2012).
[Crossref] [PubMed]

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
[Crossref] [PubMed]

Sakadžic, S.

T. V. Esipova, X. Ye, J. E. Collins, S. Sakadžić, E. T. Mandeville, C. B. Murray, and S. A. Vinogradov, “Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 20826–20831 (2012).
[Crossref] [PubMed]

Sanii, B.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Sauviat, M.-P.

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[Crossref]

Schaffer, C. B.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Schuck, P. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10917–10921 (2009).
[Crossref] [PubMed]

Sigrist, S. J.

S. J. Sigrist and B. L. Sabatini, “Optical super-resolution microscopy in neurobiology,” Curr. Opin. Neurobiol. 22(1), 86–93 (2012).
[Crossref] [PubMed]

Sinha, S.

Smith, S. J.

R. B. Anderson, S. J. Smith, P. S. May, and M. T. Berry, “Revisiting the NIR-to-Visible Upconversion Mechanism in β-NaYF4:Yb3+,Er3+,” J. Phys. Chem. Lett. 5(1), 36–42 (2014).
[Crossref] [PubMed]

Soga, K.

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
[Crossref]

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Effect of Yb3+ doping on upconversion emission intensity and mechanism in Er3+/Yb3+-codoped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 86(11), 6143–6149 (1999).
[Crossref]

Somesfalean, G.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Stöhr, R.

R. Kolesov, R. Reuter, K. Xia, R. Stöhr, A. Zappe, and J. Wrachtrup, “Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles,” Phys. Rev. B 84(15), 153413 (2011).
[Crossref]

Sun, L.-D.

L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47(4), 1001–1009 (2014).
[Crossref] [PubMed]

Takasaki, K. T.

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
[Crossref] [PubMed]

Talapin, D. V.

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10917–10921 (2009).
[Crossref] [PubMed]

Theer, P.

Tsuda, M.

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
[Crossref]

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Effect of Yb3+ doping on upconversion emission intensity and mechanism in Er3+/Yb3+-codoped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 86(11), 6143–6149 (1999).
[Crossref]

Urban, J. J.

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Urban, N. T.

N. T. Urban, K. I. Willig, S. W. Hell, and U. V. Nägerl, “STED nanoscopy of actin dynamics in synapses deep inside living brain slices,” Biophys. J. 101(5), 1277–1284 (2011).
[Crossref] [PubMed]

Vinogradov, S. A.

T. V. Esipova, X. Ye, J. E. Collins, S. Sakadžić, E. T. Mandeville, C. B. Murray, and S. A. Vinogradov, “Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 20826–20831 (2012).
[Crossref] [PubMed]

Wang, F.

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

Wang, K.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wang, Y.-F.

L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47(4), 1001–1009 (2014).
[Crossref] [PubMed]

Westphal, V.

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

Willig, K. I.

N. T. Urban, K. I. Willig, S. W. Hell, and U. V. Nägerl, “STED nanoscopy of actin dynamics in synapses deep inside living brain slices,” Biophys. J. 101(5), 1277–1284 (2011).
[Crossref] [PubMed]

Wise, F. W.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Wong, A. W.

Wrachtrup, J.

R. Kolesov, R. Reuter, K. Xia, R. Stöhr, A. Zappe, and J. Wrachtrup, “Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles,” Phys. Rev. B 84(15), 153413 (2011).
[Crossref]

Wu, R.

Wu, S.

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10917–10921 (2009).
[Crossref] [PubMed]

Xia, K.

R. Kolesov, R. Reuter, K. Xia, R. Stöhr, A. Zappe, and J. Wrachtrup, “Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles,” Phys. Rev. B 84(15), 153413 (2011).
[Crossref]

Xu, C.

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

D. Kobat, M. E. Durst, N. Nishimura, A. W. Wong, C. B. Schaffer, and C. Xu, “Deep tissue multiphoton microscopy using longer wavelength excitation,” Opt. Express 17(16), 13354–13364 (2009).
[Crossref] [PubMed]

Xu, C. T.

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Yan, C.-H.

L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47(4), 1001–1009 (2014).
[Crossref] [PubMed]

Yang, H.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

Ye, X.

T. V. Esipova, X. Ye, J. E. Collins, S. Sakadžić, E. T. Mandeville, C. B. Murray, and S. A. Vinogradov, “Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 20826–20831 (2012).
[Crossref] [PubMed]

Yin, Y.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Yu, M.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

Zappe, A.

R. Kolesov, R. Reuter, K. Xia, R. Stöhr, A. Zappe, and J. Wrachtrup, “Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles,” Phys. Rev. B 84(15), 153413 (2011).
[Crossref]

Zhan, C.

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

Zhan, Q.

Zhang, X.

Zhang, Y.

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6(24), 2781–2795 (2010).
[Crossref] [PubMed]

Zhao, J.

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Zhao, Y.

Zhou, J.

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

L.-D. Sun, Y.-F. Wang, and C.-H. Yan, “Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles: small size and tunable emission/excitation spectra,” Acc. Chem. Res. 47(4), 1001–1009 (2014).
[Crossref] [PubMed]

ACS Nano (1)

G. Chen, T. Y. Ohulchanskyy, A. Kachynski, H. Ågren, and P. N. Prasad, “Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF₄:Er³+ nanocrystals under excitation at 1490 nm,” ACS Nano 5(6), 4981–4986 (2011).
[Crossref] [PubMed]

Anal. Chem. (1)

M. Yu, F. Li, Z. Chen, H. Hu, C. Zhan, H. Yang, and C. Huang, “Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors,” Anal. Chem. 81(3), 930–935 (2009).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

S. W. Hell, “Nanoscopy with Focused Light (Nobel Lecture),” Angew. Chem. Int. Ed. Engl. 54(28), 8054–8066 (2015).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (1)

J. Koetke and G. Huber, “Infrared excited-state absorption and stimulated-emission cross sections of Er3+-doped crystals,” Appl. Phys. B 61(2), 151–158 (1995).
[Crossref]

Biomed. Opt. Express (2)

Biophys. J. (1)

N. T. Urban, K. I. Willig, S. W. Hell, and U. V. Nägerl, “STED nanoscopy of actin dynamics in synapses deep inside living brain slices,” Biophys. J. 101(5), 1277–1284 (2011).
[Crossref] [PubMed]

Chem. Soc. Rev. (2)

J. Zhou, Z. Liu, and F. Li, “Upconversion nanophosphors for small-animal imaging,” Chem. Soc. Rev. 41(3), 1323–1349 (2012).
[Crossref] [PubMed]

F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev. 38(4), 976–989 (2009).
[Crossref] [PubMed]

Curr. Opin. Neurobiol. (1)

S. J. Sigrist and B. L. Sabatini, “Optical super-resolution microscopy in neurobiology,” Curr. Opin. Neurobiol. 22(1), 86–93 (2012).
[Crossref] [PubMed]

J. Appl. Phys. (2)

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Upconversion mechanism in Er3+-doped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 85(1), 29–37 (1999).
[Crossref]

M. Tsuda, K. Soga, H. Inoue, S. Inoue, and A. Makishima, “Effect of Yb3+ doping on upconversion emission intensity and mechanism in Er3+/Yb3+-codoped fluorozirconate glasses under 800 nm excitation,” J. Appl. Phys. 86(11), 6143–6149 (1999).
[Crossref]

J. Biomed. Opt. (1)

F. Cai and S. He, “Electric field Monte Carlo simulation of focused stimulated emission depletion beam, radially and azimuthally polarized beams for in vivo deep bioimaging,” J. Biomed. Opt. 19(1), 11022 (2014).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. Lett. (1)

R. B. Anderson, S. J. Smith, P. S. May, and M. T. Berry, “Revisiting the NIR-to-Visible Upconversion Mechanism in β-NaYF4:Yb3+,Er3+,” J. Phys. Chem. Lett. 5(1), 36–42 (2014).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

C. T. Xu, Q. Zhan, H. Liu, G. Somesfalean, J. Qian, S. He, and S. Andersson-Engels, “Upconverting nanoparticles for pre‐clinical diffuse optical imaging, microscopy and sensing: Current trends and future challenges,” Laser Photonics Rev. 7(5), 663–697 (2013).
[Crossref]

Nano Lett. (1)

E. Beaurepaire, V. Buissette, M.-P. Sauviat, D. Giaume, K. Lahlil, A. Mercuri, D. Casanova, A. Huignard, J.-L. Martin, T. Gacoin, J.-P. Boilot, and A. Alexandrou, “Functionalized fluorescent oxide nanoparticles: artificial toxins for sodium channel targeting and imaging at the single-molecule level,” Nano Lett. 4(11), 2079–2083 (2004).
[Crossref]

Nanoscale (1)

J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, and E. M. Goldys, “Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size,” Nanoscale 5(3), 944–952 (2013).
[Crossref] [PubMed]

Nat. Methods (1)

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

R. Deng, F. Qin, R. Chen, W. Huang, M. Hong, and X. Liu, “Temporal full-colour tuning through non-steady-state upconversion,” Nat. Nanotechnol. 10(3), 237–242 (2015).
[Crossref] [PubMed]

D. J. Gargas, E. M. Chan, A. D. Ostrowski, S. Aloni, M. V. P. Altoe, E. S. Barnard, B. Sanii, J. J. Urban, D. J. Milliron, B. E. Cohen, and P. J. Schuck, “Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging,” Nat. Nanotechnol. 9(4), 300–305 (2014).
[Crossref] [PubMed]

Nat. Photonics (1)

N. G. Horton, K. Wang, D. Kobat, C. G. Clark, F. W. Wise, C. B. Schaffer, and C. Xu, “In vivo three-photon microscopy of subcortical structures within an intact mouse brain,” Nat. Photonics 7(3), 205–209 (2013).
[Crossref] [PubMed]

Neuron (1)

J. B. Ding, K. T. Takasaki, and B. L. Sabatini, “Supraresolution imaging in brain slices using stimulated-emission depletion two-photon laser scanning microscopy,” Neuron 63(4), 429–437 (2009).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B (1)

R. Kolesov, R. Reuter, K. Xia, R. Stöhr, A. Zappe, and J. Wrachtrup, “Super-resolution upconversion microscopy of praseodymium-doped yttrium aluminum garnet nanoparticles,” Phys. Rev. B 84(15), 153413 (2011).
[Crossref]

Phys. Rev. B Condens. Matter (1)

T. Catunda, L. A. Nunes, A. Florez, Y. Messaddeq, and M. A. Aegerter, “Spectroscopic properties and upconversion mechanisms in Er3+-doped fluoroindate glasses,” Phys. Rev. B Condens. Matter 53(10), 6065–6070 (1996).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (2)

S. Wu, G. Han, D. J. Milliron, S. Aloni, V. Altoe, D. V. Talapin, B. E. Cohen, and P. J. Schuck, “Non-blinking and photostable upconverted luminescence from single lanthanide-doped nanocrystals,” Proc. Natl. Acad. Sci. U.S.A. 106(27), 10917–10921 (2009).
[Crossref] [PubMed]

T. V. Esipova, X. Ye, J. E. Collins, S. Sakadžić, E. T. Mandeville, C. B. Murray, and S. A. Vinogradov, “Dendritic upconverting nanoparticles enable in vivo multiphoton microscopy with low-power continuous wave sources,” Proc. Natl. Acad. Sci. U.S.A. 109(51), 20826–20831 (2012).
[Crossref] [PubMed]

Prog. Electromagnetics Res. (1)

F. Gorlitz, P. Hoyer, H. Falk, L. Kastrup, J. Engelhardt, and S. W. Hell, “A STED microscope designed for routine biomedical applications,” Prog. Electromagnetics Res. 147, 57–68 (2014).
[Crossref]

Sci. Rep. (1)

F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, and D. Chen, “Origin of near to middle infrared luminescence and energy transfer process of Er3+/Yb3+ co-doped fluorotellurite glasses under different excitations,” Sci. Rep. 5, 8233 (2015).

Science (2)

S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007).
[Crossref] [PubMed]

V. Westphal, S. O. Rizzoli, M. A. Lauterbach, D. Kamin, R. Jahn, and S. W. Hell, “Video-rate far-field optical nanoscopy dissects synaptic vesicle movement,” Science 320(5873), 246–249 (2008).
[Crossref] [PubMed]

Small (1)

D. K. Chatterjee, M. K. Gnanasammandhan, and Y. Zhang, “Small upconverting fluorescent nanoparticles for biomedical applications,” Small 6(24), 2781–2795 (2010).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 The scheme of experimental setup. P1, P2: half-wave plate. F1: 800-nm band-pass filter. F2: 850-nm long-pass filter. B: blocker. M: silver reflector mirror. PBS: polarizing beam splitter. DM: 690-nm dichroic mirror. OL: objective lens. S: sample. FL: focus lens. Inset: FWHM of 1140-nm laser.
Fig. 2
Fig. 2 (a) Proposed mechanism of luminescence generation of 795-nm laser excited Er3+-singly doped NaYF4 UCNPs with/without 1140-nm irradiation. (b) Luminescence intensity of Er3+-singly doped NaYF4 UCNPs under 795-nm CW excitation with/without 1140-nm irradiation. Inset figure: amplified luminescence spectrum from 350 nm to 500 nm.
Fig. 3
Fig. 3 (a) Proposed mechanism of luminescence generation of 795-nm laser excited NaYF4:Yb3+/Er3+ UCNPs with/without 1140-nm irradiation. (b) Luminescence intensity of NaYF4:Yb3+/Er3+ UCNPs under 795-nm CW excitation with/without 1140-nm irradiation. Inset figure: amplified luminescence spectrum from 350 nm to 500 nm.
Fig. 4
Fig. 4 (a) The green emission depletion efficiency of the 1140-nm laser. The experimental data was well fitted with a rational function, where the independent variable is the depletion power density and the dependent variable is the intensity of the green emission. (b) The decay time of the green emission from Yb3+/Er3+ UCNPs under 795-nm excitation with/without 1140-nm depletion.
Fig. 5
Fig. 5 Intensity fluctuations of green luminescence of a single NaYF4:Yb3+/Er3+ UCNP under 30 mins or 0.5 second. Time trace recording of 30-min irradiation of a single UCNP under 795-nm excitation only (a) or 795-nm and 1140-nm co-irradiation (c). Experimental data and theoretical fitting of 30-min intensity occurrences of a single UCNP under 795-nm excitation (b) or 795-nm and 1140-nm co-irradiation (d). Time trace recording of 0.5-second irradiation of a single UCNP under 795-nm excitation only (e) or 795-nm and 1140-nm co-irradiation (g). Experimental data and theoretical fitting of 0.5-second intensity occurrences from a single UCNP under 795-nm excitation (f) or 795-nm and 1140-nm co-irradiation (h).
Fig. 6
Fig. 6 Wavelength-dependent attenuation length spectrum of a brain tissue model based on Mie scattering and water absorption. This model was proposed by Horton, et al. [31] The absorption length of water was measured by Hale, et al. [36] Green solid and dashed arrows: excitation and depletion lasers wavelength of single photon excited STED microscopy of brain slice [28]. Yellow solid and dashed arrows: excitation and depletion lasers wavelength of TPE-STED microscopy of brain slice [37]. Pink solid and dashed arrows: potential excitation and depletion lasers wavelength of TPE-STED microscopy in this work.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

d N 4 dt = F 795 σ 1 N 1 β 4 N 4 =0
d N 3 dt = β 4 N 4 β 3 N 3 N 3 τ 3 2W N 3 2 =0
d N 2 dt = β 3 N 3 N 2 τ 2 F 1140 σ 2 N 2 =0
d N 5 dt = β 6 N 6 N 5 τ 5 + F 1140 σ 2 N 2 + K ET9-5 N 9 N Yb0 =0
d N 6 dt = β 7 N 7 N 6 τ 6 β 6 N 6 F 1140 σ 3 N 6 =0
d N 7 dt = β 8 N 8 β 7 N 7 +W N 3 2 =0
d N 8 dt = β 9 N 9 β 8 N 8 N 8 τ 8 =0
d N 9 dt = β 10 N 10 + β 9 N 9 N 9 τ 9 K ET9-5 N 9 N Yb0 =0
d N 10 dt = F 1140 σ 3 N 6 β 10 N 10 N 10 τ 10 =0
N 3 = β 4 β 3 +1/ τ 3 N 4 = F 795 σ 1 β 3 +1/ τ 3 N 0
β 7 N 7 = N 6 ( F 1140 σ 3 + β 6 +1/ τ 6 )
N 8 = β 9 β 8 +1/ τ 8 N 9
N 9 = β 10 β 9 +1/ τ 9 + K ET95 N Yb0 N 10
N 10 = F 1140 σ 3 β 10 +1/ τ 10 N 6
N 8 = β 9 F 1140 σ 3 β 8 ( β 9 + K ET95 N Yb0 ) N 6
N 6 = W ( F 795 σ 1 N 1 β 3 +1/ τ 3 ) 2 / [ β 6 +1/ τ 6 + F 1140 σ 3 (1 β 9 K ET95 N Yb0 + β 9 )]
N 6 = W ( F 795 σ 1 N 1 β 3 +1/ τ 3 ) 2 / ( β 6 +1/ τ 6 )
R 410/478 = N 8 N 10 = β 9 β 10 ( β 8 +1/ τ 8 )( β 9 +1/ τ 9 + K ET95 N Yb0 )

Metrics