Abstract

Modulating spatial near-infrared light for ultra-compact electro-optic devices is a critical issue in optical communication and imaging applications. To date, spatial near-infrared modulators based on graphene have been reported, but they showed limited modulation effects due to the relatively weak light-graphene interaction. In combination with graphene and metallic nanoslits, we design a kind of ultrathin near-infrared perfect absorber with enhanced spatial modulation effects and independence on a wide range of incident angles. The modulated spectral shift of central wavelength is up to 258.2 nm in the near-infrared range, which is more promising in applications than state-of-the-art devices. The modulation enhancement is attributed to the plasmonic nanoslit mode, in which the optical electric field is highly concentrated in the deep subwavelength scale and the light-graphene interaction is significantly strengthened. The physical insight is deeply revealed by a combination of equivalent circuit and electromagnetic field analysis. The design principles are not only crucial for spatial near-infrared modulators, but also provide a key guide for developing active near-infrared patch nanoantennas based on graphene.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-energy high-speed plasmonic enhanced modulator using graphene

Baohu Huang, Weibing Lu, Zhenguo Liu, and Siping Gao
Opt. Express 26(6) 7358-7367 (2018)

Enhanced transmission modulation based on dielectric metasurfaces loaded with graphene

Christos Argyropoulos
Opt. Express 23(18) 23787-23797 (2015)

References

  • View by:
  • |
  • |
  • |

  1. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
    [Crossref] [PubMed]
  2. T. Maier and H. Brückl, “Wavelength-tunable microbolometers with metamaterial absorbers,” Opt. Lett. 34(19), 3012–3014 (2009).
    [Crossref] [PubMed]
  3. C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
    [Crossref]
  4. S. A. Mann and E. C. Garnett, “Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells,” ACS Photonics 2(7), 816–821 (2015).
    [Crossref] [PubMed]
  5. C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
    [Crossref]
  6. J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
    [Crossref]
  7. C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
    [Crossref]
  8. G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
    [Crossref]
  9. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  10. Y. Bao, S. Zhu, Y. Zhang, and Z. Fang, “Active control of graphene-based unidirectional surface plasmon launcher,” ACS Photonics 2(8), 1135–1140 (2015).
    [Crossref]
  11. F. J. García de Abajo, “Graphene nanophotonics,” Science 339(6122), 917–918 (2013).
    [Crossref] [PubMed]
  12. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
    [Crossref] [PubMed]
  13. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  14. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
    [Crossref] [PubMed]
  15. L. Shao, X. Wang, H. Xu, J. Wang, J.-B. Xu, L.-M. Peng, and H.-Q. Lin, “Nanoantenna-sandwiched graphene with giant spectral tuning in the visible-to-near-infrared region,” Adv. Opt. Mater. 2(2), 162–170 (2014).
    [Crossref]
  16. E. Simsek, “Improving tuning range and sensitivity of localized SPR sensors with graphene,” IEEE Photonics Technol. Lett. 25(9), 867–870 (2013).
    [Crossref]
  17. X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
    [Crossref]
  18. C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
    [Crossref]
  19. J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5(17), 7785–7789 (2013).
    [Crossref] [PubMed]
  20. A. Alù and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Trans. Antenn. Propag. 61(4), 1508–1517 (2013).
    [Crossref]
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  22. T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61(3), 689–690 (1983).
    [Crossref]
  23. Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
    [Crossref]
  24. Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
    [Crossref] [PubMed]
  25. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  26. N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic properties of disordered two-dimensional carbon,” Phys. Rev. B 73(12), 125411 (2006).
    [Crossref]
  27. Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2014).
    [Crossref] [PubMed]
  28. D. A. Kuzmin, I. V. Bychkov, and V. G. Shavrov, “Influence of graphene coating on speckle-pattern rotation of light in gyrotropic optical fiber,” Opt. Lett. 40(6), 890–893 (2015).
    [Crossref] [PubMed]
  29. N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
    [Crossref] [PubMed]
  30. B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15(5), 3519–3523 (2015).
    [Crossref] [PubMed]
  31. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
    [Crossref]
  32. A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
    [Crossref] [PubMed]
  33. Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
    [Crossref]
  34. R. Zia, M. D. Selker, P. B. Catrysse, and M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21(12), 2442–2446 (2004).
    [Crossref] [PubMed]
  35. J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
    [Crossref] [PubMed]

2015 (6)

S. A. Mann and E. C. Garnett, “Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells,” ACS Photonics 2(7), 816–821 (2015).
[Crossref] [PubMed]

Y. Bao, S. Zhu, Y. Zhang, and Z. Fang, “Active control of graphene-based unidirectional surface plasmon launcher,” ACS Photonics 2(8), 1135–1140 (2015).
[Crossref]

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

D. A. Kuzmin, I. V. Bychkov, and V. G. Shavrov, “Influence of graphene coating on speckle-pattern rotation of light in gyrotropic optical fiber,” Opt. Lett. 40(6), 890–893 (2015).
[Crossref] [PubMed]

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15(5), 3519–3523 (2015).
[Crossref] [PubMed]

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

2014 (9)

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

L. Shao, X. Wang, H. Xu, J. Wang, J.-B. Xu, L.-M. Peng, and H.-Q. Lin, “Nanoantenna-sandwiched graphene with giant spectral tuning in the visible-to-near-infrared region,” Adv. Opt. Mater. 2(2), 162–170 (2014).
[Crossref]

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2014).
[Crossref] [PubMed]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

2013 (4)

J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5(17), 7785–7789 (2013).
[Crossref] [PubMed]

A. Alù and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Trans. Antenn. Propag. 61(4), 1508–1517 (2013).
[Crossref]

F. J. García de Abajo, “Graphene nanophotonics,” Science 339(6122), 917–918 (2013).
[Crossref] [PubMed]

E. Simsek, “Improving tuning range and sensitivity of localized SPR sensors with graphene,” IEEE Photonics Technol. Lett. 25(9), 867–870 (2013).
[Crossref]

2012 (2)

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

2011 (3)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

2010 (3)

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

2009 (3)

2008 (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

2006 (1)

N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic properties of disordered two-dimensional carbon,” Phys. Rev. B 73(12), 125411 (2006).
[Crossref]

2004 (1)

1983 (1)

T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61(3), 689–690 (1983).
[Crossref]

Alù, A.

A. Alù and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Trans. Antenn. Propag. 61(4), 1508–1517 (2013).
[Crossref]

Auton, G. H.

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15(5), 3519–3523 (2015).
[Crossref] [PubMed]

Bao, Q.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2014).
[Crossref] [PubMed]

Bao, Y.

Y. Bao, S. Zhu, Y. Zhang, and Z. Fang, “Active control of graphene-based unidirectional surface plasmon launcher,” ACS Photonics 2(8), 1135–1140 (2015).
[Crossref]

Barnard, E. S.

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Boltasseva, A.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Brongersma, M. L.

Brückl, H.

Bychkov, I. V.

Cai, Y.

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

Cao, F.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Capasso, F.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Cardenas, J.

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Castro Neto, A. H.

N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic properties of disordered two-dimensional carbon,” Phys. Rev. B 73(12), 125411 (2006).
[Crossref]

Catrysse, P. B.

Chadha, A.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Chandran, A.

Chen, G.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

Chen, Y. P.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Chilkoti, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Choy, W. C. H.

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Chung, T.-F.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Ciracì, C.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Du, Y.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

Emani, N. K.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Trans. Antenn. Propag. 61(4), 1508–1517 (2013).
[Crossref]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Fan, S.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2014).
[Crossref] [PubMed]

J. S. White, G. Veronis, Z. Yu, E. S. Barnard, A. Chandran, S. Fan, and M. L. Brongersma, “Extraordinary optical absorption through subwavelength slits,” Opt. Lett. 34(5), 686–688 (2009).
[Crossref] [PubMed]

Fang, Z.

Y. Bao, S. Zhu, Y. Zhang, and Z. Fang, “Active control of graphene-based unidirectional surface plasmon launcher,” ACS Photonics 2(8), 1135–1140 (2015).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

García de Abajo, F. J.

F. J. García de Abajo, “Graphene nanophotonics,” Science 339(6122), 917–918 (2013).
[Crossref] [PubMed]

Gardes, F. Y.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Garnett, E. C.

S. A. Mann and E. C. Garnett, “Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells,” ACS Photonics 2(7), 816–821 (2015).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Giessen, H.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Grigorenko, A. N.

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15(5), 3519–3523 (2015).
[Crossref] [PubMed]

Gu, M.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2014).
[Crossref] [PubMed]

Guinea, F.

N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic properties of disordered two-dimensional carbon,” Phys. Rev. B 73(12), 125411 (2006).
[Crossref]

Guo, C. F.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, J.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Hentschel, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Hill, R. T.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Hossain, M. M.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2014).
[Crossref] [PubMed]

Hunt, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Ishii, T.

T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61(3), 689–690 (1983).
[Crossref]

Jia, Y.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Jiang, J.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

John, J.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kats, M. A.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Kildishev, A. V.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Kong, J.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Kravets, V. G.

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15(5), 3519–3523 (2015).
[Crossref] [PubMed]

Krishna, S.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Kuzmin, D. A.

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Lee, Y.-H. D.

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Li, X.

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2014).
[Crossref] [PubMed]

Lin, H.-Q.

L. Shao, X. Wang, H. Xu, J. Wang, J.-B. Xu, L.-M. Peng, and H.-Q. Lin, “Nanoantenna-sandwiched graphene with giant spectral tuning in the visible-to-near-infrared region,” Adv. Opt. Mater. 2(2), 162–170 (2014).
[Crossref]

Lin, T.

J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5(17), 7785–7789 (2013).
[Crossref] [PubMed]

Lipson, M.

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Lipworth, G.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Liu, J.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2014).
[Crossref] [PubMed]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, N.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Liu, Q.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Liu, Q. H.

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5(17), 7785–7789 (2013).
[Crossref] [PubMed]

Liu, Y.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Loncar, M.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Lu, H.

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Ma, Z.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Maier, T.

Mann, S. A.

S. A. Mann and E. C. Garnett, “Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells,” ACS Photonics 2(7), 816–821 (2015).
[Crossref] [PubMed]

Marshall, O. P.

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15(5), 3519–3523 (2015).
[Crossref] [PubMed]

Mashanovich, G.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Menon, L.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Mesch, M.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

Milder, A.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Mock, J. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Montoya, J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Moreau, A.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Neuner, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Padilla, W. J.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Peng, L.-M.

L. Shao, X. Wang, H. Xu, J. Wang, J.-B. Xu, L.-M. Peng, and H.-Q. Lin, “Nanoantenna-sandwiched graphene with giant spectral tuning in the visible-to-near-infrared region,” Adv. Opt. Mater. 2(2), 162–170 (2014).
[Crossref]

Peres, N. M. R.

N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic properties of disordered two-dimensional carbon,” Phys. Rev. B 73(12), 125411 (2006).
[Crossref]

Phare, C. T.

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

Piper, J. R.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Qiu, M.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Qu, Y.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

Reed, G. T.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Ren, X.

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Ren, Z.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Rodriguez, F. J.

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15(5), 3519–3523 (2015).
[Crossref] [PubMed]

Sato, T.

T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61(3), 689–690 (1983).
[Crossref]

Savoy, S.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Selker, M. D.

Shalaev, V. M.

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

Shankar, R.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Shao, L.

L. Shao, X. Wang, H. Xu, J. Wang, J.-B. Xu, L.-M. Peng, and H.-Q. Lin, “Nanoantenna-sandwiched graphene with giant spectral tuning in the visible-to-near-infrared region,” Adv. Opt. Mater. 2(2), 162–170 (2014).
[Crossref]

Shavrov, V. G.

Shrekenhamer, D.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Shuai, Y.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Shvets, G.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Simsek, E.

E. Simsek, “Improving tuning range and sensitivity of localized SPR sensors with graphene,” IEEE Photonics Technol. Lett. 25(9), 867–870 (2013).
[Crossref]

Sleasman, T.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Smith, D. R.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Song, J.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2014).
[Crossref] [PubMed]

Song, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Sun, T.

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Thackray, B. D.

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15(5), 3519–3523 (2015).
[Crossref] [PubMed]

Thomas, P. A.

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15(5), 3519–3523 (2015).
[Crossref] [PubMed]

Thomson, D. J.

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Turner, M. D.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2014).
[Crossref] [PubMed]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Vakil, A.

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Veronis, G.

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, J.

L. Shao, X. Wang, H. Xu, J. Wang, J.-B. Xu, L.-M. Peng, and H.-Q. Lin, “Nanoantenna-sandwiched graphene with giant spectral tuning in the visible-to-near-infrared region,” Adv. Opt. Mater. 2(2), 162–170 (2014).
[Crossref]

Wang, Q.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Wang, X.

L. Shao, X. Wang, H. Xu, J. Wang, J.-B. Xu, L.-M. Peng, and H.-Q. Lin, “Nanoantenna-sandwiched graphene with giant spectral tuning in the visible-to-near-infrared region,” Adv. Opt. Mater. 2(2), 162–170 (2014).
[Crossref]

Watts, C. M.

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

Weiss, T.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

White, J. S.

Wiley, B. J.

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Wu, C.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

Xia, F.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Xu, H.

L. Shao, X. Wang, H. Xu, J. Wang, J.-B. Xu, L.-M. Peng, and H.-Q. Lin, “Nanoantenna-sandwiched graphene with giant spectral tuning in the visible-to-near-infrared region,” Adv. Opt. Mater. 2(2), 162–170 (2014).
[Crossref]

Xu, J.-B.

L. Shao, X. Wang, H. Xu, J. Wang, J.-B. Xu, L.-M. Peng, and H.-Q. Lin, “Nanoantenna-sandwiched graphene with giant spectral tuning in the visible-to-near-infrared region,” Adv. Opt. Mater. 2(2), 162–170 (2014).
[Crossref]

Xue, Y.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2014).
[Crossref] [PubMed]

Yang, H.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Yao, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, Z.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, D.

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Zhang, J.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2014).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2014).
[Crossref] [PubMed]

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Y.

Y. Bao, S. Zhu, Y. Zhang, and Z. Fang, “Active control of graphene-based unidirectional surface plasmon launcher,” ACS Photonics 2(8), 1135–1140 (2015).
[Crossref]

Zhao, D.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Zhao, Y.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

Zhou, L.

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

Zhou, W.

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Zhu, J.

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5(17), 7785–7789 (2013).
[Crossref] [PubMed]

Zhu, S.

Y. Bao, S. Zhu, Y. Zhang, and Z. Fang, “Active control of graphene-based unidirectional surface plasmon launcher,” ACS Photonics 2(8), 1135–1140 (2015).
[Crossref]

Zhu, Y.

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

Zia, R.

Zollars, B.

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

ACS Photonics (2)

S. A. Mann and E. C. Garnett, “Resonant nanophotonic spectrum splitting for ultrathin multijunction solar cells,” ACS Photonics 2(7), 816–821 (2015).
[Crossref] [PubMed]

Y. Bao, S. Zhu, Y. Zhang, and Z. Fang, “Active control of graphene-based unidirectional surface plasmon launcher,” ACS Photonics 2(8), 1135–1140 (2015).
[Crossref]

Adv. Funct. Mater. (1)

X. Li, W. C. H. Choy, X. Ren, D. Zhang, and H. Lu, “Highly intensified surface enhanced Raman scattering by using monolayer graphene as the nanospacer of metal film–metal nanoparticle coupling system,” Adv. Funct. Mater. 24(21), 3114–3122 (2014).
[Crossref]

Adv. Opt. Mater. (1)

L. Shao, X. Wang, H. Xu, J. Wang, J.-B. Xu, L.-M. Peng, and H.-Q. Lin, “Nanoantenna-sandwiched graphene with giant spectral tuning in the visible-to-near-infrared region,” Adv. Opt. Mater. 2(2), 162–170 (2014).
[Crossref]

Appl. Phys. Lett. (2)

Y. Liu, A. Chadha, D. Zhao, J. R. Piper, Y. Jia, Y. Shuai, L. Menon, H. Yang, Z. Ma, S. Fan, F. Xia, and W. Zhou, “Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling,” Appl. Phys. Lett. 105(18), 181105 (2014).
[Crossref]

Y. Cai, J. Zhu, and Q. H. Liu, “Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers,” Appl. Phys. Lett. 106(4), 043105 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

E. Simsek, “Improving tuning range and sensitivity of localized SPR sensors with graphene,” IEEE Photonics Technol. Lett. 25(9), 867–870 (2013).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

A. Alù and N. Engheta, “Theory, modeling and features of optical nanoantennas,” IEEE Trans. Antenn. Propag. 61(4), 1508–1517 (2013).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Cryst. Growth (1)

T. Ishii and T. Sato, “Growth of single crystals of hexagonal boron nitride,” J. Cryst. Growth 61(3), 689–690 (1983).
[Crossref]

J. Opt. (1)

C. Wu, B. Neuner, J. John, A. Milder, B. Zollars, S. Savoy, and G. Shvets, “Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems,” J. Opt. 14(2), 024005 (2012).
[Crossref]

J. Opt. Soc. Am. A (1)

Light Sci. Appl. (1)

C. F. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, “Metallic nanostructures for light trapping in energy-harvesting devices,” Light Sci. Appl. 3(4), e161 (2014).
[Crossref]

Nano Lett. (4)

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010).
[Crossref] [PubMed]

N. K. Emani, T.-F. Chung, A. V. Kildishev, V. M. Shalaev, Y. P. Chen, and A. Boltasseva, “Electrical modulation of fano resonance in plasmonic nanostructures using graphene,” Nano Lett. 14(1), 78–82 (2014).
[Crossref] [PubMed]

B. D. Thackray, P. A. Thomas, G. H. Auton, F. J. Rodriguez, O. P. Marshall, V. G. Kravets, and A. N. Grigorenko, “Super-narrow, extremely high quality collective plasmon resonances at telecom wavelengths and their application in a hybrid graphene-plasmonic modulator,” Nano Lett. 15(5), 3519–3523 (2015).
[Crossref] [PubMed]

Nanoscale (2)

Y. Zhao, X. Li, Y. Du, G. Chen, Y. Qu, J. Jiang, and Y. Zhu, “Strong light-matter interactions in sub-nanometer gaps defined by monolayer graphene: toward highly sensitive SERS substrates,” Nanoscale 6(19), 11112–11120 (2014).
[Crossref] [PubMed]

J. Zhu, Q. H. Liu, and T. Lin, “Manipulating light absorption of graphene using plasmonic nanoparticles,” Nanoscale 5(17), 7785–7789 (2013).
[Crossref] [PubMed]

Nat. Photonics (4)

C. T. Phare, Y.-H. D. Lee, J. Cardenas, and M. Lipson, “Graphene electro-optic modulator with 30 GHz bandwidth,” Nat. Photonics 9(8), 511–514 (2015).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

C. M. Watts, D. Shrekenhamer, J. Montoya, G. Lipworth, J. Hunt, T. Sleasman, S. Krishna, D. R. Smith, and W. J. Padilla, “Terahertz compressive imaging with metamaterial spatial light modulators,” Nat. Photonics 8(8), 605–609 (2014).
[Crossref]

G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics 4(8), 518–526 (2010).
[Crossref]

Nature (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (3)

J. Hao, L. Zhou, and M. Qiu, “Nearly total absorption of light and heat generation by plasmonic metamaterials,” Phys. Rev. B 83(16), 165107 (2011).
[Crossref]

N. M. R. Peres, F. Guinea, and A. H. Castro Neto, “Electronic properties of disordered two-dimensional carbon,” Phys. Rev. B 73(12), 125411 (2006).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B 79(12), 125104 (2009).
[Crossref]

Sci. Rep. (1)

Q. Zhang, X. Li, M. M. Hossain, Y. Xue, J. Zhang, J. Song, J. Liu, M. D. Turner, S. Fan, Q. Bao, and M. Gu, “Graphene surface plasmons at the near-infrared optical regime,” Sci. Rep. 4, 6559 (2014).
[Crossref] [PubMed]

Science (2)

F. J. García de Abajo, “Graphene nanophotonics,” Science 339(6122), 917–918 (2013).
[Crossref] [PubMed]

A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332(6035), 1291–1294 (2011).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic drawing of a graphene-based active PMA. The symbols w, t, p and d represent the width, thickness and periodic spacing of silver nanoribbons, and the thickness of the lower h-BN layer. Vbias denotes the control voltage for the chemical potential of graphene.
Fig. 2
Fig. 2 Dispersive optical properties of graphene as a function of chemical potential. (a) and (b) are the normalized real and imaginary parts of surface conductivity, respectively. The normalization coefficient is σ0 = πe 2/2h, where h is Planck constant. (c) and (d) are the real and imaginary parts of in-plane permittivity for graphene, respectively.
Fig. 3
Fig. 3 (a) Reflectance of the PMA under normal incidence for four specific chemical potentials, where t = 10 nm, w = 160 nm, d = 16 nm, and p = 170 nm. (b) Equivalent circuit for the PMA. (c) and (d) are the real and imaginary parts of in-plane permittivity of graphene for four specific chemical potentials, respectively.
Fig. 4
Fig. 4 Electromagnetic field distributions under normal incident light for specific μc and λ, where t = 10 nm, w = 160 nm, d = 16 nm and p = 170 nm, and the white lines sketch the profile of different materials. (a), (b) and (c) denote electric field intensity. (d), (e) and (f) are magnetic field intensity.
Fig. 5
Fig. 5 Optical absorbance of (a) PMA, (b) silver nanoribbon, (c) silver substrate and (d) graphene, as a function of μc and λ. The PMA is under normal incident light with structural parameters: t = 10 nm, w = 160 nm, d = 16 nm and p = 170 nm.
Fig. 6
Fig. 6 Optical reflectance as a function of wavelength and the incident angle. (a) μc = 0.3 eV, (b) μc = 1.0 eV. The PMA structure parameters are:t = 10 nm, w = 160 nm, d = 16 nm and p = 170 nm.
Fig. 7
Fig. 7 Modulation effects of changing μc from 0.3 eV to 1.0 eV. (a) Spectral shift as a function of the nanoslit height for w = 160 nm, d = 16 nm and p = 170 nm. (b) Spectral shift as a function of the nanoslit width for t = 10 nm, w = 160 nm, and d = 16 nm. (c) Electric field distributions under normal incident light for various nanoslit width at μc = 1.0 eV, where t = 10 nm, w = 160 nm and d = 16 nm, and λ denotes the corresponding resonant wavelength. All the simulations are based on normal incidence.
Fig. 8
Fig. 8 Modulation of optical reflectance under normal incidence as a function of w, where μc is changed from 0.3 eV to 1.0 eV, and the structure parameters are: t = 10 nm, d = 16 nm and the slit width is 5 nm.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E = [ ε x x ( ω ) 0 0 0 ε y y ( ω ) 0 0 0 ε z z ]
ε i n ( ω ) = ε x x ( ω ) = ε y y ( ω ) = ε 0 + i σ Δ ω
σ ( ω , μ c , Г , T ) = σ intra + σ inter
σ intra = j e 2 π 2 ( ω j 2 Г ) 0 ξ ( f d ( ξ , μ c , T ) ξ f d ( ξ , μ c , T ) ξ ) d ξ
σ inter = j e 2 ( ω j 2 Г ) π 2 0 f d ( ξ , μ c , T ) f d ( ξ , μ c , T ) ( ω j 2 Г ) 2 4 ( ξ / ) 2 d ξ
f d ( ξ , μ c , T ) = ( e ( ξ μ c ) / k B T + 1 ) 1
A ( λ ) = 2 π c λ ε V | E l | 2 d V

Metrics