Abstract

Wire-grid polarisers are versatile and scalable components which can be engineered to achieve small sizes and extremely high extinction ratios. Yet the measured performances are always significantly below the predicted values obtained from numerical simulations. Here we report on a detailed comparison between theoretical and experimental performances. We show that the discrepancy can be explained by the true shape of the plasmonic structures. Taking into account the fabrication details, a new optimisation model enables us to achieve excellent agreement with the observed response and to re-optimise the grating parameters to ensure experimental extinction ratios well above 1,000 at 850nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Bilayer Al wire-grids as broadband and high-performance polarizers

Yasin Ekinci, Harun H. Solak, Christian David, and Hans Sigg
Opt. Express 14(6) 2323-2334 (2006)

High-performance nanowire-grid polarizers

Jian Jim Wang, Wei Zhang, Xuegong Deng, Jiandong Deng, Feng Liu, Paul Sciortino, and Lei Chen
Opt. Lett. 30(2) 195-197 (2005)

Blazed wire-grid polarizer for plasmon-enhanced polarization extinction: design and analysis

Changhun Lee, Eunji Sim, and Donghyun Kim
Opt. Express 25(7) 8098-8107 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. R. Bird and M. Parrish, “The wire grid as a near-infrared polarizer,” J. Opt. Soc. Am. 50, 886 (1960).
    [Crossref]
  2. S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
    [Crossref]
  3. L. Wang, H. Schift, J. Gobrecht, Y. Ekinci, P. M. Kristiansen, H. H. Solak, and K. Jefimovs, “High-throughput fabrication of compact and flexible bilayer nanowire grid polarizers for deep-ultraviolet to infrared range,” J. Vac. Sci. Technol. B 32, 031206 (2014).
    [Crossref]
  4. H. Lochbihler, “Surface polaritons on gold-wire gratings,” Phys. Rev. B 50, 4795–4801 (1994).
    [Crossref]
  5. T. Thio, K. M. Pellerin, R. a. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26, 1972–1974 (2001).
    [Crossref]
  6. S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
    [Crossref]
  7. Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
    [Crossref] [PubMed]
  8. G. Vest, M. Rau, L. Fuchs, G. Corrielli, H. Weier, S. Nauerth, A. Crespi, R. Osellame, and H. Weinfurter, “Design and evaluation of a handheld quantum key distribution sender module,” IEEE J. Sel. Top. Quantum Electron. 21, 131–137 (2015).
    [Crossref]
  9. S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
    [Crossref]
  10. J. S. Cetnar, J. R. Middendorf, and E. R. Brown, “Extraordinary optical transmission and extinction in a Terahertz wire-grid polarizer,” Appl. Phys. Lett. 100, 102–105 (2012).
    [Crossref]
  11. Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express 15, 9510–9519 (2007).
    [Crossref] [PubMed]
  12. T. Siefke, D. Lehr, T. Weber, D. Voigt, E.-B. Kley, and A. Tünnermann, “Fabrication influences on deep-ultraviolet tungsten wire grid polarizers manufactured by double patterning,” Opt. Lett. 39, 6434–6437 (2014).
    [Crossref] [PubMed]
  13. X. Liu, X. Deng, P. Sciortino, M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O’Brien, and J. J. Wang, “Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids,” Nano Lett. 6, 2723–2727 (2006).
    [Crossref] [PubMed]
  14. J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
    [Crossref]
  15. F. Marquier, J. Greffet, S. Collin, F. Pardo, and J. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70–76 (2005).
    [Crossref] [PubMed]
  16. S. Collin, F. Pardo, and R. Teissier, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt. 4, 154–160 (2002).
    [Crossref]
  17. M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
    [Crossref]
  18. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
    [Crossref]
  19. A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Optics 37, 5271 (1998).
    [Crossref]
  20. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall1984).
    [Crossref]
  21. H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
    [Crossref]
  22. H. Ryu, S. Joon Yoon, and D. Kim, “Influence of surface roughness on the polarimetric characteristics of a wire-grid grating polarizer,” Appl. Optics 47, 5715–5721 (2008).
    [Crossref]

2015 (1)

G. Vest, M. Rau, L. Fuchs, G. Corrielli, H. Weier, S. Nauerth, A. Crespi, R. Osellame, and H. Weinfurter, “Design and evaluation of a handheld quantum key distribution sender module,” IEEE J. Sel. Top. Quantum Electron. 21, 131–137 (2015).
[Crossref]

2014 (2)

L. Wang, H. Schift, J. Gobrecht, Y. Ekinci, P. M. Kristiansen, H. H. Solak, and K. Jefimovs, “High-throughput fabrication of compact and flexible bilayer nanowire grid polarizers for deep-ultraviolet to infrared range,” J. Vac. Sci. Technol. B 32, 031206 (2014).
[Crossref]

T. Siefke, D. Lehr, T. Weber, D. Voigt, E.-B. Kley, and A. Tünnermann, “Fabrication influences on deep-ultraviolet tungsten wire grid polarizers manufactured by double patterning,” Opt. Lett. 39, 6434–6437 (2014).
[Crossref] [PubMed]

2012 (1)

J. S. Cetnar, J. R. Middendorf, and E. R. Brown, “Extraordinary optical transmission and extinction in a Terahertz wire-grid polarizer,” Appl. Phys. Lett. 100, 102–105 (2012).
[Crossref]

2011 (1)

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
[Crossref]

2010 (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

2009 (1)

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[Crossref]

2008 (1)

H. Ryu, S. Joon Yoon, and D. Kim, “Influence of surface roughness on the polarimetric characteristics of a wire-grid grating polarizer,” Appl. Optics 47, 5715–5721 (2008).
[Crossref]

2007 (2)

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Z. Y. Yang and Y. F. Lu, “Broadband nanowire-grid polarizers in ultraviolet-visible-near-infrared regions,” Opt. Express 15, 9510–9519 (2007).
[Crossref] [PubMed]

2006 (1)

X. Liu, X. Deng, P. Sciortino, M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O’Brien, and J. J. Wang, “Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids,” Nano Lett. 6, 2723–2727 (2006).
[Crossref] [PubMed]

2005 (2)

F. Marquier, J. Greffet, S. Collin, F. Pardo, and J. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70–76 (2005).
[Crossref] [PubMed]

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

2003 (1)

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[Crossref]

2002 (1)

S. Collin, F. Pardo, and R. Teissier, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt. 4, 154–160 (2002).
[Crossref]

2001 (2)

2000 (1)

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
[Crossref]

1998 (1)

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Optics 37, 5271 (1998).
[Crossref]

1994 (1)

H. Lochbihler, “Surface polaritons on gold-wire gratings,” Phys. Rev. B 50, 4795–4801 (1994).
[Crossref]

1960 (1)

Ahn, S.-W.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Astilean, S.

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
[Crossref]

Bacon, J.

X. Liu, X. Deng, P. Sciortino, M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O’Brien, and J. J. Wang, “Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids,” Nano Lett. 6, 2723–2727 (2006).
[Crossref] [PubMed]

Bermel, P.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Bird, G. R.

Blok, H.

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[Crossref]

Brown, E. R.

J. S. Cetnar, J. R. Middendorf, and E. R. Brown, “Extraordinary optical transmission and extinction in a Terahertz wire-grid polarizer,” Appl. Phys. Lett. 100, 102–105 (2012).
[Crossref]

Buonanno, M.

X. Liu, X. Deng, P. Sciortino, M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O’Brien, and J. J. Wang, “Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids,” Nano Lett. 6, 2723–2727 (2006).
[Crossref] [PubMed]

Cetnar, J. S.

J. S. Cetnar, J. R. Middendorf, and E. R. Brown, “Extraordinary optical transmission and extinction in a Terahertz wire-grid polarizer,” Appl. Phys. Lett. 100, 102–105 (2012).
[Crossref]

Chen, L.

X. Liu, X. Deng, P. Sciortino, M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O’Brien, and J. J. Wang, “Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids,” Nano Lett. 6, 2723–2727 (2006).
[Crossref] [PubMed]

Collin, S.

F. Marquier, J. Greffet, S. Collin, F. Pardo, and J. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70–76 (2005).
[Crossref] [PubMed]

S. Collin, F. Pardo, and R. Teissier, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt. 4, 154–160 (2002).
[Crossref]

Corrielli, G.

G. Vest, M. Rau, L. Fuchs, G. Corrielli, H. Weier, S. Nauerth, A. Crespi, R. Osellame, and H. Weinfurter, “Design and evaluation of a handheld quantum key distribution sender module,” IEEE J. Sel. Top. Quantum Electron. 21, 131–137 (2015).
[Crossref]

Crespi, A.

G. Vest, M. Rau, L. Fuchs, G. Corrielli, H. Weier, S. Nauerth, A. Crespi, R. Osellame, and H. Weinfurter, “Design and evaluation of a handheld quantum key distribution sender module,” IEEE J. Sel. Top. Quantum Electron. 21, 131–137 (2015).
[Crossref]

Deng, X.

X. Liu, X. Deng, P. Sciortino, M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O’Brien, and J. J. Wang, “Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids,” Nano Lett. 6, 2723–2727 (2006).
[Crossref] [PubMed]

Djurišic, A. B.

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Optics 37, 5271 (1998).
[Crossref]

Dunbar, L. A.

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[Crossref]

Ebbesen, T. W.

Eckert, R.

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[Crossref]

Ekinci, Y.

L. Wang, H. Schift, J. Gobrecht, Y. Ekinci, P. M. Kristiansen, H. H. Solak, and K. Jefimovs, “High-throughput fabrication of compact and flexible bilayer nanowire grid polarizers for deep-ultraviolet to infrared range,” J. Vac. Sci. Technol. B 32, 031206 (2014).
[Crossref]

Elazar, J. M.

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Optics 37, 5271 (1998).
[Crossref]

Fuchs, L.

G. Vest, M. Rau, L. Fuchs, G. Corrielli, H. Weier, S. Nauerth, A. Crespi, R. Osellame, and H. Weinfurter, “Design and evaluation of a handheld quantum key distribution sender module,” IEEE J. Sel. Top. Quantum Electron. 21, 131–137 (2015).
[Crossref]

Gardner, E.

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Gobrecht, J.

L. Wang, H. Schift, J. Gobrecht, Y. Ekinci, P. M. Kristiansen, H. H. Solak, and K. Jefimovs, “High-throughput fabrication of compact and flexible bilayer nanowire grid polarizers for deep-ultraviolet to infrared range,” J. Vac. Sci. Technol. B 32, 031206 (2014).
[Crossref]

Greffet, J.

Grenet, E.

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[Crossref]

Guillaumée, M.

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[Crossref]

Hansen, D.

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Hansen, J.

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Hong, S. M.

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Hur, J. H.

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Ibanescu, M.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Jang, J.

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Jefimovs, K.

L. Wang, H. Schift, J. Gobrecht, Y. Ekinci, P. M. Kristiansen, H. H. Solak, and K. Jefimovs, “High-throughput fabrication of compact and flexible bilayer nanowire grid polarizers for deep-ultraviolet to infrared range,” J. Vac. Sci. Technol. B 32, 031206 (2014).
[Crossref]

Joannopoulos, J. D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Johnson, S. G.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Joon Yoon, S.

H. Ryu, S. Joon Yoon, and D. Kim, “Influence of surface roughness on the polarimetric characteristics of a wire-grid grating polarizer,” Appl. Optics 47, 5715–5721 (2008).
[Crossref]

Kang, D. H.

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Kim, D.

H. Ryu, S. Joon Yoon, and D. Kim, “Influence of surface roughness on the polarimetric characteristics of a wire-grid grating polarizer,” Appl. Optics 47, 5715–5721 (2008).
[Crossref]

Kim, H. J.

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Kim, J.-S.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Kim, M. J.

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Kim, S. H.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Kim, S. K.

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Kley, E.-B.

Kristiansen, P. M.

L. Wang, H. Schift, J. Gobrecht, Y. Ekinci, P. M. Kristiansen, H. H. Solak, and K. Jefimovs, “High-throughput fabrication of compact and flexible bilayer nanowire grid polarizers for deep-ultraviolet to infrared range,” J. Vac. Sci. Technol. B 32, 031206 (2014).
[Crossref]

Lalanne, P.

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
[Crossref]

Lee, K.-D.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Lee, S. J.

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Lee, S.-H.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Lehr, D.

Lenstra, D.

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[Crossref]

Lezec, H. J.

Linke, R. a.

Liu, X.

X. Liu, X. Deng, P. Sciortino, M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O’Brien, and J. J. Wang, “Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids,” Nano Lett. 6, 2723–2727 (2006).
[Crossref] [PubMed]

Lochbihler, H.

H. Lochbihler, “Surface polaritons on gold-wire gratings,” Phys. Rev. B 50, 4795–4801 (1994).
[Crossref]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall1984).
[Crossref]

Lu, Y. F.

Majewski, M. L.

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Optics 37, 5271 (1998).
[Crossref]

Marquier, F.

Martin, O. J. F.

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[Crossref]

Middendorf, J. R.

J. S. Cetnar, J. R. Middendorf, and E. R. Brown, “Extraordinary optical transmission and extinction in a Terahertz wire-grid polarizer,” Appl. Phys. Lett. 100, 102–105 (2012).
[Crossref]

Nauerth, S.

G. Vest, M. Rau, L. Fuchs, G. Corrielli, H. Weier, S. Nauerth, A. Crespi, R. Osellame, and H. Weinfurter, “Design and evaluation of a handheld quantum key distribution sender module,” IEEE J. Sel. Top. Quantum Electron. 21, 131–137 (2015).
[Crossref]

Noda, T.

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
[Crossref]

O’Brien, N.

X. Liu, X. Deng, P. Sciortino, M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O’Brien, and J. J. Wang, “Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids,” Nano Lett. 6, 2723–2727 (2006).
[Crossref] [PubMed]

Oh, J. H.

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Ohta, J.

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
[Crossref]

Osellame, R.

G. Vest, M. Rau, L. Fuchs, G. Corrielli, H. Weier, S. Nauerth, A. Crespi, R. Osellame, and H. Weinfurter, “Design and evaluation of a handheld quantum key distribution sender module,” IEEE J. Sel. Top. Quantum Electron. 21, 131–137 (2015).
[Crossref]

Oskooi, A. F.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Palamaru, M.

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
[Crossref]

Pardo, F.

F. Marquier, J. Greffet, S. Collin, F. Pardo, and J. Pelouard, “Resonant transmission through a metallic film due to coupled modes,” Opt. Express 13, 70–76 (2005).
[Crossref] [PubMed]

S. Collin, F. Pardo, and R. Teissier, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt. 4, 154–160 (2002).
[Crossref]

Park, J.-D.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Park, K. H.

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Park, W. H.

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Parrish, M.

Pellerin, K. M.

Pelouard, J.

Rakic, A. D.

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Optics 37, 5271 (1998).
[Crossref]

Rau, M.

G. Vest, M. Rau, L. Fuchs, G. Corrielli, H. Weier, S. Nauerth, A. Crespi, R. Osellame, and H. Weinfurter, “Design and evaluation of a handheld quantum key distribution sender module,” IEEE J. Sel. Top. Quantum Electron. 21, 131–137 (2015).
[Crossref]

Roundy, D.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

Ryu, H.

H. Ryu, S. Joon Yoon, and D. Kim, “Influence of surface roughness on the polarimetric characteristics of a wire-grid grating polarizer,” Appl. Optics 47, 5715–5721 (2008).
[Crossref]

Santschi, C.

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[Crossref]

Sasagawa, K.

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
[Crossref]

Schift, H.

L. Wang, H. Schift, J. Gobrecht, Y. Ekinci, P. M. Kristiansen, H. H. Solak, and K. Jefimovs, “High-throughput fabrication of compact and flexible bilayer nanowire grid polarizers for deep-ultraviolet to infrared range,” J. Vac. Sci. Technol. B 32, 031206 (2014).
[Crossref]

Schouten, H. F.

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[Crossref]

Sciortino, P.

X. Liu, X. Deng, P. Sciortino, M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O’Brien, and J. J. Wang, “Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids,” Nano Lett. 6, 2723–2727 (2006).
[Crossref] [PubMed]

Shishido, S.

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
[Crossref]

Siefke, T.

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall1984).
[Crossref]

Solak, H. H.

L. Wang, H. Schift, J. Gobrecht, Y. Ekinci, P. M. Kristiansen, H. H. Solak, and K. Jefimovs, “High-throughput fabrication of compact and flexible bilayer nanowire grid polarizers for deep-ultraviolet to infrared range,” J. Vac. Sci. Technol. B 32, 031206 (2014).
[Crossref]

Stanley, R. P.

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[Crossref]

Takakura, Y.

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[Crossref] [PubMed]

Teissier, R.

S. Collin, F. Pardo, and R. Teissier, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt. 4, 154–160 (2002).
[Crossref]

Thio, T.

Tokuda, T.

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
[Crossref]

Tünnermann, A.

Varghese, R.

X. Liu, X. Deng, P. Sciortino, M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O’Brien, and J. J. Wang, “Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids,” Nano Lett. 6, 2723–2727 (2006).
[Crossref] [PubMed]

Vest, G.

G. Vest, M. Rau, L. Fuchs, G. Corrielli, H. Weier, S. Nauerth, A. Crespi, R. Osellame, and H. Weinfurter, “Design and evaluation of a handheld quantum key distribution sender module,” IEEE J. Sel. Top. Quantum Electron. 21, 131–137 (2015).
[Crossref]

Visser, T. D.

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[Crossref]

Voigt, D.

Walters, F.

X. Liu, X. Deng, P. Sciortino, M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O’Brien, and J. J. Wang, “Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids,” Nano Lett. 6, 2723–2727 (2006).
[Crossref] [PubMed]

Wang, J. J.

X. Liu, X. Deng, P. Sciortino, M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O’Brien, and J. J. Wang, “Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids,” Nano Lett. 6, 2723–2727 (2006).
[Crossref] [PubMed]

Wang, L.

L. Wang, H. Schift, J. Gobrecht, Y. Ekinci, P. M. Kristiansen, H. H. Solak, and K. Jefimovs, “High-throughput fabrication of compact and flexible bilayer nanowire grid polarizers for deep-ultraviolet to infrared range,” J. Vac. Sci. Technol. B 32, 031206 (2014).
[Crossref]

Weber, T.

Weier, H.

G. Vest, M. Rau, L. Fuchs, G. Corrielli, H. Weier, S. Nauerth, A. Crespi, R. Osellame, and H. Weinfurter, “Design and evaluation of a handheld quantum key distribution sender module,” IEEE J. Sel. Top. Quantum Electron. 21, 131–137 (2015).
[Crossref]

Weinfurter, H.

G. Vest, M. Rau, L. Fuchs, G. Corrielli, H. Weier, S. Nauerth, A. Crespi, R. Osellame, and H. Weinfurter, “Design and evaluation of a handheld quantum key distribution sender module,” IEEE J. Sel. Top. Quantum Electron. 21, 131–137 (2015).
[Crossref]

Yang, Z. Y.

Yoon, P.-W.

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Yost, M.

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Appl. Optics (2)

A. D. Rakic, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Optics 37, 5271 (1998).
[Crossref]

H. Ryu, S. Joon Yoon, and D. Kim, “Influence of surface roughness on the polarimetric characteristics of a wire-grid grating polarizer,” Appl. Optics 47, 5715–5721 (2008).
[Crossref]

Appl. Phys. Lett. (2)

J. S. Cetnar, J. R. Middendorf, and E. R. Brown, “Extraordinary optical transmission and extinction in a Terahertz wire-grid polarizer,” Appl. Phys. Lett. 100, 102–105 (2012).
[Crossref]

M. Guillaumée, L. A. Dunbar, C. Santschi, E. Grenet, R. Eckert, O. J. F. Martin, and R. P. Stanley, “Polarization sensitive silicon photodiodes using nanostructured metallic grids,” Appl. Phys. Lett. 94, 193503 (2009).
[Crossref]

Comput. Phys. Commun. (1)

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181, 687–702 (2010).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

G. Vest, M. Rau, L. Fuchs, G. Corrielli, H. Weier, S. Nauerth, A. Crespi, R. Osellame, and H. Weinfurter, “Design and evaluation of a handheld quantum key distribution sender module,” IEEE J. Sel. Top. Quantum Electron. 21, 131–137 (2015).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

S. Collin, F. Pardo, and R. Teissier, “Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt. 4, 154–160 (2002).
[Crossref]

J. Opt. Soc. Am. (1)

J. Vac. Sci. Technol. B (1)

L. Wang, H. Schift, J. Gobrecht, Y. Ekinci, P. M. Kristiansen, H. H. Solak, and K. Jefimovs, “High-throughput fabrication of compact and flexible bilayer nanowire grid polarizers for deep-ultraviolet to infrared range,” J. Vac. Sci. Technol. B 32, 031206 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Shishido, T. Noda, K. Sasagawa, T. Tokuda, and J. Ohta, “Polarization analyzing image sensor with on-chip metal wire grid polarizer in 65-nm standard complementary metal oxide semiconductor process,” Jpn. J. Appl. Phys. 50, 04DL01 (2011).
[Crossref]

Nano Lett. (1)

X. Liu, X. Deng, P. Sciortino, M. Buonanno, F. Walters, R. Varghese, J. Bacon, L. Chen, N. O’Brien, and J. J. Wang, “Large area, 38 nm half-pitch grating fabrication by using atomic spacer lithography from aluminum wire grids,” Nano Lett. 6, 2723–2727 (2006).
[Crossref] [PubMed]

Nanotechnology (1)

S.-W. Ahn, K.-D. Lee, J.-S. Kim, S. H. Kim, J.-D. Park, S.-H. Lee, and P.-W. Yoon, “Fabrication of a 50 nm half-pitch wire grid polarizer using nanoimprint lithography,” Nanotechnology 16, 1874–1877 (2005).
[Crossref]

Opt. Commun. (1)

S. Astilean, P. Lalanne, and M. Palamaru, “Light transmission through metallic channels much smaller than the wavelength,” Opt. Commun. 175, 265–273 (2000).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Phys. Rev. B (1)

H. Lochbihler, “Surface polaritons on gold-wire gratings,” Phys. Rev. B 50, 4795–4801 (1994).
[Crossref]

Phys. Rev. E (1)

H. F. Schouten, T. D. Visser, D. Lenstra, and H. Blok, “Light transmission through a subwavelength slit: waveguiding and optical vortices,” Phys. Rev. E 67, 036608 (2003).
[Crossref]

Phys. Rev. Lett. (1)

Y. Takakura, “Optical resonance in a narrow slit in a thick metallic screen,” Phys. Rev. Lett. 86, 5601–5603 (2001).
[Crossref] [PubMed]

SID Int. Symp. Dig. Tec. (1)

J. H. Oh, D. H. Kang, W. H. Park, H. J. Kim, S. M. Hong, J. H. Hur, J. Jang, S. J. Lee, M. J. Kim, S. K. Kim, K. H. Park, E. Gardner, J. Hansen, M. Yost, and D. Hansen, “High-resolution stereoscopic TFT-LCD with wire grid polarizer,” SID Int. Symp. Dig. Tec. 38, 1164 (2007).
[Crossref]

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall1984).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Geometry of a gold wire-grid polariser on a glass substrate.
Fig. 2
Fig. 2 Influence of the design parameters on the performance of the polariser. (a) Dependence of the extinction ratio on h and w for p = 500nm. Here the effect of the thickness is considered only around the first vertical resonance. The green line represents our design rule of ER = 1000. (b) Transmission of the TM-modes as a function of w for h = 270nm.
Fig. 3
Fig. 3 (a) Top and (b) side-view SEM images of the gold stripes. (c) Geometrical model taking into account the trapezoidal shape of the wires.
Fig. 4
Fig. 4 Dependence of the performance on the slit angle α (h = 270nm): (a) extinction ratio, (b),(c) transmission of TM and TE polarisation modes, respectively. The exponential increase of the transmission of TE-modes is mainly responsible for the significant reduction of the extinction ratio. (d) Transmission of the TE polarisation as a function of the effective slit width w ¯.
Fig. 5
Fig. 5 (a) Simulated intensity distribution for rectangular stripes separated by w = 70nm and w = 130nm respectively. The small insets show the exponential damping of the intensity within the slit (I(z) ∝ eγz). (b) Damping constant γ extracted from the intensity profile for different slit widths.
Fig. 6
Fig. 6 SEM pictures of a four-polariser array exhibiting extinction ratios up to 1,800. (a) Top view of the matrix. (b) Cross-section of the fourth grating. The decrease in performances associated with a large tilting angle α > 16° was compensated by reducing the slit width.

Tables (2)

Tables Icon

Table 1 Comparison between simulated and experimental extinction ratios for different slit widths. Here the structure is simulated with a period p = 500nm a gold thickness of h = 270nm, but fabricated with h = 265nm with additional 3nm Ti.

Tables Icon

Table 2 Experimental results obtained after optimisation of the geometry using a trapezoidal model. The data exhibit clearly improved agreement with the simulations.

Metrics