Abstract

Hollow core photonic band gap fibers have great potential in low latency data transmission and power delivery applications, but they are currently only fabricated in research scale fabrication facilities, with km-scale lengths. To drive cost reduction and volume manufacturing it is essential to be able to upscale the preform size, but before embarking on costly experimental attempts it is useful to apply fluid dynamics models to study how the fiber drawing dynamics would be affected by such a change. In this work we use a fluid dynamics model to virtually draw increasingly longer lengths of the same fiber from preforms of identical length but different diameters. Taking advantage of our fast numerical model we explore the physical dynamics of the draw process. We discover that the draw tension is the key thermodynamic parameter and that an upper length limit exists beyond which undesirable distortions in the microstructure become difficult to control. These mechanisms are identified and possible mitigation methods described which could allow the fabrication of over 200 km fiber from a single preform.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
MicroStructure Element Method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti
Opt. Express 23(1) 312-329 (2015)

Predicting hole sizes after fibre drawing without knowing the viscosity

Y. Chen and T. A. Birks
Opt. Mater. Express 3(3) 346-356 (2013)

A suspended core nanofiber with unprecedented large diameter ratio of holey region to core

Meisong Liao, Chitrarekha Chaudhari, Xin Yan, Guanshi Qin, Chihiro Kito, Takenobu Suzuki, and Yasutake Ohishi
Opt. Express 18(9) 9088-9097 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
    [Crossref] [PubMed]
  2. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
    [Crossref]
  3. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. J. Russel, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
    [Crossref] [PubMed]
  4. F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
    [Crossref]
  5. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
    [Crossref] [PubMed]
  6. R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers,” Opt. Express 14, 7974–7985 (2006).
    [Crossref] [PubMed]
  7. V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
    [Crossref]
  8. B. J. Mangan, M. kuschnerov, J. W. Nicholson, J. Fini, L. Meng, R. Windeler, E. Monberg, A. Desantolo, and V. Mikhailov, “First demonstration of hollow-core fiber for intra data center low latency connectivity with a commercial 100gb/s interface,” in Optical Fiber Communication Conference, (OSA, 2015), paper M3D.4.
  9. Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μm spectral region,” J. Lightwave Technol. 33, 1373–1379 (2015).
    [Crossref]
  10. Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers, (OSA, 2015), paper Th5A.1.
  11. Z. Yin and Y. Jaluria, “Neck down and thermally induced defects in high-speed optical fiber drawing,” J. Heat Transf. 122, 351–362 (2000).
    [Crossref]
  12. Z. Wei, K.-M. Lee, S. W. Tchikanda, Z. Zhou, and S.-P. Hong, “Free surface flow in high speed fiber drawing with large-diameter glass preforms,” J. Heat Transf. 126, 713–722 (2004).
    [Crossref]
  13. H. Turunen, “Mechanical reliability of optical fiber in combined continuous draw and proof testing process,” PhD thesis, Helsinki University of Technology (2005).
  14. G. T. Jasion, F. Poletti, J. S. Shrimpton, and D. J. Richardson, “Volume manufacturing of hollow core photonic band gap fibers: Challenges and opportunities,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.37.
  15. G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “Microstructure element method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23, 312–329 (2015).
    [Crossref] [PubMed]
  16. A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
    [Crossref]
  17. E. Numkam Fokoua, D. J. Richardson, and F. Poletti, “Impact of structural distortions on the performance of hollow-core photonic bandgap fibers,” Opt. Express 22, 2735–2744 (2014).
    [Crossref]
  18. E. Numkam Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
    [Crossref]
  19. Y. Chen and T. A. Birks, “Predicting hole sizes after fibre drawing without knowing the viscosity,” Opt. Mater. Express 3, 346–356 (2013).
    [Crossref]
  20. Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
    [Crossref]
  21. P. K. Bachmann, W. Hermann, H. Wehr, and D. U. Wiechert, “Stress in optical waveguides. 2: Fibers,” Appl. Opt. 26, 1175–1182 (1987).
    [Crossref] [PubMed]
  22. H. Schonhorn, H. N. Vazirani, and H. L. Frisch, “Relationship between fiber tension and drawing velocity and their influence on the ultimate strength of laser drawn silica fibers,” J. Appl. Phys. 49, 3703–3706 (1978).
    [Crossref]
  23. P. L. Chu and T. Whitbread, “Measurement of stresses in optical fiber and preform,” Appl. Opt. 21, 4241–4245 (1982).
    [Crossref] [PubMed]
  24. K. Tsujikawa, K. Tajima, and M. Ohashi, “Rayleigh scattering reduction method for silica-based optical fiber,” J. Lightwave Technol. 18, 1528–1532 (2000).
    [Crossref]

2015 (3)

2014 (3)

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
[Crossref]

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

E. Numkam Fokoua, D. J. Richardson, and F. Poletti, “Impact of structural distortions on the performance of hollow-core photonic bandgap fibers,” Opt. Express 22, 2735–2744 (2014).
[Crossref]

2013 (3)

Y. Chen and T. A. Birks, “Predicting hole sizes after fibre drawing without knowing the viscosity,” Opt. Mater. Express 3, 346–356 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

2006 (1)

2005 (1)

2004 (1)

Z. Wei, K.-M. Lee, S. W. Tchikanda, Z. Zhou, and S.-P. Hong, “Free surface flow in high speed fiber drawing with large-diameter glass preforms,” J. Heat Transf. 126, 713–722 (2004).
[Crossref]

2003 (2)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

2002 (1)

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[Crossref]

2000 (2)

Z. Yin and Y. Jaluria, “Neck down and thermally induced defects in high-speed optical fiber drawing,” J. Heat Transf. 122, 351–362 (2000).
[Crossref]

K. Tsujikawa, K. Tajima, and M. Ohashi, “Rayleigh scattering reduction method for silica-based optical fiber,” J. Lightwave Technol. 18, 1528–1532 (2000).
[Crossref]

1987 (1)

1982 (1)

1978 (1)

H. Schonhorn, H. N. Vazirani, and H. L. Frisch, “Relationship between fiber tension and drawing velocity and their influence on the ultimate strength of laser drawn silica fibers,” J. Appl. Phys. 49, 3703–3706 (1978).
[Crossref]

Ahmad, F. R.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Alam, S. U.

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μm spectral region,” J. Lightwave Technol. 33, 1373–1379 (2015).
[Crossref]

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Amezcua-Correa, R.

Bachmann, P. K.

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Baddela, N. K.

E. Numkam Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Becker, M.

Birks, T. A.

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Bradley, T.

Broderick, N. G.

Buchak, P.

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
[Crossref]

Chen, Y.

Chu, P. L.

Couny, F.

Crowdy, D. G.

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
[Crossref]

de Waardt, H.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Desantolo, A.

B. J. Mangan, M. kuschnerov, J. W. Nicholson, J. Fini, L. Meng, R. Windeler, E. Monberg, A. Desantolo, and V. Mikhailov, “First demonstration of hollow-core fiber for intra data center low latency connectivity with a commercial 100gb/s interface,” in Optical Fiber Communication Conference, (OSA, 2015), paper M3D.4.

Ebendorff-Heidepriem, H.

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
[Crossref]

Farr, L.

Fini, J.

B. J. Mangan, M. kuschnerov, J. W. Nicholson, J. Fini, L. Meng, R. Windeler, E. Monberg, A. Desantolo, and V. Mikhailov, “First demonstration of hollow-core fiber for intra data center low latency connectivity with a commercial 100gb/s interface,” in Optical Fiber Communication Conference, (OSA, 2015), paper M3D.4.

Fitt, A. D.

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[Crossref]

Frisch, H. L.

H. Schonhorn, H. N. Vazirani, and H. L. Frisch, “Relationship between fiber tension and drawing velocity and their influence on the ultimate strength of laser drawn silica fibers,” J. Appl. Phys. 49, 3703–3706 (1978).
[Crossref]

Furusawa, K.

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[Crossref]

Gaeta, A. L.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Gallagher, M. T.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Gray, D. R.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers, (OSA, 2015), paper Th5A.1.

Hayes, J.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers, (OSA, 2015), paper Th5A.1.

Hayes, J. R.

E. Numkam Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Heidt, A. M.

Hermann, W.

Hong, S.-P.

Z. Wei, K.-M. Lee, S. W. Tchikanda, Z. Zhou, and S.-P. Hong, “Free surface flow in high speed fiber drawing with large-diameter glass preforms,” J. Heat Transf. 126, 713–722 (2004).
[Crossref]

Jaluria, Y.

Z. Yin and Y. Jaluria, “Neck down and thermally induced defects in high-speed optical fiber drawing,” J. Heat Transf. 122, 351–362 (2000).
[Crossref]

Jasion, G. T.

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “Microstructure element method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23, 312–329 (2015).
[Crossref] [PubMed]

E. Numkam Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

G. T. Jasion, F. Poletti, J. S. Shrimpton, and D. J. Richardson, “Volume manufacturing of hollow core photonic band gap fibers: Challenges and opportunities,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.37.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers, (OSA, 2015), paper Th5A.1.

Jung, Y.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Kelly, B.

Knight, J. C.

Koch, K. W.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Kuschnerov, M.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

B. J. Mangan, M. kuschnerov, J. W. Nicholson, J. Fini, L. Meng, R. Windeler, E. Monberg, A. Desantolo, and V. Mikhailov, “First demonstration of hollow-core fiber for intra data center low latency connectivity with a commercial 100gb/s interface,” in Optical Fiber Communication Conference, (OSA, 2015), paper M3D.4.

Lee, K.-M.

Z. Wei, K.-M. Lee, S. W. Tchikanda, Z. Zhou, and S.-P. Hong, “Free surface flow in high speed fiber drawing with large-diameter glass preforms,” J. Heat Transf. 126, 713–722 (2004).
[Crossref]

Li, Z.

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μm spectral region,” J. Lightwave Technol. 33, 1373–1379 (2015).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Liu, Z.

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μm spectral region,” J. Lightwave Technol. 33, 1373–1379 (2015).
[Crossref]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers, (OSA, 2015), paper Th5A.1.

Mangan, B. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. J. Russel, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13, 236–244 (2005).
[Crossref] [PubMed]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers, (OSA, 2015), paper Th5A.1.

B. J. Mangan, M. kuschnerov, J. W. Nicholson, J. Fini, L. Meng, R. Windeler, E. Monberg, A. Desantolo, and V. Mikhailov, “First demonstration of hollow-core fiber for intra data center low latency connectivity with a commercial 100gb/s interface,” in Optical Fiber Communication Conference, (OSA, 2015), paper M3D.4.

Mason, M. W.

Meng, L.

B. J. Mangan, M. kuschnerov, J. W. Nicholson, J. Fini, L. Meng, R. Windeler, E. Monberg, A. Desantolo, and V. Mikhailov, “First demonstration of hollow-core fiber for intra data center low latency connectivity with a commercial 100gb/s interface,” in Optical Fiber Communication Conference, (OSA, 2015), paper M3D.4.

Mikhailov, V.

B. J. Mangan, M. kuschnerov, J. W. Nicholson, J. Fini, L. Meng, R. Windeler, E. Monberg, A. Desantolo, and V. Mikhailov, “First demonstration of hollow-core fiber for intra data center low latency connectivity with a commercial 100gb/s interface,” in Optical Fiber Communication Conference, (OSA, 2015), paper M3D.4.

Monberg, E.

B. J. Mangan, M. kuschnerov, J. W. Nicholson, J. Fini, L. Meng, R. Windeler, E. Monberg, A. Desantolo, and V. Mikhailov, “First demonstration of hollow-core fiber for intra data center low latency connectivity with a commercial 100gb/s interface,” in Optical Fiber Communication Conference, (OSA, 2015), paper M3D.4.

Monro, T. M.

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[Crossref]

Müller, D.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Nicholson, J. W.

B. J. Mangan, M. kuschnerov, J. W. Nicholson, J. Fini, L. Meng, R. Windeler, E. Monberg, A. Desantolo, and V. Mikhailov, “First demonstration of hollow-core fiber for intra data center low latency connectivity with a commercial 100gb/s interface,” in Optical Fiber Communication Conference, (OSA, 2015), paper M3D.4.

Numkam Fokoua, E.

E. Numkam Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

E. Numkam Fokoua, D. J. Richardson, and F. Poletti, “Impact of structural distortions on the performance of hollow-core photonic bandgap fibers,” Opt. Express 22, 2735–2744 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers, (OSA, 2015), paper Th5A.1.

Numkam Fokoua, E. R.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

O’Carroll, J.

Ohashi, M.

Ouzounov, D. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Parmigiani, F. R.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Petrovich, M.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers, (OSA, 2015), paper Th5A.1.

Petrovich, M. N.

E. Numkam Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μm spectral region,” J. Lightwave Technol. 33, 1373–1379 (2015).
[Crossref]

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers,” Opt. Express 14, 7974–7985 (2006).
[Crossref] [PubMed]

Phelan, R.

Please, C. P.

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[Crossref]

Poletti, F.

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “Microstructure element method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23, 312–329 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μm spectral region,” J. Lightwave Technol. 33, 1373–1379 (2015).
[Crossref]

E. Numkam Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

E. Numkam Fokoua, D. J. Richardson, and F. Poletti, “Impact of structural distortions on the performance of hollow-core photonic bandgap fibers,” Opt. Express 22, 2735–2744 (2014).
[Crossref]

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers,” Opt. Express 14, 7974–7985 (2006).
[Crossref] [PubMed]

G. T. Jasion, F. Poletti, J. S. Shrimpton, and D. J. Richardson, “Volume manufacturing of hollow core photonic band gap fibers: Challenges and opportunities,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.37.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers, (OSA, 2015), paper Th5A.1.

Richardson, D. J.

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “Microstructure element method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23, 312–329 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μm spectral region,” J. Lightwave Technol. 33, 1373–1379 (2015).
[Crossref]

E. Numkam Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

E. Numkam Fokoua, D. J. Richardson, and F. Poletti, “Impact of structural distortions on the performance of hollow-core photonic bandgap fibers,” Opt. Express 22, 2735–2744 (2014).
[Crossref]

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

R. Amezcua-Correa, N. G. Broderick, M. N. Petrovich, F. Poletti, and D. J. Richardson, “Optimizing the usable bandwidth and loss through core design in realistic hollow-core photonic bandgap fibers,” Opt. Express 14, 7974–7985 (2006).
[Crossref] [PubMed]

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[Crossref]

G. T. Jasion, F. Poletti, J. S. Shrimpton, and D. J. Richardson, “Volume manufacturing of hollow core photonic band gap fibers: Challenges and opportunities,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.37.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers, (OSA, 2015), paper Th5A.1.

Richter, T.

Roberts, P. J.

Russel, P. J.

Sabert, H.

Sandoghchi, S. R.

E. Numkam Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers, (OSA, 2015), paper Th5A.1.

Schonhorn, H.

H. Schonhorn, H. N. Vazirani, and H. L. Frisch, “Relationship between fiber tension and drawing velocity and their influence on the ultimate strength of laser drawn silica fibers,” J. Appl. Phys. 49, 3703–3706 (1978).
[Crossref]

Schubert, C.

Shrimpton, J. S.

G. T. Jasion, J. S. Shrimpton, Y. Chen, T. Bradley, D. J. Richardson, and F. Poletti, “Microstructure element method (MSEM): viscous flow model for the virtual draw of microstructured optical fibers,” Opt. Express 23, 312–329 (2015).
[Crossref] [PubMed]

G. T. Jasion, F. Poletti, J. S. Shrimpton, and D. J. Richardson, “Volume manufacturing of hollow core photonic band gap fibers: Challenges and opportunities,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.37.

Silcox, J.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Slavik, R.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers, (OSA, 2015), paper Th5A.1.

Slavík, R.

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μm spectral region,” J. Lightwave Technol. 33, 1373–1379 (2015).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Sleiffer, V. A. J. M.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Stokes, Y. M.

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
[Crossref]

Surof, J.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Tajima, K.

Tchikanda, S. W.

Z. Wei, K.-M. Lee, S. W. Tchikanda, Z. Zhou, and S.-P. Hong, “Free surface flow in high speed fiber drawing with large-diameter glass preforms,” J. Heat Transf. 126, 713–722 (2004).
[Crossref]

Thomas, M. G.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Tomlinson, A.

Tsujikawa, K.

Turunen, H.

H. Turunen, “Mechanical reliability of optical fiber in combined continuous draw and proof testing process,” PhD thesis, Helsinki University of Technology (2005).

Vazirani, H. N.

H. Schonhorn, H. N. Vazirani, and H. L. Frisch, “Relationship between fiber tension and drawing velocity and their influence on the ultimate strength of laser drawn silica fibers,” J. Appl. Phys. 49, 3703–3706 (1978).
[Crossref]

Veljanovski, V.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Wehr, H.

Wei, Z.

Z. Wei, K.-M. Lee, S. W. Tchikanda, Z. Zhou, and S.-P. Hong, “Free surface flow in high speed fiber drawing with large-diameter glass preforms,” J. Heat Transf. 126, 713–722 (2004).
[Crossref]

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Wheeler, N. V.

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μm spectral region,” J. Lightwave Technol. 33, 1373–1379 (2015).
[Crossref]

E. Numkam Fokoua, S. R. Sandoghchi, Y. Chen, G. T. Jasion, N. V. Wheeler, N. K. Baddela, J. R. Hayes, M. N. Petrovich, D. J. Richardson, and F. Poletti, “Accurate modelling of fabricated hollow-core photonic bandgap fibers,” Opt. Express 23, 23117–23132 (2015).
[Crossref]

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers, (OSA, 2015), paper Th5A.1.

Whitbread, T.

Wiechert, D. U.

Williams, D. P.

Windeler, R.

B. J. Mangan, M. kuschnerov, J. W. Nicholson, J. Fini, L. Meng, R. Windeler, E. Monberg, A. Desantolo, and V. Mikhailov, “First demonstration of hollow-core fiber for intra data center low latency connectivity with a commercial 100gb/s interface,” in Optical Fiber Communication Conference, (OSA, 2015), paper M3D.4.

Wong, N. H. L.

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Wooler, J. P.

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μm spectral region,” J. Lightwave Technol. 33, 1373–1379 (2015).
[Crossref]

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Yin, Z.

Z. Yin and Y. Jaluria, “Neck down and thermally induced defects in high-speed optical fiber drawing,” J. Heat Transf. 122, 351–362 (2000).
[Crossref]

Zhou, Z.

Z. Wei, K.-M. Lee, S. W. Tchikanda, Z. Zhou, and S.-P. Hong, “Free surface flow in high speed fiber drawing with large-diameter glass preforms,” J. Heat Transf. 126, 713–722 (2004).
[Crossref]

Appl. Opt. (2)

J. Appl. Phys. (1)

H. Schonhorn, H. N. Vazirani, and H. L. Frisch, “Relationship between fiber tension and drawing velocity and their influence on the ultimate strength of laser drawn silica fibers,” J. Appl. Phys. 49, 3703–3706 (1978).
[Crossref]

J. Eng. Math. (1)

A. D. Fitt, K. Furusawa, T. M. Monro, C. P. Please, and D. J. Richardson, “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math. 43, 201–227 (2002).
[Crossref]

J. Fluid Mech. (1)

Y. M. Stokes, P. Buchak, D. G. Crowdy, and H. Ebendorff-Heidepriem, “Drawing of micro-structured fibres: circular and non-circular tubes,” J. Fluid Mech. 755, 176–203 (2014).
[Crossref]

J. Heat Transf. (2)

Z. Yin and Y. Jaluria, “Neck down and thermally induced defects in high-speed optical fiber drawing,” J. Heat Transf. 122, 351–362 (2000).
[Crossref]

Z. Wei, K.-M. Lee, S. W. Tchikanda, Z. Zhou, and S.-P. Hong, “Free surface flow in high speed fiber drawing with large-diameter glass preforms,” J. Heat Transf. 126, 713–722 (2004).
[Crossref]

J. Lightwave Technol. (3)

V. A. J. M. Sleiffer, Y. Jung, N. K. Baddela, J. Surof, M. Kuschnerov, V. Veljanovski, J. R. Hayes, N. V. Wheeler, E. R. Numkam Fokoua, J. P. Wooler, D. R. Gray, N. H. L. Wong, F. R. Parmigiani, S. U. Alam, M. N. Petrovich, F. Poletti, D. J. Richardson, and H. de Waardt, “High capacity mode-division multiplexed optical transmission in a novel 37-cell hollow-core photonic bandgap fiber,” J. Lightwave Technol. 32, 854–863 (2014).
[Crossref]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. U. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μm spectral region,” J. Lightwave Technol. 33, 1373–1379 (2015).
[Crossref]

K. Tsujikawa, K. Tajima, and M. Ohashi, “Rayleigh scattering reduction method for silica-based optical fiber,” J. Lightwave Technol. 18, 1528–1532 (2000).
[Crossref]

Nanophotonics (1)

F. Poletti, M. N. Petrovich, and D. J. Richardson, “Hollow-core photonic bandgap fibers: technology and applications,” Nanophotonics 2, 315–340 (2013).
[Crossref]

Nat. Photonics (1)

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7, 279–284 (2013).
[Crossref]

Nature (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657–659 (2003).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Mater. Express (1)

Science (1)

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301, 1702–1704 (2003).
[Crossref] [PubMed]

Other (4)

H. Turunen, “Mechanical reliability of optical fiber in combined continuous draw and proof testing process,” PhD thesis, Helsinki University of Technology (2005).

G. T. Jasion, F. Poletti, J. S. Shrimpton, and D. J. Richardson, “Volume manufacturing of hollow core photonic band gap fibers: Challenges and opportunities,” in Optical Fiber Communication Conference (OSA, 2015), paper W2A.37.

Y. Chen, Z. Liu, S. R. Sandoghchi, G. T. Jasion, T. Bradley, E. Numkam Fokoua, J. Hayes, N. V. Wheeler, D. R. Gray, B. J. Mangan, R. Slavik, F. Poletti, M. Petrovich, and D. J. Richardson, “Demonstration of an 11km hollow core photonic bandgap fiber for broadband low-latency data transmission,” in Optical Fiber Communication Conference Post Deadline Papers, (OSA, 2015), paper Th5A.1.

B. J. Mangan, M. kuschnerov, J. W. Nicholson, J. Fini, L. Meng, R. Windeler, E. Monberg, A. Desantolo, and V. Mikhailov, “First demonstration of hollow-core fiber for intra data center low latency connectivity with a commercial 100gb/s interface,” in Optical Fiber Communication Conference, (OSA, 2015), paper M3D.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Illustration of the second stage draw process of HC-PBGF; identifying the two components of the preform, cane and jacket, and the most important control parameters: core and cladding pressures, feed and draw speeds, draw tension (after coating), and furnace temperature and profile.
Fig. 2
Fig. 2 (a) Scanning Electron Micrograph of experimental fiber from [10]. Microstructure of simulated fibers drawn from preforms in Table 1 with yields: (b) 5 km, (c) 20 km, (d) 50 km, (e) 100 km, (f) 200 km, (g) 500 km.
Fig. 3
Fig. 3 The structural and optical attenuation properties for each of the different yield fibers: core size, ϕc = rcore/rcladding, and the uniformity of the core struts, ϕn = 1 − [max(l) − min(l)]/max(l).
Fig. 4
Fig. 4 Contours of draw tension for simulated draws with various furnace lengths and peak temperatures, Ts=1900K. Example structures on the iso-tension lines at 800 g, 400 g and 200 g Tension, all fibers along an iso-tension line were found to be exactly the same; ΔPcore was adjusted to give the best core size achievable: ΔPcore(800g) = −2900 Pa, ΔPcore(400g) = −3800 Pa, ΔPcore(200g) = −1730 Pa.
Fig. 5
Fig. 5 The change in rcore/rcladding and the magnitude of the radial pressures around the core during the draw. ΔPcore acts in the opposite direction to the surface tension. The pressure applied has been chosen to achieve a rcore/rcladding = 1/3 in the final fiber. Force vectors in the microstructure are shown at 3 distinct stages in the draw down, A, B, C.
Fig. 6
Fig. 6 Core size during draw for a selection of preform sizes, dashed lines indicate cases with cores that are too large.
Fig. 7
Fig. 7 Force vector plots of the core surround at z/L = 8% (left) and 9% (right) during the 500 km fiber draw. The plots highlight a second distortion dynamic that can occur during the contraction phase. The misalignment between negative core pressure (blue) and positive surface tension (green) causes the core strut of the corner holes to become thin and long compared to the other core surrounding struts.

Tables (1)

Tables Icon

Table 1 Dimensions of the preforms for each yield. Cane ID and Jacket OD scale with the square root of the yield, production rate scales linearly with yield.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( R 2 2 R 1 2 ) u f = ( r 2 2 r 1 2 ) u d
σ z z = 3 μ d u / d z
P st = γ / R hole

Metrics