Abstract

First demonstration of a dissipative soliton resonance (DSR), double-clad (DC) active fiber, mode-locked figure-8 laser (F8L) enabling simultaneous amplification of 1064 nm seed signal is presented. Appropriate design supported peak power clamping (PPC) effect in the laser resonator and enabled easy tuning of the generated, square-shaped pulses from 20 ns to 170 ns. By incorporating a circulator-based isolating element in the directional loop of the laser, record pulse energy of 2.13 μJ was achieved, directly at the output of the resonator. The usability of the unique dual-wavelength design was experimentally put to a test in a difference frequency generation (DFG) setup using periodically poled lithium niobate (PPLN) crystal.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Dissipative soliton resonances in all-fiber Er-Yb double clad figure-8 laser

Karol Krzempek
Opt. Express 23(24) 30651-30656 (2015)

Dissipative soliton resonance mode-locked double clad Er:Yb laser at different values of anomalous dispersion

Karol Krzempek and Krzysztof Abramski
Opt. Express 24(20) 22379-22386 (2016)

Compact all-fiber figure-9 dissipative soliton resonance mode-locked double-clad Er:Yb laser

Karol Krzempek, Jaroslaw Sotor, and Krzysztof Abramski
Opt. Lett. 41(21) 4995-4998 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [Crossref] [PubMed]
  2. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
    [Crossref] [PubMed]
  3. O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt. Lett. 28(17), 1522–1524 (2003).
    [Crossref] [PubMed]
  4. J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
    [Crossref] [PubMed]
  5. S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013).
    [Crossref] [PubMed]
  6. K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
    [Crossref]
  7. T. O. Tsun, M. K. Islam, and P. L. Chu, “High-energy femtosecond figure-eight fiber laser,” Opt. Commun. 141(1), 65–68 (2007).
  8. W. H. Renninger, A. Chong, and F. W. Wise, “Area theorem and energy quantization for dissipative optical solitons,” J. Opt. Soc. Am. B 27(10), 1978–1982 (2010).
    [Crossref] [PubMed]
  9. B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
    [Crossref]
  10. K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011).
    [Crossref] [PubMed]
  11. Y. W. Shi, Y. Matsuura, and M. Jelinek, “Different influence of long and short mid-infrared laser pulses on eye tissue,” Laser Phys. 13(5), 735–742 (2003).
  12. A. Kilpelä, R. Pennala, and J. Kostamovaara, “Precise pulsed time-of-flight laser range finder for industrial distance measurements,” Rev. Sci. Instrum. 72(4), 2197–2202 (2001).
    [Crossref]
  13. Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
    [Crossref]
  14. J. A. Alvarez-Chavez, H. L. Offerhaus, J. Nilsson, P. W. Turner, W. A. Clarkson, and D. J. Richardson, “High-energy, high-power ytterbium-doped Q-switched fiber laser,” Opt. Lett. 25(1), 37–39 (2000).
    [Crossref] [PubMed]
  15. A. Killi, J. Dörring, U. Morgner, M. Lederer, J. Frei, and D. Kopf, “High speed electro-optical cavity dumping of mode-locked laser oscillators,” Opt. Express 13(6), 1916–1922 (2005).
    [Crossref] [PubMed]
  16. M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell, “All-fiber cavity dumping,” Opt. Express 17(20), 17596–17602 (2009).
    [Crossref] [PubMed]
  17. S. P. Chen, H. W. Chen, J. Hou, and Z. J. Liu, “100 W all fiber picosecond MOPA laser,” Opt. Express 17(26), 24008–24012 (2009).
    [Crossref] [PubMed]
  18. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
    [Crossref]
  19. H. Zheng, L. Xu, A. Wang, C. Lu, and H. Ming, “A novel method for square pulse generation using nonlinear amplifying loop mirror,” Proc. SPIE 7276, 72761F (2008).
    [Crossref]
  20. J. Liu, Y. Chen, P. Tang, C. Xu, C. Zhao, H. Zhang, and S. Wen, “Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser,” Opt. Express 23(5), 6418–6427 (2015).
    [Crossref] [PubMed]
  21. S. K. Wang, Q. Y. Ning, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser,” Opt. Express 21(2), 2402–2407 (2013).
    [Crossref] [PubMed]
  22. L. Duan, X. Liu, D. Mao, L. Wang, and G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20(1), 265–270 (2012).
    [Crossref] [PubMed]
  23. Z. C. Luo, W. J. Cao, Z. B. Lin, Z. R. Cai, A. P. Luo, and W. C. Xu, “Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser,” Opt. Lett. 37(22), 4777–4779 (2012).
    [Crossref] [PubMed]
  24. M. E. Fermann, F. Haberl, M. Hofer, and H. Hochreiter, “Nonlinear amplifying loop mirror,” Opt. Lett. 15(13), 752–754 (1990).
    [Crossref] [PubMed]
  25. C. Aguergaray, N. G. Broderick, M. Erkintalo, J. S. Chen, and V. Kruglov, “Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror,” Opt. Express 20(10), 10545–10551 (2012).
    [Crossref] [PubMed]
  26. K. Krzempek, G. Sobon, J. Sotor, G. Dudzik, and K. M. Abramski, “Widely tunable, all-polarization maintaining, monolithic mid-infrared radiation source based on differential frequency generation in PPLN crystal,” Laser Phys. Lett. 11(10), 105103 (2014).
    [Crossref]
  27. K. Krzempek, G. Sobon, and K. M. Abramski, “DFG-based mid-IR generation using a compact dual-wavelength all-fiber amplifier for laser spectroscopy applications,” Opt. Express 21(17), 20023–20031 (2013).
    [Crossref] [PubMed]
  28. G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express 19(20), 19104–19113 (2011).
    [Crossref] [PubMed]
  29. L. Mei, G. Chen, L. Xu, X. Zhang, C. Gu, B. Sun, and A. Wang, “Width and amplitude tunable square-wave pulse in dual-pump passively mode-locked fiber laser,” Opt. Lett. 39(11), 3235–3237 (2014).
    [Crossref] [PubMed]
  30. Z. Cao, X. Gao, W. Chen, H. Wang, W. Zhang, and Z. Gong, “Study of quasi-phase matching wavelength acceptance bandwidth for periodically poled LiNbO 3 crystal-based difference-frequency generation,” Opt. Lasers Eng. 47(5), 589–593 (2009).
    [Crossref]
  31. W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
    [Crossref] [PubMed]
  32. K. Krzempek, M. P. Nikodem, and K. M. Abramski, “Photo-thermal Effects in Gases as a method for concentration measurements,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SM1O.7.

2015 (2)

2014 (3)

2013 (4)

2012 (3)

2011 (2)

2010 (1)

2009 (3)

M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell, “All-fiber cavity dumping,” Opt. Express 17(20), 17596–17602 (2009).
[Crossref] [PubMed]

S. P. Chen, H. W. Chen, J. Hou, and Z. J. Liu, “100 W all fiber picosecond MOPA laser,” Opt. Express 17(26), 24008–24012 (2009).
[Crossref] [PubMed]

Z. Cao, X. Gao, W. Chen, H. Wang, W. Zhang, and Z. Gong, “Study of quasi-phase matching wavelength acceptance bandwidth for periodically poled LiNbO 3 crystal-based difference-frequency generation,” Opt. Lasers Eng. 47(5), 589–593 (2009).
[Crossref]

2008 (3)

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

H. Zheng, L. Xu, A. Wang, C. Lu, and H. Ming, “A novel method for square pulse generation using nonlinear amplifying loop mirror,” Proc. SPIE 7276, 72761F (2008).
[Crossref]

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

2007 (1)

T. O. Tsun, M. K. Islam, and P. L. Chu, “High-energy femtosecond figure-eight fiber laser,” Opt. Commun. 141(1), 65–68 (2007).

2006 (1)

2005 (1)

2004 (1)

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[Crossref]

2003 (2)

Y. W. Shi, Y. Matsuura, and M. Jelinek, “Different influence of long and short mid-infrared laser pulses on eye tissue,” Laser Phys. 13(5), 735–742 (2003).

O. G. Okhotnikov, L. Gomes, N. Xiang, T. Jouhti, and A. B. Grudinin, “Mode-locked ytterbium fiber laser tunable in the 980-1070-nm spectral range,” Opt. Lett. 28(17), 1522–1524 (2003).
[Crossref] [PubMed]

2001 (1)

A. Kilpelä, R. Pennala, and J. Kostamovaara, “Precise pulsed time-of-flight laser range finder for industrial distance measurements,” Rev. Sci. Instrum. 72(4), 2197–2202 (2001).
[Crossref]

2000 (1)

1996 (1)

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

1990 (1)

Abramski, K. M.

Aguergaray, C.

Akhmediev, N.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

Alvarez-Chavez, J. A.

Alvensleben, F.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Ankiewicz, A.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

Antonczak, A.

Broderick, N. G.

Buckley, J.

Cai, Z. R.

Cao, W. J.

Cao, Y.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Cao, Z.

Z. Cao, X. Gao, W. Chen, H. Wang, W. Zhang, and Z. Gong, “Study of quasi-phase matching wavelength acceptance bandwidth for periodically poled LiNbO 3 crystal-based difference-frequency generation,” Opt. Lasers Eng. 47(5), 589–593 (2009).
[Crossref]

Chang, W.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

Chen, G.

Chen, H. W.

Chen, J. S.

Chen, S.

Chen, S. P.

Chen, W.

Z. Cao, X. Gao, W. Chen, H. Wang, W. Zhang, and Z. Gong, “Study of quasi-phase matching wavelength acceptance bandwidth for periodically poled LiNbO 3 crystal-based difference-frequency generation,” Opt. Lasers Eng. 47(5), 589–593 (2009).
[Crossref]

Chen, Y.

Chichkov, B. N.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Chong, A.

Chu, P. L.

T. O. Tsun, M. K. Islam, and P. L. Chu, “High-energy femtosecond figure-eight fiber laser,” Opt. Commun. 141(1), 65–68 (2007).

Clarkson, W. A.

Dörring, J.

Duan, L.

Dudzik, G.

K. Krzempek, G. Sobon, J. Sotor, G. Dudzik, and K. M. Abramski, “Widely tunable, all-polarization maintaining, monolithic mid-infrared radiation source based on differential frequency generation in PPLN crystal,” Laser Phys. Lett. 11(10), 105103 (2014).
[Crossref]

Eken, K.

Erkintalo, M.

Fermann, M. E.

Ferrari, A. C.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Frei, J.

Fujita, H.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[Crossref]

Gao, X.

Z. Cao, X. Gao, W. Chen, H. Wang, W. Zhang, and Z. Gong, “Study of quasi-phase matching wavelength acceptance bandwidth for periodically poled LiNbO 3 crystal-based difference-frequency generation,” Opt. Lasers Eng. 47(5), 589–593 (2009).
[Crossref]

Gomes, L.

Gong, Z.

Z. Cao, X. Gao, W. Chen, H. Wang, W. Zhang, and Z. Gong, “Study of quasi-phase matching wavelength acceptance bandwidth for periodically poled LiNbO 3 crystal-based difference-frequency generation,” Opt. Lasers Eng. 47(5), 589–593 (2009).
[Crossref]

Grudinin, A. B.

Gu, C.

Haberl, F.

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Ho, H. L.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Hochreiter, H.

Hofer, M.

Hou, J.

Ilday, F. Ö.

Islam, M. K.

T. O. Tsun, M. K. Islam, and P. L. Chu, “High-energy femtosecond figure-eight fiber laser,” Opt. Commun. 141(1), 65–68 (2007).

Izawa, Y.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[Crossref]

Jelinek, M.

Y. W. Shi, Y. Matsuura, and M. Jelinek, “Different influence of long and short mid-infrared laser pulses on eye tissue,” Laser Phys. 13(5), 735–742 (2003).

Jin, W.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Jitsuno, T.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[Crossref]

Jouhti, T.

Kaczmarek, P.

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express 19(20), 19104–19113 (2011).
[Crossref] [PubMed]

Kanabe, T.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[Crossref]

Kawasaki, T.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[Crossref]

Killi, A.

Kilpelä, A.

A. Kilpelä, R. Pennala, and J. Kostamovaara, “Precise pulsed time-of-flight laser range finder for industrial distance measurements,” Rev. Sci. Instrum. 72(4), 2197–2202 (2001).
[Crossref]

Kitagawa, Y.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[Crossref]

Kitamura, H.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[Crossref]

Kodama, R.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[Crossref]

Kopf, D.

Kostamovaara, J.

A. Kilpelä, R. Pennala, and J. Kostamovaara, “Precise pulsed time-of-flight laser range finder for industrial distance measurements,” Rev. Sci. Instrum. 72(4), 2197–2202 (2001).
[Crossref]

Krajewska, A.

Kruglov, V.

Krzempek, K.

K. Krzempek, G. Sobon, J. Sotor, G. Dudzik, and K. M. Abramski, “Widely tunable, all-polarization maintaining, monolithic mid-infrared radiation source based on differential frequency generation in PPLN crystal,” Laser Phys. Lett. 11(10), 105103 (2014).
[Crossref]

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

K. Krzempek, G. Sobon, and K. M. Abramski, “DFG-based mid-IR generation using a compact dual-wavelength all-fiber amplifier for laser spectroscopy applications,” Opt. Express 21(17), 20023–20031 (2013).
[Crossref] [PubMed]

Laurell, F.

Lederer, M.

Li, Y.

Lin, Z. B.

Liu, J.

Liu, X.

Liu, Z. J.

Lu, C.

H. Zheng, L. Xu, A. Wang, C. Lu, and H. Ming, “A novel method for square pulse generation using nonlinear amplifying loop mirror,” Proc. SPIE 7276, 72761F (2008).
[Crossref]

Lu, S.

Luo, A. P.

Luo, Z. C.

Malmström, M.

Mao, D.

Margulis, W.

Matsuo, S.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[Crossref]

Matsuura, Y.

Y. W. Shi, Y. Matsuura, and M. Jelinek, “Different influence of long and short mid-infrared laser pulses on eye tissue,” Laser Phys. 13(5), 735–742 (2003).

Mei, L.

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Ming, H.

H. Zheng, L. Xu, A. Wang, C. Lu, and H. Ming, “A novel method for square pulse generation using nonlinear amplifying loop mirror,” Proc. SPIE 7276, 72761F (2008).
[Crossref]

Miyanaga, N.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[Crossref]

Momma, C.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Morgner, U.

Nilsson, J.

Ning, Q. Y.

Nolte, S.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Offerhaus, H. L.

Okhotnikov, O. G.

Öktem, B.

Özgören, K.

Pasternak, I.

Pennala, R.

A. Kilpelä, R. Pennala, and J. Kostamovaara, “Precise pulsed time-of-flight laser range finder for industrial distance measurements,” Rev. Sci. Instrum. 72(4), 2197–2202 (2001).
[Crossref]

Renninger, W.

Renninger, W. H.

Richardson, D. J.

Rozhin, A. G.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Sakabe, S.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[Crossref]

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Shi, Y. W.

Y. W. Shi, Y. Matsuura, and M. Jelinek, “Different influence of long and short mid-infrared laser pulses on eye tissue,” Laser Phys. 13(5), 735–742 (2003).

Shigemori, K.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[Crossref]

Sobon, G.

Soto-Crespo, J. M.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

Sotor, J.

Strupinski, W.

Sun, B.

Sun, Z.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Tang, D.

Tang, P.

Tarasenko, O.

Tarka, J.

Tsun, T. O.

T. O. Tsun, M. K. Islam, and P. L. Chu, “High-energy femtosecond figure-eight fiber laser,” Opt. Commun. 141(1), 65–68 (2007).

Tünnermann, A.

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

Turner, P. W.

Wang, A.

L. Mei, G. Chen, L. Xu, X. Zhang, C. Gu, B. Sun, and A. Wang, “Width and amplitude tunable square-wave pulse in dual-pump passively mode-locked fiber laser,” Opt. Lett. 39(11), 3235–3237 (2014).
[Crossref] [PubMed]

H. Zheng, L. Xu, A. Wang, C. Lu, and H. Ming, “A novel method for square pulse generation using nonlinear amplifying loop mirror,” Proc. SPIE 7276, 72761F (2008).
[Crossref]

Wang, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Wang, G.

Wang, H.

Z. Cao, X. Gao, W. Chen, H. Wang, W. Zhang, and Z. Gong, “Study of quasi-phase matching wavelength acceptance bandwidth for periodically poled LiNbO 3 crystal-based difference-frequency generation,” Opt. Lasers Eng. 47(5), 589–593 (2009).
[Crossref]

Wang, L.

Wang, S. K.

Wen, S.

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Wise, F.

Wise, F. W.

Xiang, N.

Xu, C.

Xu, L.

L. Mei, G. Chen, L. Xu, X. Zhang, C. Gu, B. Sun, and A. Wang, “Width and amplitude tunable square-wave pulse in dual-pump passively mode-locked fiber laser,” Opt. Lett. 39(11), 3235–3237 (2014).
[Crossref] [PubMed]

H. Zheng, L. Xu, A. Wang, C. Lu, and H. Ming, “A novel method for square pulse generation using nonlinear amplifying loop mirror,” Proc. SPIE 7276, 72761F (2008).
[Crossref]

Xu, W. C.

Yang, F.

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Yilmaz, S.

Yoshida, H.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[Crossref]

Yu, Z.

Zhang, H.

Zhang, W.

Z. Cao, X. Gao, W. Chen, H. Wang, W. Zhang, and Z. Gong, “Study of quasi-phase matching wavelength acceptance bandwidth for periodically poled LiNbO 3 crystal-based difference-frequency generation,” Opt. Lasers Eng. 47(5), 589–593 (2009).
[Crossref]

Zhang, X.

Zhao, C.

Zheng, H.

H. Zheng, L. Xu, A. Wang, C. Lu, and H. Ming, “A novel method for square pulse generation using nonlinear amplifying loop mirror,” Proc. SPIE 7276, 72761F (2008).
[Crossref]

Zou, Y.

Appl. Phys., A Mater. Sci. Process. (1)

B. N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, and A. Tünnermann, “Femtosecond, picosecond and nanosecond laser ablation of solids,” Appl. Phys., A Mater. Sci. Process. 63(2), 109–115 (1996).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-free petawatt laser for a fast ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Phys. (1)

Y. W. Shi, Y. Matsuura, and M. Jelinek, “Different influence of long and short mid-infrared laser pulses on eye tissue,” Laser Phys. 13(5), 735–742 (2003).

Laser Phys. Lett. (2)

K. Krzempek, G. Sobon, P. Kaczmarek, and K. M. Abramski, “A sub-100 fs stretched-pulse 205 MHz repetition rate passively mode-locked Er-doped all-fiber laser,” Laser Phys. Lett. 10(10), 105103 (2013).
[Crossref]

K. Krzempek, G. Sobon, J. Sotor, G. Dudzik, and K. M. Abramski, “Widely tunable, all-polarization maintaining, monolithic mid-infrared radiation source based on differential frequency generation in PPLN crystal,” Laser Phys. Lett. 11(10), 105103 (2014).
[Crossref]

Nat. Commun. (1)

W. Jin, Y. Cao, F. Yang, and H. L. Ho, “Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range,” Nat. Commun. 6, 6767 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Opt. Commun. (1)

T. O. Tsun, M. K. Islam, and P. L. Chu, “High-energy femtosecond figure-eight fiber laser,” Opt. Commun. 141(1), 65–68 (2007).

Opt. Express (13)

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[Crossref] [PubMed]

J. Sotor, G. Sobon, J. Tarka, I. Pasternak, A. Krajewska, W. Strupinski, and K. M. Abramski, “Passive synchronization of erbium and thulium doped fiber mode-locked lasers enhanced by common graphene saturable absorber,” Opt. Express 22(5), 5536–5543 (2014).
[Crossref] [PubMed]

S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang, “Third order nonlinear optical property of Bi₂Se₃,” Opt. Express 21(2), 2072–2082 (2013).
[Crossref] [PubMed]

K. Özgören, B. Öktem, S. Yilmaz, F. Ö. Ilday, and K. Eken, “83 W, 3.1 MHz, square-shaped, 1 ns-pulsed all-fiber-integrated laser for micromachining,” Opt. Express 19(18), 17647–17652 (2011).
[Crossref] [PubMed]

A. Killi, J. Dörring, U. Morgner, M. Lederer, J. Frei, and D. Kopf, “High speed electro-optical cavity dumping of mode-locked laser oscillators,” Opt. Express 13(6), 1916–1922 (2005).
[Crossref] [PubMed]

M. Malmström, Z. Yu, W. Margulis, O. Tarasenko, and F. Laurell, “All-fiber cavity dumping,” Opt. Express 17(20), 17596–17602 (2009).
[Crossref] [PubMed]

S. P. Chen, H. W. Chen, J. Hou, and Z. J. Liu, “100 W all fiber picosecond MOPA laser,” Opt. Express 17(26), 24008–24012 (2009).
[Crossref] [PubMed]

C. Aguergaray, N. G. Broderick, M. Erkintalo, J. S. Chen, and V. Kruglov, “Mode-locked femtosecond all-normal all-PM Yb-doped fiber laser using a nonlinear amplifying loop mirror,” Opt. Express 20(10), 10545–10551 (2012).
[Crossref] [PubMed]

K. Krzempek, G. Sobon, and K. M. Abramski, “DFG-based mid-IR generation using a compact dual-wavelength all-fiber amplifier for laser spectroscopy applications,” Opt. Express 21(17), 20023–20031 (2013).
[Crossref] [PubMed]

G. Sobon, P. Kaczmarek, A. Antonczak, J. Sotor, and K. M. Abramski, “Controlling the 1 μm spontaneous emission in Er/Yb co-doped fiber amplifiers,” Opt. Express 19(20), 19104–19113 (2011).
[Crossref] [PubMed]

J. Liu, Y. Chen, P. Tang, C. Xu, C. Zhao, H. Zhang, and S. Wen, “Generation and evolution of mode-locked noise-like square-wave pulses in a large-anomalous-dispersion Er-doped ring fiber laser,” Opt. Express 23(5), 6418–6427 (2015).
[Crossref] [PubMed]

S. K. Wang, Q. Y. Ning, A. P. Luo, Z. B. Lin, Z. C. Luo, and W. C. Xu, “Dissipative soliton resonance in a passively mode-locked figure-eight fiber laser,” Opt. Express 21(2), 2402–2407 (2013).
[Crossref] [PubMed]

L. Duan, X. Liu, D. Mao, L. Wang, and G. Wang, “Experimental observation of dissipative soliton resonance in an anomalous-dispersion fiber laser,” Opt. Express 20(1), 265–270 (2012).
[Crossref] [PubMed]

Opt. Lasers Eng. (1)

Z. Cao, X. Gao, W. Chen, H. Wang, W. Zhang, and Z. Gong, “Study of quasi-phase matching wavelength acceptance bandwidth for periodically poled LiNbO 3 crystal-based difference-frequency generation,” Opt. Lasers Eng. 47(5), 589–593 (2009).
[Crossref]

Opt. Lett. (5)

Phys. Rev. A (1)

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78(2), 023830 (2008).
[Crossref]

Proc. SPIE (1)

H. Zheng, L. Xu, A. Wang, C. Lu, and H. Ming, “A novel method for square pulse generation using nonlinear amplifying loop mirror,” Proc. SPIE 7276, 72761F (2008).
[Crossref]

Rev. Sci. Instrum. (1)

A. Kilpelä, R. Pennala, and J. Kostamovaara, “Precise pulsed time-of-flight laser range finder for industrial distance measurements,” Rev. Sci. Instrum. 72(4), 2197–2202 (2001).
[Crossref]

Other (1)

K. Krzempek, M. P. Nikodem, and K. M. Abramski, “Photo-thermal Effects in Gases as a method for concentration measurements,” in CLEO: Science and Innovations (Optical Society of America, 2015), paper SM1O.7.

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (21295 KB)      Self-starting of the laser
» Visualization 2: MP4 (8827 KB)      Pulse duration tuning

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the dual-wavelength figure-8 laser. CIR – circulator, PC – polarization controller, COMB – pump-beam combiner, Er/Yb DC – erbium-ytterbium double clad fiber, SMF28 – spool of single-mode fiber, ISO – fiber isolator, WDM – wavelength division multiplexer, FC-APC – fiber connector, CL – collimating lens, FL – focusing lens, PPLN – 40 mm long periodically poled lithium niobate crystal, GF – germanium filter, MCT – mercury cadmium telluride detector.
Fig. 2
Fig. 2 Average output power for both wavelengths (a), and mode-locked pulses duration and pulse energy in function of pump power delivered to the active fiber (b).
Fig. 3
Fig. 3 Optical spectrum of the amplified 1064 nm seed signal under maximum pump power conditions (a), optical spectrum of 1566 nm pulses registered at four different pump power settings (b).
Fig. 4
Fig. 4 Pulse shapes registered for different pump conditions at 1566 nm (a) and 3322 nm (b) wavelengths (see Visualization 1 and Visualization 2). The insets present pulses registered at a 40 μs span. RF spectrum of laser pulses registered for 1566 nm (c) and 3322 nm (d) wavelengths.
Fig. 5
Fig. 5 Optical spectra of square-shaped pulses generated in the Mid-IR via DFG nonlinear process at 17 W of pump power delivered to the active fiber. Blue graph in figure (a) represents water vapor absorption lines plotted for 10 m path length using Hitran database. Figure (b) shows average idler output power plotted against squared input power delivered to the crystal.

Metrics