Abstract

In this work we demonstrate 3D imaging using two-photon excitation through a 20 cm long multimode optical fiber (MMF) of 350 µm diameter. The imaging principle is similar to single photon fluorescence through a MMF, except that a focused femtosecond pulse is delivered and scanned over the sample. In our approach, focusing and scanning through the fiber is accomplished by digital phase conjugation using mode selection by time gating with an ultra-fast reference pulse. The excited two-photon emission is collected through the same fiber. We demonstrate depth sectioning by scanning the focused pulse in a 3D volume over a sample consisting of fluorescent beads suspended in a polymer. The achieved resolution is 1 µm laterally and 15 µm axially. Scanning is performed over an 80x80 µm field of view. To our knowledge, this is the first demonstration of high-resolution three-dimensional imaging using two-photon fluorescence through a multimode fiber.

© 2015 Optical Society of America

Full Article  |  PDF Article

Corrections

14 January 2016: Corrections were made to Eq. (1) and the body text.


OSA Recommended Articles
Delivery of focused short pulses through a multimode fiber

Edgar E. Morales-Delgado, Salma Farahi, Ioannis N. Papadopoulos, Demetri Psaltis, and Christophe Moser
Opt. Express 23(7) 9109-9120 (2015)

Single multimode fiber endoscope

Antonio M. Caravaca-Aguirre and Rafael Piestun
Opt. Express 25(3) 1656-1665 (2017)

Three-dimensional microfabrication through a multimode optical fiber

Edgar E. Morales-Delgado, Loic Urio, Donald B. Conkey, Nicolino Stasio, Demetri Psaltis, and Christophe Moser
Opt. Express 25(6) 7031-7045 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
    [Crossref] [PubMed]
  2. K. Carlson, M. Chidley, K.-B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injection-molded plastic miniature objective lens,” Appl. Opt. 44(10), 1792–1797 (2005).
    [Crossref] [PubMed]
  3. C. Liang, K.-B. Sung, R. R. Richards-Kortum, and M. R. Descour, “Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope,” Appl. Opt. 41(22), 4603–4610 (2002).
    [Crossref] [PubMed]
  4. A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, “Design and demonstration of a miniature catheter for a confocal microendoscope,” Appl. Opt. 43(31), 5763–5771 (2004).
    [Crossref] [PubMed]
  5. W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004).
    [Crossref] [PubMed]
  6. P. M. Lane, A. L. P. Dlugan, R. Richards-Kortum, and C. E. Macaulay, “Fiber-optic confocal microscopy using a spatial light modulator,” Opt. Lett. 25(24), 1780–1782 (2000).
    [Crossref] [PubMed]
  7. A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993).
    [Crossref] [PubMed]
  8. A. R. Rouse and A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 25(23), 1708–1710 (2000).
    [Crossref] [PubMed]
  9. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
    [Crossref] [PubMed]
  10. M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
    [Crossref]
  11. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
    [Crossref] [PubMed]
  12. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
    [Crossref] [PubMed]
  13. I. M. Vellekoop and A. P. Mosk, “Universal Optimal Transmission of Light Through Disordered Materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
    [Crossref] [PubMed]
  14. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
    [Crossref] [PubMed]
  15. I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber,” Biomed. Opt. Express 4(2), 260–270 (2013).
    [Crossref] [PubMed]
  16. A. Yariv, “Three‐dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett. 28(2), 88–89 (1976).
    [Crossref]
  17. P. R. Forman, F. C. Jahoda, and B. L. Mason, “Multimode Fiber Interferometry with and without Phase Conjugation,” Appl. Opt. 30(13), 1629–1632 (1991).
    [Crossref] [PubMed]
  18. I. McMichael, P. Yeh, and P. Beckwith, “Correction of Polarization and Modal Scrambling in Multimode Fibers by Phase Conjugation,” Opt. Lett. 12(7), 507–509 (1987).
    [Crossref] [PubMed]
  19. Y. Pu, X. Yang, I. Papadoupoulos, S. Farahi, C.-L. Hsieh, C. A. Ong, C. Moser, D. Psaltis, and K. Stankovic, “Imaging of the Mouse Cochlea with Two-photon Microscopy and Multimode Fiber-based Microendoscopy,” in Biomedical Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), BT4A.3.
  20. M. Ploschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
    [Crossref]
  21. Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
    [Crossref] [PubMed]
  22. D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).
    [Crossref] [PubMed]
  23. D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
    [Crossref] [PubMed]
  24. R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
    [Crossref] [PubMed]
  25. T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
    [Crossref] [PubMed]
  26. T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
    [Crossref] [PubMed]
  27. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
    [Crossref] [PubMed]
  28. M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, “GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Express 22(3), 2933–2947 (2014).
    [Crossref] [PubMed]
  29. A. M. Caravaca-Aguirre, E. Niv, and R. Piestun, “High-Speed Phase Modulation for Multimode Fiber Endoscope,” in Imaging and Applied Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), ITh3C.1.
  30. R. Y. Gu, R. N. Mahalati, and J. M. Kahn, “Noise-reduction algorithms for optimization-based imaging through multi-mode fiber,” Opt. Express 22(12), 15118–15132 (2014).
    [Crossref] [PubMed]
  31. E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21(18), 20713–20721 (2013).
    [Crossref] [PubMed]
  32. E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
    [Crossref] [PubMed]
  33. D. G. Shamir Rosen, O. Katz, and Y. Silberberg, Focusing and Scanning through Flexible Multimode Fibers without Access to the Distal End,” http://arxiv.org/abs/1506.08586 (2015).
  34. L. V. Amitonova, A. P. Mosk, and P. W. H. Pinkse, “The Rotational memory effect of a multimode fiber,” Opt. Express 23(16), 20569–20575 (2015).
    [Crossref] [PubMed]
  35. R. Y. Gu, R. N. Mahalati, and J. M. Kahn, “Design of flexible multi-mode fiber endoscope,” Opt. Express 23(21), 26905–26918 (2015).
    [Crossref] [PubMed]
  36. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  37. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  38. M. Müller, J. Squier, and G. J. Brakenhoff, “Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption,” Opt. Lett. 20(9), 1038–1040 (1995).
    [Crossref] [PubMed]
  39. O. Lammel and A. Penzkofer, “Femtosecond pulse duration measurement by two-photon fluorescence detection,” Opt. Quantum Electron. 32(10), 1147–1160 (2000).
    [Crossref]
  40. R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
    [Crossref] [PubMed]

2015 (5)

2014 (3)

2013 (2)

2012 (6)

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

2011 (2)

2010 (1)

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

2008 (1)

I. M. Vellekoop and A. P. Mosk, “Universal Optimal Transmission of Light Through Disordered Materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

2007 (1)

2005 (2)

2004 (2)

2002 (1)

2000 (3)

1995 (1)

1993 (1)

1991 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

1987 (1)

1984 (1)

1976 (1)

A. Yariv, “Three‐dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett. 28(2), 88–89 (1976).
[Crossref]

Amitonova, L. V.

Andresen, E. R.

Aziz, D.

Beckwith, P.

Bianchi, S.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
[Crossref] [PubMed]

Boccara, A. C.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Bouwmans, G.

Brakenhoff, G. J.

Caravaca-Aguirre, A. M.

Carlson, K.

Carminati, R.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Cheung, E. L. M.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Chidley, M.

Choi, W.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Choi, Y.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

Chung, E.

Cizmar, T.

M. Ploschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Cižmár, T.

Cocker, E. D.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Conkey, D. B.

Dasari, R. R.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Descour, M.

Descour, M. R.

Dholakia, K.

Di Leonardo, R.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
[Crossref] [PubMed]

Dlugan, A. L. P.

Fang-Yen, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Farahi, S.

Fink, M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Flusberg, B. A.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Follen, M.

Fork, R. L.

Forman, P. R.

Gigan, S.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Gillenwater, A.

Gmitro, A. F.

Göbel, W.

Gordon, J. P.

Goy, A.

Gu, R. Y.

Helmchen, F.

Jahoda, F. C.

Jung, J. C.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Kahn, J. M.

Kano, A.

Kerr, J. N. D.

Kim, D.

Kim, J.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

Kim, M.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Kroto, S. M.

Lammel, O.

O. Lammel and A. Penzkofer, “Femtosecond pulse duration measurement by two-photon fluorescence detection,” Opt. Quantum Electron. 32(10), 1147–1160 (2000).
[Crossref]

Lane, P. M.

Lee, K. J.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Lerosey, G.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Liang, C.

Loterie, D.

Macaulay, C. E.

Mahalati, R. N.

Martinez, O. E.

Mason, B. L.

McMichael, I.

Monneret, S.

Moon, J.

Morales-Delgado, E. E.

Moser, C.

Mosk, A. P.

Müller, M.

Nimmerjahn, A.

Papadopoulos, I.

Papadopoulos, I. N.

Park, Q. H.

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

Penzkofer, A.

O. Lammel and A. Penzkofer, “Femtosecond pulse duration measurement by two-photon fluorescence detection,” Opt. Quantum Electron. 32(10), 1147–1160 (2000).
[Crossref]

Piestun, R.

Pinkse, P. W. H.

Piyawattanametha, W.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Ploschner, M.

M. Ploschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Plöschner, M.

Popoff, S. M.

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

Psaltis, D.

Richards-Kortum, R.

Richards-Kortum, R. R.

Rigneault, H.

Rouse, A. R.

Schnitzer, M. J.

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Squier, J.

Straka, B.

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Sung, K.-B.

Tyc, T.

M. Ploschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Udovich, J. A.

Vellekoop, I. M.

I. M. Vellekoop and A. P. Mosk, “Universal Optimal Transmission of Light Through Disordered Materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Yang, T. D.

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

Yariv, A.

A. Yariv, “Three‐dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett. 28(2), 88–89 (1976).
[Crossref]

Yeh, P.

Yoon, C.

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

A. Yariv, “Three‐dimensional pictorial transmission in optical fibers,” Appl. Phys. Lett. 28(2), 88–89 (1976).
[Crossref]

Biomed. Opt. Express (1)

Lab Chip (1)

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Cižmár and K. Dholakia, “Exploiting multimode waveguides for pure fibre-based imaging,” Nat. Commun. 3, 1027 (2012).
[Crossref] [PubMed]

Nat. Methods (1)

B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Kim, Y. Choi, C. Yoon, W. Choi, J. Kim, Q. H. Park, and W. Choi, “Maximal energy transport through disordered media with the implementation of transmission eigenchannels,” Nat. Photonics 6(9), 583–585 (2012).
[Crossref]

M. Ploschner, T. Tyc, and T. Cizmar, “Seeing through chaos in multimode fibres,” Nat. Photonics 9(8), 529–535 (2015).
[Crossref]

Opt. Express (11)

T. Čižmár and K. Dholakia, “Shaping the light transmission through a multimode optical fibre: complex transformation analysis and applications in biophotonics,” Opt. Express 19(20), 18871–18884 (2011).
[Crossref] [PubMed]

D. Loterie, S. Farahi, I. Papadopoulos, A. Goy, D. Psaltis, and C. Moser, “Digital confocal microscopy through a multimode fiber,” Opt. Express 23(18), 23845–23858 (2015).
[Crossref] [PubMed]

M. Plöschner, B. Straka, K. Dholakia, and T. Čižmár, “GPU accelerated toolbox for real-time beam-shaping in multimode fibres,” Opt. Express 22(3), 2933–2947 (2014).
[Crossref] [PubMed]

L. V. Amitonova, A. P. Mosk, and P. W. H. Pinkse, “The Rotational memory effect of a multimode fiber,” Opt. Express 23(16), 20569–20575 (2015).
[Crossref] [PubMed]

R. Y. Gu, R. N. Mahalati, and J. M. Kahn, “Design of flexible multi-mode fiber endoscope,” Opt. Express 23(21), 26905–26918 (2015).
[Crossref] [PubMed]

R. Y. Gu, R. N. Mahalati, and J. M. Kahn, “Noise-reduction algorithms for optimization-based imaging through multi-mode fiber,” Opt. Express 22(12), 15118–15132 (2014).
[Crossref] [PubMed]

E. R. Andresen, G. Bouwmans, S. Monneret, and H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21(18), 20713–20721 (2013).
[Crossref] [PubMed]

E. E. Morales-Delgado, S. Farahi, I. N. Papadopoulos, D. Psaltis, and C. Moser, “Delivery of focused short pulses through a multimode fiber,” Opt. Express 23(7), 9109–9120 (2015).
[Crossref] [PubMed]

D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, “High-speed scattering medium characterization with application to focusing light through turbid media,” Opt. Express 20(2), 1733–1740 (2012).
[Crossref] [PubMed]

I. N. Papadopoulos, S. Farahi, C. Moser, and D. Psaltis, “Focusing and scanning light through a multimode optical fiber using digital phase conjugation,” Opt. Express 20(10), 10583–10590 (2012).
[Crossref] [PubMed]

R. Di Leonardo and S. Bianchi, “Hologram transmission through multi-mode optical fibers,” Opt. Express 19(1), 247–254 (2011).
[Crossref] [PubMed]

Opt. Lett. (9)

M. Müller, J. Squier, and G. J. Brakenhoff, “Measurement of femtosecond pulses in the focal point of a high-numerical-aperture lens by two-photon absorption,” Opt. Lett. 20(9), 1038–1040 (1995).
[Crossref] [PubMed]

R. L. Fork, O. E. Martinez, and J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984).
[Crossref] [PubMed]

W. Göbel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29(21), 2521–2523 (2004).
[Crossref] [PubMed]

P. M. Lane, A. L. P. Dlugan, R. Richards-Kortum, and C. E. Macaulay, “Fiber-optic confocal microscopy using a spatial light modulator,” Opt. Lett. 25(24), 1780–1782 (2000).
[Crossref] [PubMed]

A. F. Gmitro and D. Aziz, “Confocal microscopy through a fiber-optic imaging bundle,” Opt. Lett. 18(8), 565–567 (1993).
[Crossref] [PubMed]

A. R. Rouse and A. F. Gmitro, “Multispectral imaging with a confocal microendoscope,” Opt. Lett. 25(23), 1708–1710 (2000).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32(16), 2309–2311 (2007).
[Crossref] [PubMed]

D. Kim, J. Moon, M. Kim, T. D. Yang, J. Kim, E. Chung, and W. Choi, “Toward a miniature endomicroscope: pixelation-free and diffraction-limited imaging through a fiber bundle,” Opt. Lett. 39(7), 1921–1924 (2014).
[Crossref] [PubMed]

I. McMichael, P. Yeh, and P. Beckwith, “Correction of Polarization and Modal Scrambling in Multimode Fibers by Phase Conjugation,” Opt. Lett. 12(7), 507–509 (1987).
[Crossref] [PubMed]

Opt. Quantum Electron. (1)

O. Lammel and A. Penzkofer, “Femtosecond pulse duration measurement by two-photon fluorescence detection,” Opt. Quantum Electron. 32(10), 1147–1160 (2000).
[Crossref]

Phys. Rev. Lett. (3)

Y. Choi, C. Yoon, M. Kim, T. D. Yang, C. Fang-Yen, R. R. Dasari, K. J. Lee, and W. Choi, “Scanner-free and wide-field endoscopic imaging by using a single multimode optical fiber,” Phys. Rev. Lett. 109(20), 203901 (2012).
[Crossref] [PubMed]

S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104(10), 100601 (2010).
[Crossref] [PubMed]

I. M. Vellekoop and A. P. Mosk, “Universal Optimal Transmission of Light Through Disordered Materials,” Phys. Rev. Lett. 101(12), 120601 (2008).
[Crossref] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Other (4)

Y. Pu, X. Yang, I. Papadoupoulos, S. Farahi, C.-L. Hsieh, C. A. Ong, C. Moser, D. Psaltis, and K. Stankovic, “Imaging of the Mouse Cochlea with Two-photon Microscopy and Multimode Fiber-based Microendoscopy,” in Biomedical Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), BT4A.3.

D. G. Shamir Rosen, O. Katz, and Y. Silberberg, Focusing and Scanning through Flexible Multimode Fibers without Access to the Distal End,” http://arxiv.org/abs/1506.08586 (2015).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).

A. M. Caravaca-Aguirre, E. Niv, and R. Piestun, “High-Speed Phase Modulation for Multimode Fiber Endoscope,” in Imaging and Applied Optics 2014, OSA Technical Digest (online) (Optical Society of America, 2014), ITh3C.1.

Supplementary Material (1)

NameDescription
» Visualization 1: AVI (923 KB)      Optical sectioning

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Experimental Setup. Calibration step. A calibration beam, previously pre-chirped for compensation of GVD, is focused and coupled into the multimode fiber. The field emerging from the proximal side of the fiber is interfered with the reference beam. An off-axis digital hologram is recorded. Reconstruction step. The flip mirror is removed. The reference reconstructs the phase conjugated version of the recorded hologram. Light counter propagates through the fiber, generating the initial focus on the distal side. Imaging step. The focused pulses are sequentially scanned over the specimen. The emitted two-photon fluorescence (2PF) is collected through the fiber and measured with the PMT.
Fig. 2
Fig. 2 Scanning of the focused spot at the fundamental wavelength of 800 nm. (a) Sequential superposition of a focused pulse scanned in a 80x80 µm field of view. Scanning step is 4 µm. (b) Intensity enhancement of the focused pulse as a function of scanning position. (c) FWHM size of the focused pulses as a function of scanning position. (d) Line profile of (b) at the location of the dashed lines. (e) Line profile of (c) at the location of the dashed lines. Scale bars are 10 µm. The dashed orange circle represents the core of the multimode fiber.
Fig. 3
Fig. 3 Pulse width characterization. Intensity of the generated focused pulses at 800 nm without (a) and with (b) GVD compensation. (c) Intensity enhancement vs position. (d) Pulse width vs position. (e), (f) Sample interferometric autocorrelation traces of the central focused pulses with and without GVD compensation respectively. (g) Intensity autocorrelation of the delivered pulse when no wavefront control is used. Scale bars are 10 µm. The dashed orange semi-circle in (a) represents the core of the multimode fiber.
Fig. 4
Fig. 4 Two-photon images of fluorescent beads. (y,x,z) Field of view is 28x49x50 µm. Scale bars are 10 µm. To view all the frames see Visualization 1.
Fig. 5
Fig. 5 Normalized fluorescent photons as a function of position. Scale bar is 10 µm.
Fig. 6
Fig. 6 Experimental PSF of the multimode fiber imaging system. (a) Single-photon fluorescence. (b) Two-photon fluorescence. (c) Normalized PSF of (a) and (b) at y = 0.
Fig. 7
Fig. 7 Multimode fiber probe. The white horizontal lines are the reflection of the lamp of the microscope.
Fig. 8
Fig. 8 Complete diagram of the experimental setup.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n a p 0 2 δ τ p f p 2 ( N A 2 2 h c λ ) 2
G D D p r i s m   p a i r = λ 3 2 π c 2 [ 4 l { [ d 2 n d λ 2 + ( 2 n 1 n 3 ) ( d n d λ ) 2 ] sin β 2 ( d n d λ ) 2 cos β } + 8 D ( d 2 n d λ 2 ) ]

Metrics