Abstract

We demonstrate an as yet unused method to sieve, localize, and steer plasmonic hot spot within metallic nano-interstices close to percolation threshold. Multicolor superlocalization of plasmon mode within 60 nm was constantly achieved by chirp-manipulated superresolved four wave mixing (FWM) images. Since the percolated film is strongly plasmonic active and structurally multiscale invariant, the present method provides orders of magnitude enhanced light localization within single metallic nano-interstice, and can be universally applied to any region of the random film. The result, verified by the maximum likelihood estimation (MLE) and deconvolution stochastic optical reconstruction microscopy (deconSTORM) algorithm, may contribute to label-free multiplex superlocalized spectroscopy of single molecule and sub-cellular activity monitoring combining hot spot steering capability.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancement of two-photon photoluminescence and SERS for low-coverage gold films

Sergey M. Novikov, Jonas Beermann, Christian Frydendahl, Nicolas Stenger, Victor Coello, N. Asger Mortensen, and Sergey I. Bozhevolnyi
Opt. Express 24(15) 16743-16751 (2016)

Role of interactions in the magneto-plasmonic response at the geometrical threshold of surface continuity

Evangelos Th. Papaioannou, Hui Fang, Blanca Caballero, Eser Metin Akinoglu, Michael Giersig, Antonio García-Martín, and Paul Fumagalli
Opt. Express 25(26) 32792-32799 (2017)

Fabrication of silver dendrite fractal structures for enhanced second harmonic generation and surface-enhanced Raman scattering

Ziqiang Cheng, Yunhang Qiu, Zonglin Li, Dajie Yang, Sijing Ding, Guangling Cheng, Zhonghua Hao, and Ququan Wang
Opt. Mater. Express 9(2) 860-869 (2019)

References

  • View by:
  • |
  • |
  • |

  1. P. C. Lee and D. P. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
    [Crossref]
  2. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
    [Crossref] [PubMed]
  3. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [Crossref]
  4. J. Jeon, S. Park, and B. J. Lee, “Optical property of blended plasmonic nanofluid based on gold nanorods,” Opt. Express 22(4), A1101–A1111 (2014).
    [Crossref] [PubMed]
  5. M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
    [Crossref]
  6. S. Chen, Z. Fan, and D. L. Carroll, “Silver nanodisks: synthesis, characterization, and self-assembly,” J. Phys. Chem. B 106(42), 10777–10781 (2002).
    [Crossref]
  7. H. C. Chu, C. H. Kuo, and M. H. Huang, “Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges,” Inorg. Chem. 45(2), 808–813 (2006).
    [Crossref] [PubMed]
  8. J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553 (1995).
    [Crossref]
  9. S. Kundu and U. Nithiyanantham, “In situ formation of curcumin stabilized shape-selective Ag nanostructures in aqueous solution and their pronounced SERS activity,” RSC Advances 3(47), 25278–25290 (2013).
    [Crossref]
  10. N. J. Borys, M. J. Walter, and J. M. Lupton, “Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films,” Phys. Rev. B 80(16), 161407 (2009).
    [Crossref]
  11. C. Douketis, T. L. Haslett, J. T. Stuckless, M. Moskovits, and V. M. Shalaev, “Direct and roughness-induced indirect transitionsin photoemission from silver films,” Surf. Sci. Lett. 297(2), L84–L90 (1993).
    [Crossref]
  12. H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
    [Crossref] [PubMed]
  13. M. P. Busson, B. Rolly, B. Stout, N. Bonod, E. Larquet, A. Polman, and S. Bidault, “Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand,” Nano Lett. 11(11), 5060–5065 (2011).
    [Crossref] [PubMed]
  14. T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21(22), 27306–27325 (2013).
    [Crossref] [PubMed]
  15. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
    [Crossref] [PubMed]
  16. A. I. Maaroof and D. S. Sutherland, “Optimum plasmon hybridization at percolation threshold of silver films near metallic surfaces,” J. Phys. D 43(40), 405301 (2010).
    [Crossref]
  17. P. Gadenne, A. Beghdadi, and J. Lafait, “Optical cross-over analysis of granular gold films at percolation,” Opt. Commun. 65(1), 17–21 (1988).
    [Crossref]
  18. K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
    [Crossref]
  19. S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
    [Crossref]
  20. V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
    [Crossref] [PubMed]
  21. G. Santoro, S. Yu, M. Schwartzkopf, P. Zhang, S. K. Vayalil, J. F. H. Risch, M. A. Rubhausen, M. Hernández, C. Domingo, and S. V. Roth, “Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement,” Appl. Phys. Lett. 104(24), 243107 (2014).
  22. A. Biswas, I. S. Bayer, D. H. Dahanayaka, L. A. Bumm, Z. Li, F. Watanabe, R. Sharma, Y. Xu, A. S. Biris, M. G. Norton, and E. Suhir, “Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates,” Nanotechnology 20(32), 325705 (2009).
    [Crossref] [PubMed]
  23. O. Popov, A. Zilbershtein, and D. Davidovb, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
    [Crossref]
  24. E. M. Kim, S. S. Elovikov, T. V. Murzina, A. A. Nikulin, O. A. Aktsipetrov, M. A. Bader, and G. Marowsky, “Surface-enhanced optical third-harmonic generation in Ag island films,” Phys. Rev. Lett. 95(22), 227402 (2005).
    [Crossref] [PubMed]
  25. N. J. Borys, E. Shafran, and J. M. Lupton, “Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots,” Sci. Rep. 3, 2090 (2013).
    [Crossref] [PubMed]
  26. N. J. Borys and J. M. Lupton, “Surface-enhanced light emission from single hot spots in tollens reaction silver nanoparticle films: linear versus nonlinear optical excitation,” J. Phys. Chem. C 115(28), 13645–13659 (2011).
    [Crossref]
  27. K. Seal, A. K. Sarychev, H. Noh, D. A. Genov, A. Yamilov, V. M. Shalaev, Z. C. Ying, and H. Cao, “Near-field intensity correlations in semicontinuous metal-dielectric films,” Phys. Rev. Lett. 94(22), 226101 (2005).
    [Crossref] [PubMed]
  28. C. Awada, G. Barbillon, F. Charra, L. Douillard, and J. J. Greffet, “Experimental study of hot spots in gold/glass nanocomposite films by photoemission electron microscopy,” Phys. Rev. B 85(4), 045438 (2012).
    [Crossref]
  29. H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
    [Crossref] [PubMed]
  30. H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
    [Crossref] [PubMed]
  31. V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2002).
  32. P. D. Simonson, E. Rothenberg, and P. R. Selvin, “Single-molecule-based super-resolution images in the presence of multiple fluorophores,” Nano Lett. 11(11), 5090–5096 (2011).
    [Crossref] [PubMed]
  33. G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Phys. Chem. 61(1), 345–367 (2010).
    [Crossref] [PubMed]
  34. C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010).
    [Crossref] [PubMed]
  35. N. J. Borys, E. Shafran, and J. M. Lupton, “Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots,” Sci. Rep. 3, 2090 (2013).
    [Crossref] [PubMed]
  36. E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).
    [Crossref] [PubMed]
  37. S. M. Stranahan and K. A. Willets, “Super-resolution optical imaging of single-molecule SERS hot spots,” Nano Lett. 10(9), 3777–3784 (2010).
    [Crossref] [PubMed]
  38. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [Crossref] [PubMed]
  39. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [Crossref] [PubMed]
  40. M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  41. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [Crossref] [PubMed]
  42. K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
    [Crossref] [PubMed]
  43. E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).
    [Crossref] [PubMed]
  44. R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
    [Crossref] [PubMed]

2014 (5)

J. Jeon, S. Park, and B. J. Lee, “Optical property of blended plasmonic nanofluid based on gold nanorods,” Opt. Express 22(4), A1101–A1111 (2014).
[Crossref] [PubMed]

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

G. Santoro, S. Yu, M. Schwartzkopf, P. Zhang, S. K. Vayalil, J. F. H. Risch, M. A. Rubhausen, M. Hernández, C. Domingo, and S. V. Roth, “Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement,” Appl. Phys. Lett. 104(24), 243107 (2014).

S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
[Crossref]

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

2013 (4)

N. J. Borys, E. Shafran, and J. M. Lupton, “Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots,” Sci. Rep. 3, 2090 (2013).
[Crossref] [PubMed]

N. J. Borys, E. Shafran, and J. M. Lupton, “Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots,” Sci. Rep. 3, 2090 (2013).
[Crossref] [PubMed]

S. Kundu and U. Nithiyanantham, “In situ formation of curcumin stabilized shape-selective Ag nanostructures in aqueous solution and their pronounced SERS activity,” RSC Advances 3(47), 25278–25290 (2013).
[Crossref]

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21(22), 27306–27325 (2013).
[Crossref] [PubMed]

2012 (4)

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).
[Crossref] [PubMed]

C. Awada, G. Barbillon, F. Charra, L. Douillard, and J. J. Greffet, “Experimental study of hot spots in gold/glass nanocomposite films by photoemission electron microscopy,” Phys. Rev. B 85(4), 045438 (2012).
[Crossref]

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).
[Crossref] [PubMed]

2011 (4)

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

P. D. Simonson, E. Rothenberg, and P. R. Selvin, “Single-molecule-based super-resolution images in the presence of multiple fluorophores,” Nano Lett. 11(11), 5090–5096 (2011).
[Crossref] [PubMed]

N. J. Borys and J. M. Lupton, “Surface-enhanced light emission from single hot spots in tollens reaction silver nanoparticle films: linear versus nonlinear optical excitation,” J. Phys. Chem. C 115(28), 13645–13659 (2011).
[Crossref]

M. P. Busson, B. Rolly, B. Stout, N. Bonod, E. Larquet, A. Polman, and S. Bidault, “Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand,” Nano Lett. 11(11), 5060–5065 (2011).
[Crossref] [PubMed]

2010 (6)

A. I. Maaroof and D. S. Sutherland, “Optimum plasmon hybridization at percolation threshold of silver films near metallic surfaces,” J. Phys. D 43(40), 405301 (2010).
[Crossref]

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Phys. Chem. 61(1), 345–367 (2010).
[Crossref] [PubMed]

C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010).
[Crossref] [PubMed]

S. M. Stranahan and K. A. Willets, “Super-resolution optical imaging of single-molecule SERS hot spots,” Nano Lett. 10(9), 3777–3784 (2010).
[Crossref] [PubMed]

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref] [PubMed]

2009 (2)

A. Biswas, I. S. Bayer, D. H. Dahanayaka, L. A. Bumm, Z. Li, F. Watanabe, R. Sharma, Y. Xu, A. S. Biris, M. G. Norton, and E. Suhir, “Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates,” Nanotechnology 20(32), 325705 (2009).
[Crossref] [PubMed]

N. J. Borys, M. J. Walter, and J. M. Lupton, “Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films,” Phys. Rev. B 80(16), 161407 (2009).
[Crossref]

2006 (4)

H. C. Chu, C. H. Kuo, and M. H. Huang, “Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges,” Inorg. Chem. 45(2), 808–813 (2006).
[Crossref] [PubMed]

O. Popov, A. Zilbershtein, and D. Davidovb, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

2005 (2)

E. M. Kim, S. S. Elovikov, T. V. Murzina, A. A. Nikulin, O. A. Aktsipetrov, M. A. Bader, and G. Marowsky, “Surface-enhanced optical third-harmonic generation in Ag island films,” Phys. Rev. Lett. 95(22), 227402 (2005).
[Crossref] [PubMed]

K. Seal, A. K. Sarychev, H. Noh, D. A. Genov, A. Yamilov, V. M. Shalaev, Z. C. Ying, and H. Cao, “Near-field intensity correlations in semicontinuous metal-dielectric films,” Phys. Rev. Lett. 94(22), 226101 (2005).
[Crossref] [PubMed]

2003 (1)

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[Crossref]

2002 (2)

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

S. Chen, Z. Fan, and D. L. Carroll, “Silver nanodisks: synthesis, characterization, and self-assembly,” J. Phys. Chem. B 106(42), 10777–10781 (2002).
[Crossref]

2000 (2)

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

1997 (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

1995 (1)

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553 (1995).
[Crossref]

1994 (1)

1993 (1)

C. Douketis, T. L. Haslett, J. T. Stuckless, M. Moskovits, and V. M. Shalaev, “Direct and roughness-induced indirect transitionsin photoemission from silver films,” Surf. Sci. Lett. 297(2), L84–L90 (1993).
[Crossref]

1988 (1)

P. Gadenne, A. Beghdadi, and J. Lafait, “Optical cross-over analysis of granular gold films at percolation,” Opt. Commun. 65(1), 17–21 (1988).
[Crossref]

1982 (1)

P. C. Lee and D. P. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

Aizpurua, J.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21(22), 27306–27325 (2013).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Aktsipetrov, O. A.

E. M. Kim, S. S. Elovikov, T. V. Murzina, A. A. Nikulin, O. A. Aktsipetrov, M. A. Bader, and G. Marowsky, “Surface-enhanced optical third-harmonic generation in Ag island films,” Phys. Rev. Lett. 95(22), 227402 (2005).
[Crossref] [PubMed]

Aouani, H.

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Awada, C.

C. Awada, G. Barbillon, F. Charra, L. Douillard, and J. J. Greffet, “Experimental study of hot spots in gold/glass nanocomposite films by photoemission electron microscopy,” Phys. Rev. B 85(4), 045438 (2012).
[Crossref]

Babcock, H.

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).
[Crossref] [PubMed]

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).
[Crossref] [PubMed]

Bader, M. A.

E. M. Kim, S. S. Elovikov, T. V. Murzina, A. A. Nikulin, O. A. Aktsipetrov, M. A. Bader, and G. Marowsky, “Surface-enhanced optical third-harmonic generation in Ag island films,” Phys. Rev. Lett. 95(22), 227402 (2005).
[Crossref] [PubMed]

Barbillon, G.

C. Awada, G. Barbillon, F. Charra, L. Douillard, and J. J. Greffet, “Experimental study of hot spots in gold/glass nanocomposite films by photoemission electron microscopy,” Phys. Rev. B 85(4), 045438 (2012).
[Crossref]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Baumberg, J. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Bayer, I. S.

A. Biswas, I. S. Bayer, D. H. Dahanayaka, L. A. Bumm, Z. Li, F. Watanabe, R. Sharma, Y. Xu, A. S. Biris, M. G. Norton, and E. Suhir, “Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates,” Nanotechnology 20(32), 325705 (2009).
[Crossref] [PubMed]

Becker, S. F.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Beghdadi, A.

P. Gadenne, A. Beghdadi, and J. Lafait, “Optical cross-over analysis of granular gold films at percolation,” Opt. Commun. 65(1), 17–21 (1988).
[Crossref]

Berrier, A.

S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
[Crossref]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Beyer, A.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Bidault, S.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, E. Larquet, A. Polman, and S. Bidault, “Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand,” Nano Lett. 11(11), 5060–5065 (2011).
[Crossref] [PubMed]

Biris, A. S.

A. Biswas, I. S. Bayer, D. H. Dahanayaka, L. A. Bumm, Z. Li, F. Watanabe, R. Sharma, Y. Xu, A. S. Biris, M. G. Norton, and E. Suhir, “Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates,” Nanotechnology 20(32), 325705 (2009).
[Crossref] [PubMed]

Biswas, A.

A. Biswas, I. S. Bayer, D. H. Dahanayaka, L. A. Bumm, Z. Li, F. Watanabe, R. Sharma, Y. Xu, A. S. Biris, M. G. Norton, and E. Suhir, “Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates,” Nanotechnology 20(32), 325705 (2009).
[Crossref] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Bonod, N.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, E. Larquet, A. Polman, and S. Bidault, “Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand,” Nano Lett. 11(11), 5060–5065 (2011).
[Crossref] [PubMed]

Borisov, A. G.

T. V. Teperik, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers,” Opt. Express 21(22), 27306–27325 (2013).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Borys, N. J.

N. J. Borys, E. Shafran, and J. M. Lupton, “Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots,” Sci. Rep. 3, 2090 (2013).
[Crossref] [PubMed]

N. J. Borys, E. Shafran, and J. M. Lupton, “Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots,” Sci. Rep. 3, 2090 (2013).
[Crossref] [PubMed]

N. J. Borys and J. M. Lupton, “Surface-enhanced light emission from single hot spots in tollens reaction silver nanoparticle films: linear versus nonlinear optical excitation,” J. Phys. Chem. C 115(28), 13645–13659 (2011).
[Crossref]

N. J. Borys, M. J. Walter, and J. M. Lupton, “Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films,” Phys. Rev. B 80(16), 161407 (2009).
[Crossref]

Bösker, G.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Bumm, L. A.

A. Biswas, I. S. Bayer, D. H. Dahanayaka, L. A. Bumm, Z. Li, F. Watanabe, R. Sharma, Y. Xu, A. S. Biris, M. G. Norton, and E. Suhir, “Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates,” Nanotechnology 20(32), 325705 (2009).
[Crossref] [PubMed]

Busson, M. P.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, E. Larquet, A. Polman, and S. Bidault, “Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand,” Nano Lett. 11(11), 5060–5065 (2011).
[Crossref] [PubMed]

Cang, H.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Cao, H.

K. Seal, A. K. Sarychev, H. Noh, D. A. Genov, A. Yamilov, V. M. Shalaev, Z. C. Ying, and H. Cao, “Near-field intensity correlations in semicontinuous metal-dielectric films,” Phys. Rev. Lett. 94(22), 226101 (2005).
[Crossref] [PubMed]

Carminati, R.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Carroll, D. L.

S. Chen, Z. Fan, and D. L. Carroll, “Silver nanodisks: synthesis, characterization, and self-assembly,” J. Phys. Chem. B 106(42), 10777–10781 (2002).
[Crossref]

Castanié, E.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Charra, F.

C. Awada, G. Barbillon, F. Charra, L. Douillard, and J. J. Greffet, “Experimental study of hot spots in gold/glass nanocomposite films by photoemission electron microscopy,” Phys. Rev. B 85(4), 045438 (2012).
[Crossref]

Chen, S.

S. Chen, Z. Fan, and D. L. Carroll, “Silver nanodisks: synthesis, characterization, and self-assembly,” J. Phys. Chem. B 106(42), 10777–10781 (2002).
[Crossref]

Chu, H. C.

H. C. Chu, C. H. Kuo, and M. H. Huang, “Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges,” Inorg. Chem. 45(2), 808–813 (2006).
[Crossref] [PubMed]

Churchman, L. S.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref] [PubMed]

Dahanayaka, D. H.

A. Biswas, I. S. Bayer, D. H. Dahanayaka, L. A. Bumm, Z. Li, F. Watanabe, R. Sharma, Y. Xu, A. S. Biris, M. G. Norton, and E. Suhir, “Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates,” Nanotechnology 20(32), 325705 (2009).
[Crossref] [PubMed]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Davidovb, D.

O. Popov, A. Zilbershtein, and D. Davidovb, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Davidson, M.

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Phys. Chem. 61(1), 345–367 (2010).
[Crossref] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

De Wilde, Y.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Domingo, C.

G. Santoro, S. Yu, M. Schwartzkopf, P. Zhang, S. K. Vayalil, J. F. H. Risch, M. A. Rubhausen, M. Hernández, C. Domingo, and S. V. Roth, “Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement,” Appl. Phys. Lett. 104(24), 243107 (2014).

Douillard, L.

C. Awada, G. Barbillon, F. Charra, L. Douillard, and J. J. Greffet, “Experimental study of hot spots in gold/glass nanocomposite films by photoemission electron microscopy,” Phys. Rev. B 85(4), 045438 (2012).
[Crossref]

Douketis, C.

C. Douketis, T. L. Haslett, J. T. Stuckless, M. Moskovits, and V. M. Shalaev, “Direct and roughness-induced indirect transitionsin photoemission from silver films,” Surf. Sci. Lett. 297(2), L84–L90 (1993).
[Crossref]

Dressel, M.

S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
[Crossref]

Elovikov, S. S.

E. M. Kim, S. S. Elovikov, T. V. Murzina, A. A. Nikulin, O. A. Aktsipetrov, M. A. Bader, and G. Marowsky, “Surface-enhanced optical third-harmonic generation in Ag island films,” Phys. Rev. Lett. 95(22), 227402 (2005).
[Crossref] [PubMed]

El-Sayed, M. A.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Esmann, M.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Esteban, R.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Fan, Z.

S. Chen, Z. Fan, and D. L. Carroll, “Silver nanodisks: synthesis, characterization, and self-assembly,” J. Phys. Chem. B 106(42), 10777–10781 (2002).
[Crossref]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Flyvbjerg, H.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref] [PubMed]

Gadenne, P.

P. Gadenne, A. Beghdadi, and J. Lafait, “Optical cross-over analysis of granular gold films at percolation,” Opt. Commun. 65(1), 17–21 (1988).
[Crossref]

Genov, D. A.

K. Seal, A. K. Sarychev, H. Noh, D. A. Genov, A. Yamilov, V. M. Shalaev, Z. C. Ying, and H. Cao, “Near-field intensity correlations in semicontinuous metal-dielectric films,” Phys. Rev. Lett. 94(22), 226101 (2005).
[Crossref] [PubMed]

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[Crossref]

Gladden, C.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Gölzhäuser, A.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Gompf, B.

S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
[Crossref]

Greffet, J. J.

C. Awada, G. Barbillon, F. Charra, L. Douillard, and J. J. Greffet, “Experimental study of hot spots in gold/glass nanocomposite films by photoemission electron microscopy,” Phys. Rev. B 85(4), 045438 (2012).
[Crossref]

Gustafsson, M. G. L.

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Haslett, T. L.

C. Douketis, T. L. Haslett, J. T. Stuckless, M. Moskovits, and V. M. Shalaev, “Direct and roughness-induced indirect transitionsin photoemission from silver films,” Surf. Sci. Lett. 297(2), L84–L90 (1993).
[Crossref]

Hawkeye, M. M.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Hell, S. W.

Hernández, M.

G. Santoro, S. Yu, M. Schwartzkopf, P. Zhang, S. K. Vayalil, J. F. H. Risch, M. A. Rubhausen, M. Hernández, C. Domingo, and S. V. Roth, “Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement,” Appl. Phys. Lett. 104(24), 243107 (2014).

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Hou, D.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Huang, M. H.

H. C. Chu, C. H. Kuo, and M. H. Huang, “Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges,” Inorg. Chem. 45(2), 808–813 (2006).
[Crossref] [PubMed]

Hulteen, J. C.

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553 (1995).
[Crossref]

Huynh, C.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Jeon, J.

Joseph, N.

C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010).
[Crossref] [PubMed]

Kautschor, L. O.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Kim, E. M.

E. M. Kim, S. S. Elovikov, T. V. Murzina, A. A. Nikulin, O. A. Aktsipetrov, M. A. Bader, and G. Marowsky, “Surface-enhanced optical third-harmonic generation in Ag island films,” Phys. Rev. Lett. 95(22), 227402 (2005).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Kollmann, H.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Krachmalnicoff, V.

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

Kundu, S.

S. Kundu and U. Nithiyanantham, “In situ formation of curcumin stabilized shape-selective Ag nanostructures in aqueous solution and their pronounced SERS activity,” RSC Advances 3(47), 25278–25290 (2013).
[Crossref]

Kuo, C. H.

H. C. Chu, C. H. Kuo, and M. H. Huang, “Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges,” Inorg. Chem. 45(2), 808–813 (2006).
[Crossref] [PubMed]

Labno, A.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Lafait, J.

P. Gadenne, A. Beghdadi, and J. Lafait, “Optical cross-over analysis of granular gold films at percolation,” Opt. Commun. 65(1), 17–21 (1988).
[Crossref]

Larquet, E.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, E. Larquet, A. Polman, and S. Bidault, “Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand,” Nano Lett. 11(11), 5060–5065 (2011).
[Crossref] [PubMed]

Larson, D. R.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Lee, B. J.

Lee, P. C.

P. C. Lee and D. P. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

Li, Z.

A. Biswas, I. S. Bayer, D. H. Dahanayaka, L. A. Bumm, Z. Li, F. Watanabe, R. Sharma, Y. Xu, A. S. Biris, M. G. Norton, and E. Suhir, “Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates,” Nanotechnology 20(32), 325705 (2009).
[Crossref] [PubMed]

Lidke, K. A.

C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010).
[Crossref] [PubMed]

Lienau, C.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Link, S.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

Lippincott-Schwartz, J.

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Phys. Chem. 61(1), 345–367 (2010).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Liu, M.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Liu, Y.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Lu, C.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Lupton, J. M.

N. J. Borys, E. Shafran, and J. M. Lupton, “Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots,” Sci. Rep. 3, 2090 (2013).
[Crossref] [PubMed]

N. J. Borys, E. Shafran, and J. M. Lupton, “Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots,” Sci. Rep. 3, 2090 (2013).
[Crossref] [PubMed]

N. J. Borys and J. M. Lupton, “Surface-enhanced light emission from single hot spots in tollens reaction silver nanoparticle films: linear versus nonlinear optical excitation,” J. Phys. Chem. C 115(28), 13645–13659 (2011).
[Crossref]

N. J. Borys, M. J. Walter, and J. M. Lupton, “Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films,” Phys. Rev. B 80(16), 161407 (2009).
[Crossref]

Maaroof, A. I.

A. I. Maaroof and D. S. Sutherland, “Optimum plasmon hybridization at percolation threshold of silver films near metallic surfaces,” J. Phys. D 43(40), 405301 (2010).
[Crossref]

Maier, S. A.

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Manley, S.

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Phys. Chem. 61(1), 345–367 (2010).
[Crossref] [PubMed]

Marowsky, G.

E. M. Kim, S. S. Elovikov, T. V. Murzina, A. A. Nikulin, O. A. Aktsipetrov, M. A. Bader, and G. Marowsky, “Surface-enhanced optical third-harmonic generation in Ag island films,” Phys. Rev. Lett. 95(22), 227402 (2005).
[Crossref] [PubMed]

Meisel, D. P.

P. C. Lee and D. P. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

Mohamed, M. B.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

Mortensen, K. I.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref] [PubMed]

Moskovits, M.

C. Douketis, T. L. Haslett, J. T. Stuckless, M. Moskovits, and V. M. Shalaev, “Direct and roughness-induced indirect transitionsin photoemission from silver films,” Surf. Sci. Lett. 297(2), L84–L90 (1993).
[Crossref]

Mukamel, E. A.

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).
[Crossref] [PubMed]

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).
[Crossref] [PubMed]

Murzina, T. V.

E. M. Kim, S. S. Elovikov, T. V. Murzina, A. A. Nikulin, O. A. Aktsipetrov, M. A. Bader, and G. Marowsky, “Surface-enhanced optical third-harmonic generation in Ag island films,” Phys. Rev. Lett. 95(22), 227402 (2005).
[Crossref] [PubMed]

Navarro-Cía, M.

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Nelson, M. A.

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

Nikulin, A. A.

E. M. Kim, S. S. Elovikov, T. V. Murzina, A. A. Nikulin, O. A. Aktsipetrov, M. A. Bader, and G. Marowsky, “Surface-enhanced optical third-harmonic generation in Ag island films,” Phys. Rev. Lett. 95(22), 227402 (2005).
[Crossref] [PubMed]

Nithiyanantham, U.

S. Kundu and U. Nithiyanantham, “In situ formation of curcumin stabilized shape-selective Ag nanostructures in aqueous solution and their pronounced SERS activity,” RSC Advances 3(47), 25278–25290 (2013).
[Crossref]

Noh, H.

K. Seal, A. K. Sarychev, H. Noh, D. A. Genov, A. Yamilov, V. M. Shalaev, Z. C. Ying, and H. Cao, “Near-field intensity correlations in semicontinuous metal-dielectric films,” Phys. Rev. Lett. 94(22), 226101 (2005).
[Crossref] [PubMed]

Nordlander, P.

Norton, M. G.

A. Biswas, I. S. Bayer, D. H. Dahanayaka, L. A. Bumm, Z. Li, F. Watanabe, R. Sharma, Y. Xu, A. S. Biris, M. G. Norton, and E. Suhir, “Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates,” Nanotechnology 20(32), 325705 (2009).
[Crossref] [PubMed]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Park, N.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Park, S.

Patterson, G.

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Phys. Chem. 61(1), 345–367 (2010).
[Crossref] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Peterseim, T.

S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
[Crossref]

Piao, X.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Polman, A.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, E. Larquet, A. Polman, and S. Bidault, “Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand,” Nano Lett. 11(11), 5060–5065 (2011).
[Crossref] [PubMed]

Popov, O.

O. Popov, A. Zilbershtein, and D. Davidovb, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Rahmani, M.

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Rieger, B.

C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010).
[Crossref] [PubMed]

Risch, J. F. H.

G. Santoro, S. Yu, M. Schwartzkopf, P. Zhang, S. K. Vayalil, J. F. H. Risch, M. A. Rubhausen, M. Hernández, C. Domingo, and S. V. Roth, “Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement,” Appl. Phys. Lett. 104(24), 243107 (2014).

Rolly, B.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, E. Larquet, A. Polman, and S. Bidault, “Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand,” Nano Lett. 11(11), 5060–5065 (2011).
[Crossref] [PubMed]

Roth, S. V.

G. Santoro, S. Yu, M. Schwartzkopf, P. Zhang, S. K. Vayalil, J. F. H. Risch, M. A. Rubhausen, M. Hernández, C. Domingo, and S. V. Roth, “Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement,” Appl. Phys. Lett. 104(24), 243107 (2014).

Rothenberg, E.

P. D. Simonson, E. Rothenberg, and P. R. Selvin, “Single-molecule-based super-resolution images in the presence of multiple fluorophores,” Nano Lett. 11(11), 5090–5096 (2011).
[Crossref] [PubMed]

Rubhausen, M. A.

G. Santoro, S. Yu, M. Schwartzkopf, P. Zhang, S. K. Vayalil, J. F. H. Risch, M. A. Rubhausen, M. Hernández, C. Domingo, and S. V. Roth, “Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement,” Appl. Phys. Lett. 104(24), 243107 (2014).

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Santoro, G.

G. Santoro, S. Yu, M. Schwartzkopf, P. Zhang, S. K. Vayalil, J. F. H. Risch, M. A. Rubhausen, M. Hernández, C. Domingo, and S. V. Roth, “Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement,” Appl. Phys. Lett. 104(24), 243107 (2014).

Sarychev, A. K.

K. Seal, A. K. Sarychev, H. Noh, D. A. Genov, A. Yamilov, V. M. Shalaev, Z. C. Ying, and H. Cao, “Near-field intensity correlations in semicontinuous metal-dielectric films,” Phys. Rev. Lett. 94(22), 226101 (2005).
[Crossref] [PubMed]

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[Crossref]

Savage, K. J.

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Schwartzkopf, M.

G. Santoro, S. Yu, M. Schwartzkopf, P. Zhang, S. K. Vayalil, J. F. H. Risch, M. A. Rubhausen, M. Hernández, C. Domingo, and S. V. Roth, “Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement,” Appl. Phys. Lett. 104(24), 243107 (2014).

Seal, K.

K. Seal, A. K. Sarychev, H. Noh, D. A. Genov, A. Yamilov, V. M. Shalaev, Z. C. Ying, and H. Cao, “Near-field intensity correlations in semicontinuous metal-dielectric films,” Phys. Rev. Lett. 94(22), 226101 (2005).
[Crossref] [PubMed]

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[Crossref]

Selvin, P. R.

P. D. Simonson, E. Rothenberg, and P. R. Selvin, “Single-molecule-based super-resolution images in the presence of multiple fluorophores,” Nano Lett. 11(11), 5090–5096 (2011).
[Crossref] [PubMed]

Shafran, E.

N. J. Borys, E. Shafran, and J. M. Lupton, “Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots,” Sci. Rep. 3, 2090 (2013).
[Crossref] [PubMed]

N. J. Borys, E. Shafran, and J. M. Lupton, “Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots,” Sci. Rep. 3, 2090 (2013).
[Crossref] [PubMed]

Shalaev, V. M.

K. Seal, A. K. Sarychev, H. Noh, D. A. Genov, A. Yamilov, V. M. Shalaev, Z. C. Ying, and H. Cao, “Near-field intensity correlations in semicontinuous metal-dielectric films,” Phys. Rev. Lett. 94(22), 226101 (2005).
[Crossref] [PubMed]

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[Crossref]

C. Douketis, T. L. Haslett, J. T. Stuckless, M. Moskovits, and V. M. Shalaev, “Direct and roughness-induced indirect transitionsin photoemission from silver films,” Surf. Sci. Lett. 297(2), L84–L90 (1993).
[Crossref]

Sharma, R.

A. Biswas, I. S. Bayer, D. H. Dahanayaka, L. A. Bumm, Z. Li, F. Watanabe, R. Sharma, Y. Xu, A. S. Biris, M. G. Norton, and E. Suhir, “Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates,” Nanotechnology 20(32), 325705 (2009).
[Crossref] [PubMed]

Silies, M.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Simonson, P. D.

P. D. Simonson, E. Rothenberg, and P. R. Selvin, “Single-molecule-based super-resolution images in the presence of multiple fluorophores,” Nano Lett. 11(11), 5090–5096 (2011).
[Crossref] [PubMed]

Smith, C. S.

C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010).
[Crossref] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Spudich, J. A.

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref] [PubMed]

Stout, B.

M. P. Busson, B. Rolly, B. Stout, N. Bonod, E. Larquet, A. Polman, and S. Bidault, “Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand,” Nano Lett. 11(11), 5060–5065 (2011).
[Crossref] [PubMed]

Stranahan, S. M.

S. M. Stranahan and K. A. Willets, “Super-resolution optical imaging of single-molecule SERS hot spots,” Nano Lett. 10(9), 3777–3784 (2010).
[Crossref] [PubMed]

Stuckless, J. T.

C. Douketis, T. L. Haslett, J. T. Stuckless, M. Moskovits, and V. M. Shalaev, “Direct and roughness-induced indirect transitionsin photoemission from silver films,” Surf. Sci. Lett. 297(2), L84–L90 (1993).
[Crossref]

Suhir, E.

A. Biswas, I. S. Bayer, D. H. Dahanayaka, L. A. Bumm, Z. Li, F. Watanabe, R. Sharma, Y. Xu, A. S. Biris, M. G. Norton, and E. Suhir, “Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates,” Nanotechnology 20(32), 325705 (2009).
[Crossref] [PubMed]

Sutherland, D. S.

A. I. Maaroof and D. S. Sutherland, “Optimum plasmon hybridization at percolation threshold of silver films near metallic surfaces,” J. Phys. D 43(40), 405301 (2010).
[Crossref]

Teperik, T. V.

Thompson, R. E.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Van Duyne, R. P.

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553 (1995).
[Crossref]

Vayalil, S. K.

G. Santoro, S. Yu, M. Schwartzkopf, P. Zhang, S. K. Vayalil, J. F. H. Risch, M. A. Rubhausen, M. Hernández, C. Domingo, and S. V. Roth, “Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement,” Appl. Phys. Lett. 104(24), 243107 (2014).

Vieker, H.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Vogelgesang, R.

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

Volkov, V.

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

Walter, M. J.

N. J. Borys, M. J. Walter, and J. M. Lupton, “Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films,” Phys. Rev. B 80(16), 161407 (2009).
[Crossref]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

Watanabe, F.

A. Biswas, I. S. Bayer, D. H. Dahanayaka, L. A. Bumm, Z. Li, F. Watanabe, R. Sharma, Y. Xu, A. S. Biris, M. G. Norton, and E. Suhir, “Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates,” Nanotechnology 20(32), 325705 (2009).
[Crossref] [PubMed]

Webb, W. W.

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Wichmann, J.

Willets, K. A.

S. M. Stranahan and K. A. Willets, “Super-resolution optical imaging of single-molecule SERS hot spots,” Nano Lett. 10(9), 3777–3784 (2010).
[Crossref] [PubMed]

Xu, Y.

A. Biswas, I. S. Bayer, D. H. Dahanayaka, L. A. Bumm, Z. Li, F. Watanabe, R. Sharma, Y. Xu, A. S. Biris, M. G. Norton, and E. Suhir, “Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates,” Nanotechnology 20(32), 325705 (2009).
[Crossref] [PubMed]

Yamilov, A.

K. Seal, A. K. Sarychev, H. Noh, D. A. Genov, A. Yamilov, V. M. Shalaev, Z. C. Ying, and H. Cao, “Near-field intensity correlations in semicontinuous metal-dielectric films,” Phys. Rev. Lett. 94(22), 226101 (2005).
[Crossref] [PubMed]

Yin, X.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Ying, Z. C.

K. Seal, A. K. Sarychev, H. Noh, D. A. Genov, A. Yamilov, V. M. Shalaev, Z. C. Ying, and H. Cao, “Near-field intensity correlations in semicontinuous metal-dielectric films,” Phys. Rev. Lett. 94(22), 226101 (2005).
[Crossref] [PubMed]

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[Crossref]

Yu, S.

G. Santoro, S. Yu, M. Schwartzkopf, P. Zhang, S. K. Vayalil, J. F. H. Risch, M. A. Rubhausen, M. Hernández, C. Domingo, and S. V. Roth, “Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement,” Appl. Phys. Lett. 104(24), 243107 (2014).

Zhang, P.

G. Santoro, S. Yu, M. Schwartzkopf, P. Zhang, S. K. Vayalil, J. F. H. Risch, M. A. Rubhausen, M. Hernández, C. Domingo, and S. V. Roth, “Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement,” Appl. Phys. Lett. 104(24), 243107 (2014).

Zhang, X.

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

Zhuang, X.

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).
[Crossref] [PubMed]

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

Zilbershtein, A.

O. Popov, A. Zilbershtein, and D. Davidovb, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

Zuani, S. D.

S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
[Crossref]

Annu. Rev. Phys. Chem. (1)

G. Patterson, M. Davidson, S. Manley, and J. Lippincott-Schwartz, “Superresolution imaging using single-molecule localization,” Annu. Rev. Phys. Chem. 61(1), 345–367 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

G. Santoro, S. Yu, M. Schwartzkopf, P. Zhang, S. K. Vayalil, J. F. H. Risch, M. A. Rubhausen, M. Hernández, C. Domingo, and S. V. Roth, “Silver substrates for surface enhanced Raman scattering: correlation between nanostructure and Raman scattering enhancement,” Appl. Phys. Lett. 104(24), 243107 (2014).

O. Popov, A. Zilbershtein, and D. Davidovb, “Random lasing from dye-gold nanoparticles in polymer films: enhanced gain at the surface-plasmon-resonance wavelength,” Appl. Phys. Lett. 89(19), 191116 (2006).
[Crossref]

S. D. Zuani, T. Peterseim, A. Berrier, B. Gompf, and M. Dressel, “Second harmonic generation enhancement at the percolation threshold,” Appl. Phys. Lett. 104(24), 241109 (2014).
[Crossref]

Biophys. J. (3)

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).
[Crossref] [PubMed]

E. A. Mukamel, H. Babcock, and X. Zhuang, “Statistical deconvolution for superresolution fluorescence microscopy,” Biophys. J. 102(10), 2391–2400 (2012).
[Crossref] [PubMed]

R. E. Thompson, D. R. Larson, and W. W. Webb, “Precise nanometer localization analysis for individual fluorescent probes,” Biophys. J. 82(5), 2775–2783 (2002).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

M. B. Mohamed, V. Volkov, S. Link, and M. A. El-Sayed, “The ‘lightning’ gold nanorods: fluorescence enhancement of over a million compared to the gold metal,” Chem. Phys. Lett. 317(6), 517–523 (2000).
[Crossref]

Inorg. Chem. (1)

H. C. Chu, C. H. Kuo, and M. H. Huang, “Thermal aqueous solution approach for the synthesis of triangular and hexagonal gold nanoplates with three different size ranges,” Inorg. Chem. 45(2), 808–813 (2006).
[Crossref] [PubMed]

J. Microsc. (1)

M. G. L. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

J. Phys. Chem. (1)

P. C. Lee and D. P. Meisel, “Adsorption and surface-enhanced Raman of dyes on silver and gold sols,” J. Phys. Chem. 86(17), 3391–3395 (1982).
[Crossref]

J. Phys. Chem. B (1)

S. Chen, Z. Fan, and D. L. Carroll, “Silver nanodisks: synthesis, characterization, and self-assembly,” J. Phys. Chem. B 106(42), 10777–10781 (2002).
[Crossref]

J. Phys. Chem. C (1)

N. J. Borys and J. M. Lupton, “Surface-enhanced light emission from single hot spots in tollens reaction silver nanoparticle films: linear versus nonlinear optical excitation,” J. Phys. Chem. C 115(28), 13645–13659 (2011).
[Crossref]

J. Phys. D (1)

A. I. Maaroof and D. S. Sutherland, “Optimum plasmon hybridization at percolation threshold of silver films near metallic surfaces,” J. Phys. D 43(40), 405301 (2010).
[Crossref]

J. Vac. Sci. Technol. A (1)

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13(3), 1553 (1995).
[Crossref]

Nano Lett. (4)

H. Kollmann, X. Piao, M. Esmann, S. F. Becker, D. Hou, C. Huynh, L. O. Kautschor, G. Bösker, H. Vieker, A. Beyer, A. Gölzhäuser, N. Park, R. Vogelgesang, M. Silies, and C. Lienau, “Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas,” Nano Lett. 14(8), 4778–4784 (2014).
[Crossref] [PubMed]

M. P. Busson, B. Rolly, B. Stout, N. Bonod, E. Larquet, A. Polman, and S. Bidault, “Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand,” Nano Lett. 11(11), 5060–5065 (2011).
[Crossref] [PubMed]

S. M. Stranahan and K. A. Willets, “Super-resolution optical imaging of single-molecule SERS hot spots,” Nano Lett. 10(9), 3777–3784 (2010).
[Crossref] [PubMed]

P. D. Simonson, E. Rothenberg, and P. R. Selvin, “Single-molecule-based super-resolution images in the presence of multiple fluorophores,” Nano Lett. 11(11), 5090–5096 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

A. Biswas, I. S. Bayer, D. H. Dahanayaka, L. A. Bumm, Z. Li, F. Watanabe, R. Sharma, Y. Xu, A. S. Biris, M. G. Norton, and E. Suhir, “Tailored polymer-metal fractal nanocomposites: an approach to highly active surface enhanced Raman scattering substrates,” Nanotechnology 20(32), 325705 (2009).
[Crossref] [PubMed]

Nat. Methods (3)

C. S. Smith, N. Joseph, B. Rieger, and K. A. Lidke, “Fast, single-molecule localization that achieves theoretically minimum uncertainty,” Nat. Methods 7(5), 373–375 (2010).
[Crossref] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[Crossref] [PubMed]

K. I. Mortensen, L. S. Churchman, J. A. Spudich, and H. Flyvbjerg, “Optimized localization analysis for single-molecule tracking and super-resolution microscopy,” Nat. Methods 7(5), 377–381 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

H. Aouani, M. Rahmani, M. Navarro-Cía, and S. A. Maier, “Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna,” Nat. Nanotechnol. 9(4), 290–294 (2014).
[Crossref] [PubMed]

Nature (2)

H. Cang, A. Labno, C. Lu, X. Yin, M. Liu, C. Gladden, Y. Liu, and X. Zhang, “Probing the electromagnetic field of a 15-nanometre hotspot by single molecule imaging,” Nature 469(7330), 385–388 (2011).
[Crossref] [PubMed]

K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, and J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491(7425), 574–577 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

P. Gadenne, A. Beghdadi, and J. Lafait, “Optical cross-over analysis of granular gold films at percolation,” Opt. Commun. 65(1), 17–21 (1988).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (3)

C. Awada, G. Barbillon, F. Charra, L. Douillard, and J. J. Greffet, “Experimental study of hot spots in gold/glass nanocomposite films by photoemission electron microscopy,” Phys. Rev. B 85(4), 045438 (2012).
[Crossref]

N. J. Borys, M. J. Walter, and J. M. Lupton, “Intermittency in second-harmonic radiation from plasmonic hot spots on rough silver films,” Phys. Rev. B 80(16), 161407 (2009).
[Crossref]

K. Seal, M. A. Nelson, Z. C. Ying, D. A. Genov, A. K. Sarychev, and V. M. Shalaev, “Growth, morphology, and optical and electrical properties of semicontinuous metallic films,” Phys. Rev. B 67(3), 035318 (2003).
[Crossref]

Phys. Rev. Lett. (4)

V. Krachmalnicoff, E. Castanié, Y. De Wilde, and R. Carminati, “Fluctuations of the local density of states probe localized surface plasmons on disordered metal films,” Phys. Rev. Lett. 105(18), 183901 (2010).
[Crossref] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[Crossref]

K. Seal, A. K. Sarychev, H. Noh, D. A. Genov, A. Yamilov, V. M. Shalaev, Z. C. Ying, and H. Cao, “Near-field intensity correlations in semicontinuous metal-dielectric films,” Phys. Rev. Lett. 94(22), 226101 (2005).
[Crossref] [PubMed]

E. M. Kim, S. S. Elovikov, T. V. Murzina, A. A. Nikulin, O. A. Aktsipetrov, M. A. Bader, and G. Marowsky, “Surface-enhanced optical third-harmonic generation in Ag island films,” Phys. Rev. Lett. 95(22), 227402 (2005).
[Crossref] [PubMed]

RSC Advances (1)

S. Kundu and U. Nithiyanantham, “In situ formation of curcumin stabilized shape-selective Ag nanostructures in aqueous solution and their pronounced SERS activity,” RSC Advances 3(47), 25278–25290 (2013).
[Crossref]

Sci. Rep. (2)

N. J. Borys, E. Shafran, and J. M. Lupton, “Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots,” Sci. Rep. 3, 2090 (2013).
[Crossref] [PubMed]

N. J. Borys, E. Shafran, and J. M. Lupton, “Surface plasmon delocalization in silver nanoparticle aggregates revealed by subdiffraction supercontinuum hot spots,” Sci. Rep. 3, 2090 (2013).
[Crossref] [PubMed]

Science (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface enhanced Raman scattering,” Science 275(5303), 1102–1106 (1997).
[Crossref] [PubMed]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[Crossref] [PubMed]

Surf. Sci. Lett. (1)

C. Douketis, T. L. Haslett, J. T. Stuckless, M. Moskovits, and V. M. Shalaev, “Direct and roughness-induced indirect transitionsin photoemission from silver films,” Surf. Sci. Lett. 297(2), L84–L90 (1993).
[Crossref]

Other (1)

V. M. Shalaev, Optical Properties of Nanostructured Random Media (Springer, 2002).

Supplementary Material (2)

NameDescription
» Visualization 1: MPG (801 KB)      Continuous scan of the far field FWM image and the corresponding spectrum
» Visualization 2: MPG (731 KB)      The trajectory of multi-color superlocalized plasmonic hot spot

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 (a) Selected SEM images of the nanostructured Au films with various deposition time. (b) The transmission spectra for films with various deposition time. Note that the particle plasmon resonance was located at λ = 550nm and the interband transition occurred at λ = 505 nm. The scale bar in the SEM image is 1μm.
Fig. 2
Fig. 2 (a) Spectral-temporal four wave mixing trace of the percolated Au film. (b) The intensity of the FWM signal as functions of the pump and probe beam intensity. Note that ωFWM = 2ωpumpprobe and I FWM I pump 2 I probe are both held here which ensures a 3rd order nonlinear process.
Fig. 3
Fig. 3 Statistics of polarization dependent FWM from 250 sampled points on each of the nanostructured film with various filling fractions: (a) isolated, (b) percolated, and (c) continuous film. The result shows that the plasmon gap mode is the most possible cause for the enhanced signal.
Fig. 4
Fig. 4 Snapshots of the far field diffraction limited FWM images (the first column), differentialized FWM images (middle column) between consecutive time delays, and the corresponding spectra (the third column) at different time delays. The contour marked in blue (green) represents the ROI defined by 1/e2 of the FWM intensity at present and (subsequent) time delay and the scale bar is 400 nm. Note that the first image in the middle column exhibits a monopole intensity distribution which is much smaller than the original far field pattern. Other differentialized intensities exhibit dipolar-like behavior and their gradient give the displacement of the hot spot which is indicated by the arrow and text in the figure. The movie file corresponds to continuous scan is available online (see Visualization 1).
Fig. 5
Fig. 5 (a) The SEM image of the region under study. Regions produce FWM with S/N ratio larger than 900 were enclosed by the blue circles. (b) The OM image of the same region under study. (c) The enlarged SEM image where the TPL peak positions, FWM peak positions, the trajectory of FWM centroid over λ = 580-640 nm, and the range of error are all designated on the same figure. Note that the color coded spot is the accumulated density of the superresolved FWM intensity, demonstrating superlocalization of plasmon emission within 60 nm alongside the identified metallic nano-interstice. The dynamic trajectory of a full cycle of scan is available online (see Visualization 2).
Fig. 6
Fig. 6 Setup for multi-wavelength FWM spectroscopy and superlocalization imaging.
Fig. 7
Fig. 7 Experimental configuration for polarization dependent FWM.
Fig. 8
Fig. 8 Region chosen for FWM image background subtraction.
Fig. 9
Fig. 9 (a) Region of pixels with S/N ratio larger than 5000. (b) The ROI defined by the contour of the FWHM points of a 2D Gaussian function fitted in the x- and y diretions. (c) Zero the intensity counts outside the ROI and Gaussian fitted again may further reduce the ROI.
Fig. 10
Fig. 10 Comparison of the FWM peak and centroid determined in this study and that by the MLE.
Fig. 11
Fig. 11 The alignment between two SEM images. a-e are alignment marks observed under low magnification. The inset in the middle was the image taken under higher magnification which was superimposed onto the low magnification image.
Fig. 12
Fig. 12 Illustration of the accuracy of alignment. (a) Well-aligned image. (b) Blurred image due to ill-alignment. The blurred image outside the dashed circle in (a) was due to aberration.
Fig. 13
Fig. 13 The correlation of the OM and the SEM image. (a) FWM image correlates to the OM image with 5 alignment marks according to the coordinate of CCD pixels. (b) The correlation of the SEM image with (a) by overlapping the alignment marks. (c) The enlarged view of the alignment marks under OM, SEM and both.
Fig. 14
Fig. 14 Illustration of the deconvolution method to recover localized emitters.
Fig. 15
Fig. 15 The construction of the hot zone. (a) Each circle (~100 nm in radius) defines the range of error surrounding the central hot spot identified by the FWM. (b) The contour enclosed the FWM peak positions and the centroid which are basically alongside a major interstice as shown in Fig. 5(c).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

X c = i X i × I i i I i
Y c = i Y i × I i i I i
( Δx ) 2 = s x 2 + a 2 /12 n + 8π s x 4 b 2 a 2 n 2
( Δy ) 2 = s y 2 + a 2 /12 n + 8π s y 4 b 2 a 2 n 2

Metrics