Abstract

We propose and fabricate a wavelength-division-multiplexing (WDM) compatible and multi-functional mode-division-multiplexing (MDM) integrated circuit, which can perform the mode conversion and multiplexing for the incoming multipath WDM signals, avoiding the wavelength conflict. An phase-to-intensity demodulation function can be optionally applied within the circuit while performing the mode multiplexing. For demonstration, 4 × 10 Gb/s non-return-to-zero differential phase shift keying (NRZ-DPSK) signals are successfully processed, with open and clear eye diagrams. Measured bit error ratio (BER) results show less than 1dB receive sensitivity variation for three modes and four wavelengths with demodulation. In the case without demodulation, the average power penalties at 4 wavelengths are −1.5, −3 and −3.5 dB for TE0-TE0, TE0-TE1 and TE0-TE2 mode conversions, respectively. The proposed flexible scheme can be used at the interface of long-haul and on-chip communication systems.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On-chip data exchange for mode division multiplexed signals

Mengyuan Ye, Yu Yu, Chunlei Sun, and Xinliang Zhang
Opt. Express 24(1) 528-535 (2016)

Switchable in-line monitor for multi-dimensional multiplexed photonic integrated circuit

Guanyu Chen, Yu Yu, Mengyuan Ye, and Xinliang Zhang
Opt. Express 24(13) 14841-14850 (2016)

On-chip mode-division multiplexing switch

Brian Stern, Xiaoliang Zhu, Christine P. Chen, Lawrence D. Tzuang, Jaime Cardenas, Keren Bergman, and Michal Lipson
Optica 2(6) 530-535 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. J. Winzer, “Making spatial multiplexing a reality,” Nat. Photonics 8(5), 345–348 (2014).
    [Crossref]
  2. R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
    [Crossref]
  3. P. Sillard, M. Bigot-Astruc, and D. Molin, “Few-mode fibers for mode-division-multiplexed systems,” J. Lightwave Technol. 32(16), 2824–2829 (2014).
    [Crossref]
  4. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  5. T. Uematsu, Y. Ishizaka, Y. Kawaguchi, K. Saitoh, and M. Koshiba, “Design of a compact two-mode multi/demultiplexer consisting of multimode interference waveguides and a wavelength-insensitive phase shifter for mode-division multiplexing transmission,” J. Lightwave Technol. 30(15), 2421–2426 (2012).
    [Crossref]
  6. M. Ye, Y. Yu, J. Zou, W. Yang, and X. Zhang, “On-chip multiplexing conversion between wavelength division multiplexing-polarization division multiplexing and wavelength division multiplexing-mode division multiplexing,” Opt. Lett. 39(4), 758–761 (2014).
    [Crossref] [PubMed]
  7. J. B. Driscoll, R. R. Grote, B. Souhan, J. I. Dadap, M. Lu, and R. M. Osgood, “Asymmetric Y junctions in silicon waveguides for on-chip mode-division multiplexing,” Opt. Lett. 38(11), 1854–1856 (2013).
    [Crossref] [PubMed]
  8. J. B. Driscoll, C. P. Chen, R. R. Grote, B. Souhan, J. I. Dadap, A. Stein, M. Lu, K. Bergman, and R. M. Osgood., “A 60 Gb/s MDM-WDM Si photonic link with < 0.7 dB power penalty per channel,” Opt. Express 22(15), 18543–18555 (2014).
    [Crossref] [PubMed]
  9. D. Dai, J. Wang, and Y. Shi, “Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelength-carrier light,” Opt. Lett. 38(9), 1422–1424 (2013).
    [Crossref] [PubMed]
  10. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, and C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013).
    [Crossref] [PubMed]
  11. J. Wang, P. Chen, S. Chen, Y. Shi, and D. Dai, “Improved 8-channel silicon mode demultiplexer with grating polarizers,” Opt. Express 22(11), 12799–12807 (2014).
    [Crossref] [PubMed]
  12. L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
    [Crossref] [PubMed]
  13. Y. Yu, M. Ye, and S. Fu, “On-chip polarization controlled mode converter with capability of WDM operation,” IEEE Photonics Technol. Lett. 27(18), 1957–1960 (2015).
    [Crossref]
  14. B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530–535 (2015).
    [Crossref]
  15. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  16. A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
    [Crossref] [PubMed]
  17. Y. Yu, J. Fernández, X. Zhang, D. Huang, R. V. Penty, and I. H. White, “Novel and flexible WDM NRZ-DPSK system with demultiplexing and demodulation using a single standard AWG,” Proc. Optical Fiber Communication Conference (OFC), OThF7 (2009).
    [Crossref]
  18. M. Ye, Y. Yu, G. Chen, Y. Luo, L. Shi, and X. Zhang, “Photonics integrated circuit for WDM mode division multiplexing with phase to intensity demodulation,” Proc. Conference on Lasers and ElectroOptics (CLEO), STh1F.5 (2015).
    [Crossref]

2015 (2)

Y. Yu, M. Ye, and S. Fu, “On-chip polarization controlled mode converter with capability of WDM operation,” IEEE Photonics Technol. Lett. 27(18), 1957–1960 (2015).
[Crossref]

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530–535 (2015).
[Crossref]

2014 (7)

2013 (3)

2012 (2)

2009 (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

2006 (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Bergman, K.

Bergmen, K.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Biberman, A.

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
[Crossref] [PubMed]

Bigot-Astruc, M.

Cardenas, J.

Chen, C. P.

Chen, P.

Chen, S.

Correa, R. A.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Da Ros, F.

Dadap, J. I.

Dai, D.

de Waardt, H.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Ding, Y.

Driscoll, J. B.

Fu, S.

Y. Yu, M. Ye, and S. Fu, “On-chip polarization controlled mode converter with capability of WDM operation,” IEEE Photonics Technol. Lett. 27(18), 1957–1960 (2015).
[Crossref]

Gabrielli, L. H.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Grote, R. R.

Huang, B.

Huijskens, F. M.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Ishizaka, Y.

Kawaguchi, Y.

Koonen, A. M. J.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Koshiba, M.

Li, G.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Lipson, M.

B. Stern, X. Zhu, C. P. Chen, L. D. Tzuang, J. Cardenas, K. Bergman, and M. Lipson, “On-chip mode-division multiplexing switch,” Optica 2(6), 530–535 (2015).
[Crossref]

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Lopez, E. A.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Lu, M.

Luo, L.-W.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Molin, D.

Okonkwo, C. M.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Ophir, N.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Osgood, R. M.

Ou, H.

Peucheret, C.

Poitras, C. B.

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Saitoh, K.

Schülzgen, A.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Shi, Y.

Sillard, P.

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Souhan, B.

Stein, A.

Stern, B.

Tzuang, L. D.

Uematsu, T.

van Uden, R. G. H.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Wang, J.

Winzer, P. J.

P. J. Winzer, “Making spatial multiplexing a reality,” Nat. Photonics 8(5), 345–348 (2014).
[Crossref]

Xia, C.

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Xu, J.

Yang, W.

Ye, M.

Yu, Y.

Zhang, X.

Zhu, X.

Zou, J.

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Yu, M. Ye, and S. Fu, “On-chip polarization controlled mode converter with capability of WDM operation,” IEEE Photonics Technol. Lett. 27(18), 1957–1960 (2015).
[Crossref]

J. Lightwave Technol. (2)

Nat. Commun. (1)

L.-W. Luo, N. Ophir, C. P. Chen, L. H. Gabrielli, C. B. Poitras, K. Bergmen, and M. Lipson, “WDM-compatible mode-division multiplexing on a silicon chip,” Nat. Commun. 5, 3069 (2014).
[Crossref] [PubMed]

Nat. Photonics (2)

P. J. Winzer, “Making spatial multiplexing a reality,” Nat. Photonics 8(5), 345–348 (2014).
[Crossref]

R. G. H. van Uden, R. A. Correa, E. A. Lopez, F. M. Huijskens, C. Xia, G. Li, A. Schülzgen, H. de Waardt, A. M. J. Koonen, and C. M. Okonkwo, “Ultra-high-density spatial division multiplexing with a few-mode multicore fibre,” Nat. Photonics 8(11), 865–870 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optica (1)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Rep. Prog. Phys. (1)

A. Biberman and K. Bergman, “Optical interconnection networks for high-performance computing systems,” Rep. Prog. Phys. 75(4), 046402 (2012).
[Crossref] [PubMed]

Other (2)

Y. Yu, J. Fernández, X. Zhang, D. Huang, R. V. Penty, and I. H. White, “Novel and flexible WDM NRZ-DPSK system with demultiplexing and demodulation using a single standard AWG,” Proc. Optical Fiber Communication Conference (OFC), OThF7 (2009).
[Crossref]

M. Ye, Y. Yu, G. Chen, Y. Luo, L. Shi, and X. Zhang, “Photonics integrated circuit for WDM mode division multiplexing with phase to intensity demodulation,” Proc. Conference on Lasers and ElectroOptics (CLEO), STh1F.5 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Shematic and (b) structure of the proposed circuit; (c) structure and parameter description of the TE0-TE1 MRR based mode convertor.
Fig. 2
Fig. 2 Principle of the optional demodulation function.
Fig. 3
Fig. 3 (a) Modified ridge waveguide (b) conventional channel waveguide (c) simulated effective index to waveguide width relationship for both two waveguide designs.
Fig. 4
Fig. 4 Microscope image of the fabricated device. Inset: image of the single MRR to show the structure in details.
Fig. 5
Fig. 5 The measured transmission spectra at (a) O1 (TE0); (b) O2 (TE1); (c) O3 (TE2) for signal injection on each of the three input ports.
Fig. 6
Fig. 6 The experimental setup for optional WDM DPSK signals demodulation. The insets show eye diagram of the signal before and after processing in the chip. Two situations are demonstrated (a) ring resonating wavelength aligned to the DPSK signals; (b) ring resonating wavelength detuning to the DPSK signals. (PC: Polarization Controller, OSA: Optical Spectrum Analyzer, CSA: Communication Signal Analyzer)
Fig. 7
Fig. 7 The measured input and output eye diagrams for different modes, wavelengths and states.
Fig. 8
Fig. 8 WDM DPSK signals demodulation (detuned state). The measured (a) to (c): corresponding transmission spectra for TE0-TE0, TE0-TE1 and TE0-TE2 mode conversions; (d) measured BER results.
Fig. 9
Fig. 9 WDM DPSK signals filtering (aligned state). The measured (a) to (c): corresponding transmission spectra for TE0-TE0, TE0-TE1 and TE0-TE2 mode conversions; (d) measured BER results.

Metrics