Abstract

We study theoretically the lasing properties and the cavity lifetime of super and sub-luminal lasers. We find that obtaining the necessary conditions for superluminal lasing requires care and that a laser operating under these conditions can under some conditions tend towards bi-frequency lasing. In contrast, conditions for a subluminal laser are less stringent, and in most situations its steady-state properties are well predicted by the self-consistent single-frequency laser equations. We also study the relaxation time of power perturbation in super and sub-luminal lasers using a finite-difference-time-domain tool and present the impact of the lasing power, the group velocity and the dispersion properties of the cavity on the relaxation dynamic of such perturbations. For the subluminal laser, we find that the time constant changes by a factor that is close to the group index. In contrast, for the superluminal laser, we find that the time constant does not change by the factor given by the group index, and remains close to or above the value for an empty cavity. These finding may be interpreted to imply that the quantum noise limited linewidth of the subluminal laser decreases with increasing group index, while the same for the superluminal laser does not increase with decreasing group index. The implications of these findings on the sensitivity of sensors based on these lasers are discussed in details.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
White light cavity formation and superluminal lasing near exceptional points

Jacob Scheuer
Opt. Express 26(24) 32091-32102 (2018)

Theoretical modeling and experimental demonstration of Raman probe induced spectral dip for realizing a superluminal laser

Joshua Yablon, Zifan Zhou, Minchuan Zhou, Ye Wang, S. Tseng, and M. S. Shahriar
Opt. Express 24(24) 27444-27456 (2016)

Demonstration of a highly subluminal laser with suppression of cavity length sensitivity by nearly three orders of magnitude

Joshua Yablon, Zifan Zhou, Nicholas Condon, Devin Hileman, Shih Tseng, and Selim Shahriar
Opt. Express 25(24) 30327-30335 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications (CRC Press, 2009).
  2. J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
    [Crossref] [PubMed]
  3. D. Dahan and G. Eisenstein, “Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: a route to all optical buffering,” Opt. Express 13(16), 6234–6249 (2005).
    [Crossref] [PubMed]
  4. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
    [Crossref] [PubMed]
  5. K. Y. Song, M. Herráez, and L. Thévenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13(1), 82–88 (2005).
    [Crossref] [PubMed]
  6. Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
    [Crossref] [PubMed]
  7. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
    [Crossref] [PubMed]
  8. C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” Proc. IEEE 91, 1184 (2003).
  9. J. Scheuer and M. S. Shahriar, “Trap-door optical buffering using a flat-top coupled microring filter: the superluminal cavity approach,” Opt. Lett. 38(18), 3534–3537 (2013).
    [Crossref] [PubMed]
  10. H. Yum, X. Liu, Y. J. Jang, M. E. Kim, and S. M. Shahriar, “Pulse Delay Via Tunable White Light Cavities Using Fiber-Optic Resonators,” J. Lightwave Technol. 29(18), 2698–2705 (2011).
    [Crossref]
  11. D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
    [Crossref]
  12. O. Kotlicki and J. Scheuer, “Wideband coherent perfect absorber based on white-light cavity,” Opt. Lett. 39(23), 6624–6627 (2014).
    [Crossref] [PubMed]
  13. D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78(5), 053824 (2008).
    [Crossref]
  14. D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
    [Crossref]
  15. J. Scheuer and M. Sumetsky, “Optical-fiber microcoil waveguides and resonators and their applications for interferometry and sensing,” Laser Photonics Rev. 5(4), 465–478 (2011).
    [Crossref]
  16. G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement–measurement–sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281(19), 4931–4935 (2008).
    [Crossref]
  17. O. Kotlicki, J. Scheuer, and M. S. Shahriar, “Theoretical study on Brillouin fiber laser sensor based on white light cavity,” Opt. Express 20(27), 28234–28248 (2012).
    [Crossref] [PubMed]
  18. H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
    [Crossref] [PubMed]
  19. S. Mookherjea, “Semiconductor coupled-resonator optical waveguide laser,” Appl. Phys. Lett. 84(17), 3265–3267 (2004).
    [Crossref]
  20. Y. Liu, Z. Wang, M. Han, S. Fan, and R. Dutton, “Mode-locking of monolithic laser diodes incorporating coupled-resonator optical waveguides,” Opt. Express 13(12), 4539–4553 (2005).
    [Crossref] [PubMed]
  21. Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultra-stable subluminal laser,” to appear in Optics Communications ( http://arxiv.org/abs/1506.06379 ).
    [Crossref]
  22. T. Lauprêtre, S. Schwartz, R. Ghosh, I. Carusotto, F. Goldfarb, and F. Bretenaker, “Anomalous ring-down effects and breakdown of the decay rate concept in optical cavities with negative group delay,” New J. Phys. 14(4), 043012 (2012).
    [Crossref]
  23. X. Han, H. Luo, T. Qu, Z. Wang, J. Yuan, and B. Zhang, “Theoretical design of a superluminal helium–neon ring laser via coupled passive cavities,” J. Opt. 16(12), 125401 (2014).
    [Crossref]
  24. T. Lauprêtre, C. Proux, R. Ghosh, S. Schwartz, F. Goldfarb, and F. Bretenaker, “Photon lifetime in a cavity containing a slow-light medium,” Opt. Lett. 36(9), 1551–1553 (2011).
    [Crossref] [PubMed]
  25. A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R.-H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
    [Crossref]
  26. D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
    [Crossref]
  27. A. E. Siegman, Lasers, 2nd ed. (University Science Books, 1986).
  28. R. M. Joseph, S. C. Hagness, and A. Taflove, “Direct time integration of Maxwell’s equations in linear dispersive media with absorption for scattering and propagation of femtosecond electromagnetic pulses,” Opt. Lett. 16(18), 1412–1414 (1991).
    [Crossref] [PubMed]
  29. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Press, 2005).
  30. M. O. Scully and W. E. Lamb, Laser Physics (Westview Press, 1974).
  31. Y. Wang, Z. Zhou, J. Yablon, and M. S. Shahriar, “Effect of Multi-Order Harmonics in a Double-Raman Pumped Gain Medium For a Superluminal Laser,” Opt. Eng. 54(5), 057106 (2015), doi:.
    [Crossref]
  32. A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112(6), 1940–1949 (1958).
    [Crossref]
  33. C. H. Townes, “Some applications of optical and infrared masers,” in Advances in Quantum Electronics, J.R. Singer, ed. (Columbia University Press, 1961), pp 1–11.
  34. M. Lax, “Quantum noise X. Density-matrix treatment of field and population-difference fluctuations,” Phys. Rev. 157(2), 213–231 (1967).
    [Crossref]
  35. T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16(12), 1376–1379 (1980).
    [Crossref]
  36. C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
    [Crossref]
  37. B. T. King, “Application of superresolution techniques to ring laser gyroscopes: exploring the quantum limit,” Appl. Opt. 39(33), 6151–6157 (2000).
    [Crossref] [PubMed]
  38. W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57(1), 61–104 (1985).
    [Crossref]

2015 (1)

Y. Wang, Z. Zhou, J. Yablon, and M. S. Shahriar, “Effect of Multi-Order Harmonics in a Double-Raman Pumped Gain Medium For a Superluminal Laser,” Opt. Eng. 54(5), 057106 (2015), doi:.
[Crossref]

2014 (4)

X. Han, H. Luo, T. Qu, Z. Wang, J. Yuan, and B. Zhang, “Theoretical design of a superluminal helium–neon ring laser via coupled passive cavities,” J. Opt. 16(12), 125401 (2014).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

O. Kotlicki and J. Scheuer, “Wideband coherent perfect absorber based on white-light cavity,” Opt. Lett. 39(23), 6624–6627 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

O. Kotlicki, J. Scheuer, and M. S. Shahriar, “Theoretical study on Brillouin fiber laser sensor based on white light cavity,” Opt. Express 20(27), 28234–28248 (2012).
[Crossref] [PubMed]

T. Lauprêtre, S. Schwartz, R. Ghosh, I. Carusotto, F. Goldfarb, and F. Bretenaker, “Anomalous ring-down effects and breakdown of the decay rate concept in optical cavities with negative group delay,” New J. Phys. 14(4), 043012 (2012).
[Crossref]

2011 (3)

2010 (1)

2009 (1)

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[Crossref]

2008 (2)

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement–measurement–sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281(19), 4931–4935 (2008).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78(5), 053824 (2008).
[Crossref]

2007 (1)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[Crossref] [PubMed]

2005 (5)

2004 (1)

S. Mookherjea, “Semiconductor coupled-resonator optical waveguide laser,” Appl. Phys. Lett. 84(17), 3265–3267 (2004).
[Crossref]

2003 (2)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” Proc. IEEE 91, 1184 (2003).

2000 (1)

1997 (1)

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R.-H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

1991 (1)

1985 (1)

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57(1), 61–104 (1985).
[Crossref]

1982 (1)

C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

1980 (1)

T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16(12), 1376–1379 (1980).
[Crossref]

1967 (1)

M. Lax, “Quantum noise X. Density-matrix treatment of field and population-difference fluctuations,” Phys. Rev. 157(2), 213–231 (1967).
[Crossref]

1958 (1)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112(6), 1940–1949 (1958).
[Crossref]

Arissian, L.

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78(5), 053824 (2008).
[Crossref]

Bigelow, M. S.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Bretenaker, F.

T. Lauprêtre, S. Schwartz, R. Ghosh, I. Carusotto, F. Goldfarb, and F. Bretenaker, “Anomalous ring-down effects and breakdown of the decay rate concept in optical cavities with negative group delay,” New J. Phys. 14(4), 043012 (2012).
[Crossref]

T. Lauprêtre, C. Proux, R. Ghosh, S. Schwartz, F. Goldfarb, and F. Bretenaker, “Photon lifetime in a cavity containing a slow-light medium,” Opt. Lett. 36(9), 1551–1553 (2011).
[Crossref] [PubMed]

Carusotto, I.

T. Lauprêtre, S. Schwartz, R. Ghosh, I. Carusotto, F. Goldfarb, and F. Bretenaker, “Anomalous ring-down effects and breakdown of the decay rate concept in optical cavities with negative group delay,” New J. Phys. 14(4), 043012 (2012).
[Crossref]

Chang, H.

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78(5), 053824 (2008).
[Crossref]

Chang-Hasnain, C. J.

C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” Proc. IEEE 91, 1184 (2003).

Chow, W. W.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57(1), 61–104 (1985).
[Crossref]

Chuang, S.-L.

C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” Proc. IEEE 91, 1184 (2003).

Dahan, D.

Danzmann, K.

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R.-H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

Diels, J. C.

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78(5), 053824 (2008).
[Crossref]

Dorschner, T. A.

T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16(12), 1376–1379 (1980).
[Crossref]

Dutton, R.

Eisenstein, G.

Fan, S.

Fleischhauer, M.

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R.-H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

Gaeta, A.

Gaeta, A. L.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Gea-Banacloche, J.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57(1), 61–104 (1985).
[Crossref]

Ghosh, R.

T. Lauprêtre, S. Schwartz, R. Ghosh, I. Carusotto, F. Goldfarb, and F. Bretenaker, “Anomalous ring-down effects and breakdown of the decay rate concept in optical cavities with negative group delay,” New J. Phys. 14(4), 043012 (2012).
[Crossref]

T. Lauprêtre, C. Proux, R. Ghosh, S. Schwartz, F. Goldfarb, and F. Bretenaker, “Photon lifetime in a cavity containing a slow-light medium,” Opt. Lett. 36(9), 1551–1553 (2011).
[Crossref] [PubMed]

Goldfarb, F.

T. Lauprêtre, S. Schwartz, R. Ghosh, I. Carusotto, F. Goldfarb, and F. Bretenaker, “Anomalous ring-down effects and breakdown of the decay rate concept in optical cavities with negative group delay,” New J. Phys. 14(4), 043012 (2012).
[Crossref]

T. Lauprêtre, C. Proux, R. Ghosh, S. Schwartz, F. Goldfarb, and F. Bretenaker, “Photon lifetime in a cavity containing a slow-light medium,” Opt. Lett. 36(9), 1551–1553 (2011).
[Crossref] [PubMed]

Hagness, S. C.

Han, M.

Han, X.

X. Han, H. Luo, T. Qu, Z. Wang, J. Yuan, and B. Zhang, “Theoretical design of a superluminal helium–neon ring laser via coupled passive cavities,” J. Opt. 16(12), 125401 (2014).
[Crossref]

Haus, H. A.

T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16(12), 1376–1379 (1980).
[Crossref]

Henry, C. H.

C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

Herráez, M.

Holz, M.

T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16(12), 1376–1379 (1980).
[Crossref]

Jang, Y. J.

Joseph, R. M.

Kim, J.

C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” Proc. IEEE 91, 1184 (2003).

Kim, M. E.

King, B. T.

Kotlicki, O.

Ku, P.-C.

C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” Proc. IEEE 91, 1184 (2003).

Lauprêtre, T.

T. Lauprêtre, S. Schwartz, R. Ghosh, I. Carusotto, F. Goldfarb, and F. Bretenaker, “Anomalous ring-down effects and breakdown of the decay rate concept in optical cavities with negative group delay,” New J. Phys. 14(4), 043012 (2012).
[Crossref]

T. Lauprêtre, C. Proux, R. Ghosh, S. Schwartz, F. Goldfarb, and F. Bretenaker, “Photon lifetime in a cavity containing a slow-light medium,” Opt. Lett. 36(9), 1551–1553 (2011).
[Crossref] [PubMed]

Lax, M.

M. Lax, “Quantum noise X. Density-matrix treatment of field and population-difference fluctuations,” Phys. Rev. 157(2), 213–231 (1967).
[Crossref]

Lepeshkin, N. N.

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Liu, X.

Liu, Y.

Luo, H.

X. Han, H. Luo, T. Qu, Z. Wang, J. Yuan, and B. Zhang, “Theoretical design of a superluminal helium–neon ring laser via coupled passive cavities,” J. Opt. 16(12), 125401 (2014).
[Crossref]

Mookherjea, S.

S. Mookherjea, “Semiconductor coupled-resonator optical waveguide laser,” Appl. Phys. Lett. 84(17), 3265–3267 (2004).
[Crossref]

Müller, G.

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R.-H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

Myneni, K.

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[Crossref]

Odutola, J. A.

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[Crossref]

Okawachi, Y.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

J. Sharping, Y. Okawachi, and A. Gaeta, “Wide bandwidth slow light using a Raman fiber amplifier,” Opt. Express 13(16), 6092–6098 (2005).
[Crossref] [PubMed]

Pati, G. S.

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement–measurement–sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281(19), 4931–4935 (2008).
[Crossref]

Pedrotti, L. M.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57(1), 61–104 (1985).
[Crossref]

Proux, C.

Qu, T.

X. Han, H. Luo, T. Qu, Z. Wang, J. Yuan, and B. Zhang, “Theoretical design of a superluminal helium–neon ring laser via coupled passive cavities,” J. Opt. 16(12), 125401 (2014).
[Crossref]

Rinkleff, R.-H.

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R.-H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

Rosenberger, A. T.

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

Salit, K.

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
[Crossref] [PubMed]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement–measurement–sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281(19), 4931–4935 (2008).
[Crossref]

Salit, M.

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
[Crossref] [PubMed]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement–measurement–sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281(19), 4931–4935 (2008).
[Crossref]

Sanders, V. E.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57(1), 61–104 (1985).
[Crossref]

Schawlow, A. L.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112(6), 1940–1949 (1958).
[Crossref]

Scheuer, J.

Schleich, W.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57(1), 61–104 (1985).
[Crossref]

Schwartz, S.

T. Lauprêtre, S. Schwartz, R. Ghosh, I. Carusotto, F. Goldfarb, and F. Bretenaker, “Anomalous ring-down effects and breakdown of the decay rate concept in optical cavities with negative group delay,” New J. Phys. 14(4), 043012 (2012).
[Crossref]

T. Lauprêtre, C. Proux, R. Ghosh, S. Schwartz, F. Goldfarb, and F. Bretenaker, “Photon lifetime in a cavity containing a slow-light medium,” Opt. Lett. 36(9), 1551–1553 (2011).
[Crossref] [PubMed]

Schweinsberg, A.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Scully, M.

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R.-H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

Scully, M. O.

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57(1), 61–104 (1985).
[Crossref]

Shahriar, M. S.

Y. Wang, Z. Zhou, J. Yablon, and M. S. Shahriar, “Effect of Multi-Order Harmonics in a Double-Raman Pumped Gain Medium For a Superluminal Laser,” Opt. Eng. 54(5), 057106 (2015), doi:.
[Crossref]

J. Scheuer and M. S. Shahriar, “Trap-door optical buffering using a flat-top coupled microring filter: the superluminal cavity approach,” Opt. Lett. 38(18), 3534–3537 (2013).
[Crossref] [PubMed]

O. Kotlicki, J. Scheuer, and M. S. Shahriar, “Theoretical study on Brillouin fiber laser sensor based on white light cavity,” Opt. Express 20(27), 28234–28248 (2012).
[Crossref] [PubMed]

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
[Crossref] [PubMed]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement–measurement–sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281(19), 4931–4935 (2008).
[Crossref]

Shahriar, S. M.

Sharping, J.

Sharping, J. E.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Smith, D. D.

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78(5), 053824 (2008).
[Crossref]

Smith, I. W.

T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16(12), 1376–1379 (1980).
[Crossref]

Song, K. Y.

Statz, H.

T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16(12), 1376–1379 (1980).
[Crossref]

Sumetsky, M.

J. Scheuer and M. Sumetsky, “Optical-fiber microcoil waveguides and resonators and their applications for interferometry and sensing,” Laser Photonics Rev. 5(4), 465–478 (2011).
[Crossref]

Taflove, A.

Thévenaz, L.

Townes, C. H.

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112(6), 1940–1949 (1958).
[Crossref]

Wang, Y.

Y. Wang, Z. Zhou, J. Yablon, and M. S. Shahriar, “Effect of Multi-Order Harmonics in a Double-Raman Pumped Gain Medium For a Superluminal Laser,” Opt. Eng. 54(5), 057106 (2015), doi:.
[Crossref]

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
[Crossref] [PubMed]

Wang, Z.

X. Han, H. Luo, T. Qu, Z. Wang, J. Yuan, and B. Zhang, “Theoretical design of a superluminal helium–neon ring laser via coupled passive cavities,” J. Opt. 16(12), 125401 (2014).
[Crossref]

Y. Liu, Z. Wang, M. Han, S. Fan, and R. Dutton, “Mode-locking of monolithic laser diodes incorporating coupled-resonator optical waveguides,” Opt. Express 13(12), 4539–4553 (2005).
[Crossref] [PubMed]

Wicht, A.

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R.-H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

Yablon, J.

Y. Wang, Z. Zhou, J. Yablon, and M. S. Shahriar, “Effect of Multi-Order Harmonics in a Double-Raman Pumped Gain Medium For a Superluminal Laser,” Opt. Eng. 54(5), 057106 (2015), doi:.
[Crossref]

H. N. Yum, M. Salit, J. Yablon, K. Salit, Y. Wang, and M. S. Shahriar, “Superluminal ring laser for hypersensitive sensing,” Opt. Express 18(17), 17658–17665 (2010).
[Crossref] [PubMed]

Yuan, J.

X. Han, H. Luo, T. Qu, Z. Wang, J. Yuan, and B. Zhang, “Theoretical design of a superluminal helium–neon ring laser via coupled passive cavities,” J. Opt. 16(12), 125401 (2014).
[Crossref]

Yum, H.

Yum, H. N.

Zhang, B.

X. Han, H. Luo, T. Qu, Z. Wang, J. Yuan, and B. Zhang, “Theoretical design of a superluminal helium–neon ring laser via coupled passive cavities,” J. Opt. 16(12), 125401 (2014).
[Crossref]

Zhou, Z.

Y. Wang, Z. Zhou, J. Yablon, and M. S. Shahriar, “Effect of Multi-Order Harmonics in a Double-Raman Pumped Gain Medium For a Superluminal Laser,” Opt. Eng. 54(5), 057106 (2015), doi:.
[Crossref]

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[Crossref] [PubMed]

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Mookherjea, “Semiconductor coupled-resonator optical waveguide laser,” Appl. Phys. Lett. 84(17), 3265–3267 (2004).
[Crossref]

IEEE J. Quantum Electron. (2)

T. A. Dorschner, H. A. Haus, M. Holz, I. W. Smith, and H. Statz, “Laser gyro at quantum limit,” IEEE J. Quantum Electron. 16(12), 1376–1379 (1980).
[Crossref]

C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. 18(2), 259–264 (1982).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

X. Han, H. Luo, T. Qu, Z. Wang, J. Yuan, and B. Zhang, “Theoretical design of a superluminal helium–neon ring laser via coupled passive cavities,” J. Opt. 16(12), 125401 (2014).
[Crossref]

Laser Photonics Rev. (1)

J. Scheuer and M. Sumetsky, “Optical-fiber microcoil waveguides and resonators and their applications for interferometry and sensing,” Laser Photonics Rev. 5(4), 465–478 (2011).
[Crossref]

New J. Phys. (1)

T. Lauprêtre, S. Schwartz, R. Ghosh, I. Carusotto, F. Goldfarb, and F. Bretenaker, “Anomalous ring-down effects and breakdown of the decay rate concept in optical cavities with negative group delay,” New J. Phys. 14(4), 043012 (2012).
[Crossref]

Opt. Commun. (2)

A. Wicht, K. Danzmann, M. Fleischhauer, M. Scully, G. Müller, and R.-H. Rinkleff, “White-light cavities, atomic phase coherence, and gravitational wave detectors,” Opt. Commun. 134(1-6), 431–439 (1997).
[Crossref]

G. S. Pati, M. Salit, K. Salit, and M. S. Shahriar, “Demonstration of displacement–measurement–sensitivity proportional to inverse group index of intra-cavity medium in a ring resonator,” Opt. Commun. 281(19), 4931–4935 (2008).
[Crossref]

Opt. Eng. (1)

Y. Wang, Z. Zhou, J. Yablon, and M. S. Shahriar, “Effect of Multi-Order Harmonics in a Double-Raman Pumped Gain Medium For a Superluminal Laser,” Opt. Eng. 54(5), 057106 (2015), doi:.
[Crossref]

Opt. Express (6)

Opt. Lett. (4)

Phys. Rev. (2)

A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Phys. Rev. 112(6), 1940–1949 (1958).
[Crossref]

M. Lax, “Quantum noise X. Density-matrix treatment of field and population-difference fluctuations,” Phys. Rev. 157(2), 213–231 (1967).
[Crossref]

Phys. Rev. A (4)

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

D. D. Smith, H. Chang, L. Arissian, and J. C. Diels, “Dispersion-enhanced laser gyroscope,” Phys. Rev. A 78(5), 053824 (2008).
[Crossref]

D. D. Smith, K. Myneni, J. A. Odutola, and J. C. Diels, “Enhanced sensitivity of a passive optical cavity by an intracavity dispersive medium,” Phys. Rev. A 80(1), 011809 (2009).
[Crossref]

D. D. Smith, H. Chang, K. Myneni, and A. T. Rosenberger, “Fast-light enhancement of an optical cavity by polarization mode coupling,” Phys. Rev. A 89(5), 053804 (2014).
[Crossref]

Phys. Rev. Lett. (1)

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable all-optical delays via Brillouin slow light in an optical fiber,” Phys. Rev. Lett. 94(15), 153902 (2005).
[Crossref] [PubMed]

Proc. IEEE (1)

C. J. Chang-Hasnain, P.-C. Ku, J. Kim, and S.-L. Chuang, “Variable Optical Buffer Using Slow Light in Semiconductor Nanostructures,” Proc. IEEE 91, 1184 (2003).

Rev. Mod. Phys. (1)

W. W. Chow, J. Gea-Banacloche, L. M. Pedrotti, V. E. Sanders, W. Schleich, and M. O. Scully, “The ring laser gyro,” Rev. Mod. Phys. 57(1), 61–104 (1985).
[Crossref]

Science (2)

Z. Zhu, D. J. Gauthier, and R. W. Boyd, “Stored light in an optical fiber via stimulated Brillouin scattering,” Science 318(5857), 1748–1750 (2007).
[Crossref] [PubMed]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, “Superluminal and Slow Light Propagation in a Room-Temperature Solid,” Science 301(5630), 200–202 (2003).
[Crossref] [PubMed]

Other (6)

J. B. Khurgin and R. S. Tucker, Slow Light: Science and Applications (CRC Press, 2009).

Z. Zhou, J. Yablon, M. Zhou, Y. Wang, A. Heifetz, and M. S. Shahriar, “Modeling and analysis of an ultra-stable subluminal laser,” to appear in Optics Communications ( http://arxiv.org/abs/1506.06379 ).
[Crossref]

C. H. Townes, “Some applications of optical and infrared masers,” in Advances in Quantum Electronics, J.R. Singer, ed. (Columbia University Press, 1961), pp 1–11.

A. E. Siegman, Lasers, 2nd ed. (University Science Books, 1986).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech House Press, 2005).

M. O. Scully and W. E. Lamb, Laser Physics (Westview Press, 1974).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Real (blue) and imaginary (red) parts of the refractive index for subluminal (a) and superluminal (b) laser media. ε = 1, ΓG = 6GHz, ΓA = 0.01GHz, ΔεG = 1.52x10−7, ΔεA = 1.27x10−10.
Fig. 2
Fig. 2 Lasing frequency detuning (blue) and corresponding group index (green) of a superluminal laser. See text for the specific parameters.
Fig. 3
Fig. 3 Lasing frequency detuning (blue) and corresponding group index (green) of a subluminal laser comprising (a) an additional narrow gain line and (b) an intra-cavity passive over-coupled resonator (b).
Fig. 4
Fig. 4 Comparison between the dispersion relations (a) and the group index (b) obtained by FDTD simulations (circles) and the self-consistent laser equation solutions (solid line).
Fig. 5
Fig. 5 (a) Steady-state spectra of a superluminal laser for various cavity length detuning; (b) temporal evolution of the intensity at the center of the cavity for ΔL = 0.
Fig. 6
Fig. 6 (a) Comparison between the dispersion relation of a superluminal laser (blue) and that of a conventional one (green); (b) Corresponding group index vs. cavity length detuning
Fig. 7
Fig. 7 Temporal evolution of the power in the cavity of a superluminal laser when the pump level is increased. Inset: steady state spectrum (for t>220ps).
Fig. 8
Fig. 8 (a) Dispersion relation of a superluminal laser with a saturating absorption line; (b) Corresponding group index vs. cavity length detuning
Fig. 9
Fig. 9 Schematic of the relaxation dynamic calculation concept. DE – Dispersive Element; BS – Beam Splitter.
Fig. 10
Fig. 10 (a) Relaxation dynamics of the power in a conventional laser following perturbation: FDTD simulation (circles) and exponential decay fit (solid line); (b) dependence of the effective relaxation time on the power in the laser: FDTD simulation (squares) and theoretical curve based on Eq. (11).
Fig. 11
Fig. 11 Relaxation dynamics of a superluminal laser following a small perturbation. Inset: zoom in and fit to an oscillatory decaying function.
Fig. 12
Fig. 12 Relaxation dynamics of a superluminal laser with saturating absorption following a small perturbation.
Fig. 13
Fig. 13 Relaxation dynamics of a subluminal laser following a small perturbation and fit to an exponentially decaying function.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

ε r (ω)= ε + ω 0 2 Δ ε G ω 2 +2iω Γ G ω 0 2 ± ω 0 2 Δ ε A ω 2 +2iω Γ A ω 0 2 ,
Δ ε G,A = Δ ε G,A 0 1+I/ I sat G,A ; Γ G,A = Γ G,A 0 1+I/ I sat G,A ,
n r (ω) ε 1 4 ω 0 Δ ε A Δω Δ ω 2 + Γ A 2 ,
n g ( ω 0 )= ε + ω 0 d n r dω | ω 0 = ε ω 0 2 Δ ε A 4 Γ A 2 .
exp( i k 0 nLαL/2 )=1,
n r (Δω)=1+ ω 0 Δ ε G Δω 4(Δ ω 2 + Γ G 2 ) ω 0 Δ ε A Δω 4(Δ ω 2 + Γ A 2 ) n i (Δω)= ω 0 Δ ε G Γ G 4(Δ ω 2 + Γ G 2 ) + ω 0 Δ ε A Γ A 4(Δ ω 2 + Γ A 2 ) .
γ ST = h ω 0 2 τ c 2 P out ,
Δ ω CF = γ ST /τ = 1 τ C ω o 2 P out τ .
I ˙ = 1 τ cav [ 1 Q χ 0 1+I ]I,
d dt ΔI= 1 τ cav I 0 1+ I 0 ΔI.
τ eff = 1+ I 0 I 0 τ cav .

Metrics