Abstract

We report on the dissipative soliton operation of a diode pumped Yb:NaY(WO4)2 (Yb:NYW) solid-state laser. The dissipative solitons and their features as the net cavity group velocity dispersion is changed from the normal to the anomalous dispersion regime are experimentally investigated. Taking advantage of the dissipative soliton shaping of the mode-locked pulses we have generated stable near transform-limited pulses as short as 54 fs. To our knowledge, this is so far the shortest pulse directly obtained from the mode-locked Yb:NYW oscillator.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Evidence of dissipative solitons in Yb3+:CaYAlO4

W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, X. D. Xu, D. Z. Li, and J. Xu
Opt. Express 19(19) 18495-18500 (2011)

Efficient operation of a diode-pumped Yb:NaY(WO4)2 laser

G. Q. Xie, D. Y. Tang, H. J. Zhang, J. Y. Wang, and L. J. Qian
Opt. Express 16(3) 1686-1691 (2008)

Diode-pumped femtosecond Yb:KGd(WO4)2 laser with 1.1-W average power

F. Brunner, G. J. Spühler, J. Aus der Au, L. Krainer, F. Morier-Genoud, R. Paschotta, N. Lichtenstein, S. Weiss, C. Harder, A. A. Lagatsky, A. Abdolvand, N. V. Kuleshov, and U. Keller
Opt. Lett. 25(15) 1119-1121 (2000)

References

  • View by:
  • |
  • |
  • |

  1. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
    [Crossref]
  2. U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
    [Crossref] [PubMed]
  3. O. E. Martinez, R. L. Fork, and J. P. Gordon, “Theory of passively mode-locked lasers including self-phase modulation and group-velocity dispersion,” Opt. Lett. 9(5), 156–158 (1984).
    [Crossref] [PubMed]
  4. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  5. L. M. Zhao, D. Y. Tang, and J. Wu, “Gain-guided soliton in a positive group-dispersion fiber laser,” Opt. Lett. 31(12), 1788–1790 (2006).
    [Crossref] [PubMed]
  6. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [Crossref] [PubMed]
  7. L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, “Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser,” Opt. Lett. 32(13), 1806–1808 (2007).
    [Crossref] [PubMed]
  8. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
    [Crossref]
  9. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
    [Crossref] [PubMed]
  10. T. Brabec, C. Spielmann, and F. Krausz, “Limits of pulse shortening in solitary lasers,” Opt. Lett. 17(10), 748–750 (1992).
    [Crossref] [PubMed]
  11. S. H. Cho, F. X. Kärtner, U. Morgner, E. P. Ippen, J. G. Fujimoto, J. E. Cunningham, and W. H. Knox, “Generation of 90-nJ pulses with a 4-MHz repetition-rate Kerr-lens mode-locked Ti:Al(2)O(3) laser operating with net positive and negative intracavity dispersion,” Opt. Lett. 26(8), 560–562 (2001).
    [Crossref] [PubMed]
  12. A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett. 29(12), 1366–1368 (2004).
    [Crossref] [PubMed]
  13. G. Palmer, M. Schultze, M. Emons, A. L. Lindemann, M. Pospiech, D. Steingrube, M. Lederer, and U. Morgner, “12 MW peak power from a two-crystal Yb:KYW chirped-pulse oscillator with cavity-dumping,” Opt. Express 18(18), 19095–19100 (2010).
    [Crossref] [PubMed]
  14. E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulse in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” J. Exp. Theor. Phys. 82, 524–528 (2005).
  15. V. L. Kalashinikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys, B. 83(4), 503–510 (2006).
    [Crossref]
  16. V. L. Kalashinikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
    [Crossref]
  17. V. L. Kalashinikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with fentosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
    [Crossref]
  18. S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
    [Crossref]
  19. N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
    [Crossref]
  20. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
    [Crossref]
  21. G. Q. Xie, D. Y. Tang, H. J. Zhang, J. Y. Wang, and L. J. Qian, “Efficient operation of a diode-pumped Yb:NaY(WO(4))(2) laser,” Opt. Express 16(3), 1686–1691 (2008).
    [Crossref] [PubMed]
  22. W. D. Tan, D. Y. Tang, C. W. Xu, J. Zhang, X. D. Xu, D. Z. Li, and J. Xu, “Evidence of dissipative solitons in Yb³⁺:CaYAlO₄,” Opt. Express 19(19), 18495–18500 (2011).
    [Crossref] [PubMed]
  23. W. Tian, Z. Wang, J. Liu, J. Zhu, L. Zheng, X. Xu, J. Xu, and Z. Wei, “Dissipative soliton and synchronously dual-wavelength mode-locking Yb:YSO lasers,” Opt. Express 23(7), 8731–8739 (2015).
    [Crossref] [PubMed]
  24. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Structures for additive pulse mode locking,” J. Opt. Soc. Am. B 8(10), 2068–2076 (1991).
    [Crossref]

2015 (1)

2012 (1)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

2011 (1)

2010 (1)

2009 (2)

2008 (4)

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

G. Q. Xie, D. Y. Tang, H. J. Zhang, J. Y. Wang, and L. J. Qian, “Efficient operation of a diode-pumped Yb:NaY(WO(4))(2) laser,” Opt. Express 16(3), 1686–1691 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (3)

2005 (3)

V. L. Kalashinikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with fentosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulse in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” J. Exp. Theor. Phys. 82, 524–528 (2005).

2004 (1)

2003 (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

2001 (1)

2000 (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

1992 (1)

1991 (1)

1984 (1)

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

Ankiewicz, A.

Apolonski, A.

V. L. Kalashinikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
[Crossref]

V. L. Kalashinikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys, B. 83(4), 503–510 (2006).
[Crossref]

V. L. Kalashinikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with fentosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett. 29(12), 1366–1368 (2004).
[Crossref] [PubMed]

Brabec, T.

Buckley, J.

Chang, W.

Cheng, T. H.

Chernykh, A.

V. L. Kalashinikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys, B. 83(4), 503–510 (2006).
[Crossref]

V. L. Kalashinikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with fentosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Cho, S. H.

Chong, A.

Cunningham, J. E.

Dombi, P.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Emons, M.

Fernandez, A.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

V. L. Kalashinikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with fentosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

A. Fernandez, T. Fuji, A. Poppe, A. Fürbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulses without external amplification,” Opt. Lett. 29(12), 1366–1368 (2004).
[Crossref] [PubMed]

Fork, R. L.

Fuji, T.

Fujimoto, J. G.

Fürbach, A.

Gordon, J. P.

Graf, R.

V. L. Kalashinikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with fentosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Grelu, P.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[Crossref]

Haus, H. A.

Ippen, E. P.

Kalashinikov, V. L.

V. L. Kalashinikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
[Crossref]

V. L. Kalashinikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys, B. 83(4), 503–510 (2006).
[Crossref]

V. L. Kalashinikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with fentosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Kalashnikov, V. L.

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulse in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” J. Exp. Theor. Phys. 82, 524–528 (2005).

Kärtner, F. X.

Keller, U.

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

Kieu, K.

Knox, W. H.

Krausz, F.

Lederer, M.

Li, D. Z.

Lindemann, A. L.

Liu, J.

Lu, C.

Martinez, O. E.

Morgner, U.

Naumov, S.

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

V. L. Kalashinikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with fentosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Palmer, G.

Podivilov, E.

V. L. Kalashinikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys, B. 83(4), 503–510 (2006).
[Crossref]

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulse in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” J. Exp. Theor. Phys. 82, 524–528 (2005).

V. L. Kalashinikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with fentosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

Poppe, A.

Pospiech, M.

Qian, L. J.

Renninger, W.

Renninger, W. H.

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Schultze, M.

Soto-Crespo, J. M.

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[Crossref]

Spielmann, C.

Steingrube, D.

Tam, H. Y.

Tan, W. D.

Tang, D. Y.

Tian, W.

Wang, J. Y.

Wang, Z.

Wei, Z.

Wise, F.

Wise, F. W.

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
[Crossref] [PubMed]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Wu, J.

Xie, G. Q.

Xu, C. W.

Xu, J.

Xu, X.

Xu, X. D.

Zhang, H.

Zhang, H. J.

Zhang, J.

Zhao, L. M.

Zheng, L.

Zhu, J.

Appl. Phys, B. (1)

V. L. Kalashinikov, E. Podivilov, A. Chernykh, and A. Apolonski, “Chirped-pulse oscillators: theory and experiment,” Appl. Phys, B. 83(4), 503–510 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

J. Exp. Theor. Phys. (1)

E. Podivilov and V. L. Kalashnikov, “Heavily-chirped solitary pulse in the normal dispersion region: new solutions of the cubic-quintic complex Ginzburg-Landau equation,” J. Exp. Theor. Phys. 82, 524–528 (2005).

J. Opt. Soc. Am. B (2)

Nat. Photonics (1)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Nature (1)

U. Keller, “Recent developments in compact ultrafast lasers,” Nature 424(6950), 831–838 (2003).
[Crossref] [PubMed]

New J. Phys. (2)

V. L. Kalashinikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with fentosecond laser oscillators: theory and comparison with experiment,” New J. Phys. 7, 217 (2005).
[Crossref]

S. Naumov, A. Fernandez, R. Graf, P. Dombi, F. Krausz, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators,” New J. Phys. 7, 216 (2005).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

Phys. Lett. A (1)

N. Akhmediev, J. M. Soto-Crespo, and P. Grelu, “Roadmap to ultra-short record high-energy pulses out of laser oscillators,” Phys. Lett. A 372(17), 3124–3128 (2008).
[Crossref]

Phys. Rev. A (2)

V. L. Kalashinikov and A. Apolonski, “Chirped-pulse oscillators: a unified standpoint,” Phys. Rev. A 79(4), 043829 (2009).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic of the mode-locked Yb:NaY(WO4)2 dissipative soliton laser. F1: Focus lens; M1, M2, and M3: Folding mirrors; OC: Output coupler.
Fig. 2
Fig. 2 Mode-locked spectrum (a) and autocorrelation trace (b) of the dissipative soliton when the GDD introduced by the prism pair is about 0 fs2.
Fig. 3
Fig. 3 Optical spectra of the mode-locked dissipative soliton pulses under three different incident pump powers.
Fig. 4
Fig. 4 Mode-locked spectrum (a) and autocorrelation trace (b) of the dissipative soliton when the GDD introduced by prism pair of about −500 fs2.
Fig. 5
Fig. 5 The optical spectrum (a) and autocorrelation trace (b) of the dissipative solitons measured when the GDD introduced by the prism-pair is about −950 fs2.
Fig. 6
Fig. 6 Optical spectra of the mode-locked pulses under three different incident pump powers in the anomalous dispersion regime.
Fig. 7
Fig. 7 (a) Optical spectra of the mode-locked pulses under different prism-pair introduced GDDs in the net anomalous cavity dispersion regime; (b) autocorrelation trace of the dissipative solitons measured when the GDD introduced by the prism-pair was about −1000 fs2.
Fig. 8
Fig. 8 The CW mode-locked pulse trains in nanosecond and millisecond time scales.

Metrics