Abstract

We present a comprehensive analysis of terahertz radiation from large area plasmonic photoconductive emitters in relation with characteristics of device substrate. Specifically, we investigate the radiation properties of large area plasmonic photoconductive emitters fabricated on GaAs substrates that exhibit short carrier lifetimes through low-temperature substrate growth and through epitaxially embedded rare-earth arsenide (ErAs and LuAs) nanoparticles in superlattice structures. Our analysis indicates that the utilized substrate composition and growth process for achieving short carrier lifetimes are crucial in determining substrate resistivity, carrier drift velocity, and carrier lifetime, which directly impact optical-to-terahertz conversion efficiency, radiation power, radiation bandwidth, and reliability of large area plasmonic photoconductive emitters.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Continuous-wave 1550 nm operated terahertz system using ErAs:In(Al)GaAs photo-conductors with 52 dB dynamic range at 1 THz

A.D.J. Fernandez Olvera, H. Lu, A. C. Gossard, and S. Preu
Opt. Express 25(23) 29492-29500 (2017)

Bias-free and antenna-coupled CW terahertz array emitter with anomalous Schottky barriers

Mohammad Javad Mohammad-Zamani, Morteza Fathipour, Mohammad Neshat, Fakhroddin Nazari, and Mahdi Ghaemi
J. Opt. Soc. Am. B 34(9) 1771-1779 (2017)

Plasmonics enhanced photomixing for generating quasi-continuous-wave frequency-tunable terahertz radiation

Christopher W. Berry, Mohammad R. Hashemi, Sascha Preu, Hong Lu, Arthur C. Gossard, and Mona Jarrahi
Opt. Lett. 39(15) 4522-4524 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  2. D. Graham-Rowe, “Terahertz takes to the stage,” Nat. Photonics 1(2), 75–77 (2007).
    [Crossref]
  3. M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S601–S618 (2006).
    [Crossref]
  4. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” J. Appl. Phys. B 67(3), 379 (1998).
    [Crossref]
  5. K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
    [Crossref] [PubMed]
  6. D. Grischkowsky, S. Keiding, M. van Exter, and C. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7(10), 2006 (1990).
    [Crossref]
  7. R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
    [Crossref] [PubMed]
  8. D. Van der Weide, J. Murakowski, and F. Keilmann, “Gas-absorption spectroscopy with electronic terahertz techniques,” IEEE Trans. Microw. Theory Tech. 48(4), 740–743 (2000).
    [Crossref]
  9. L. L. Van Zandt and V. K. Saxena, “Millimeter-microwave spectrum of DNA: Six predictions for spectroscopy,” Phys. Rev. A 39(5), 2672–2674 (1989).
    [Crossref] [PubMed]
  10. P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [Crossref]
  11. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
    [Crossref]
  12. N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
    [Crossref]
  13. M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
    [Crossref]
  14. S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
    [Crossref]
  15. C. W. Berry and M. Jarrahi, “Principles of impedance matching in photoconductive antennas,” J. Infrared Millim. THz Waves 33, 1182–1189 (2012).
  16. H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90(3), 1303 (2001).
    [Crossref]
  17. N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. THz Sci. Technol. 5, 223–229 (2015).
  18. M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. THz Sci. Technol. 5, 391–397 (2015).
  19. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
    [Crossref] [PubMed]
  20. C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
    [Crossref]
  21. C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
    [Crossref]
  22. S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci. Technol. 4, 575–581 (2014).
  23. C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
    [Crossref]
  24. M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18(9), 9251–9257 (2010).
    [Crossref] [PubMed]
  25. A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
    [Crossref]
  26. S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
    [Crossref]
  27. S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Millim. THz Waves 33, 431–454 (2012).
  28. F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
    [Crossref]
  29. M. Jarrahi, “Terahertz radiation-band engineering through spatial beam-shaping,” IEEE Photonics Technol. Lett. 21(13), 830–832 (2009).
    [Crossref]
  30. M. Jarrahi and T. H. Lee, “High power tunable terahertz generation based on photoconductive antenna arrays,” IEEE Microwave Symposium Digest, 391–394 (2008).
    [Crossref]
  31. M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
    [Crossref] [PubMed]
  32. H. T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
    [Crossref] [PubMed]
  33. R. P. Prasankumar, A. Scopatz, D. J. Hilton, A. J. Taylor, R. D. Averitt, J. M. Zide, and A. C. Gossard, “Carrier dynamics in self-assembled ErAs nanoislands embedded in GaAs measured by optical-pump terahertz-probe spectroscopy,” Appl. Phys. Lett. 86(20), 201107 (2005).
    [Crossref]
  34. E. M. Krivoy, H. P. Nair, A. M. Crook, S. Rahimi, S. J. Maddox, R. Salas, D. A. Ferrer, V. D. Dasika, D. Akinwande, and S. R. Bank, “Growth and characterization of LuAs films and nanostructures,” Appl. Phys. Lett. 101(14), 141910 (2012).
    [Crossref]
  35. C. W. Berry, N. T. Yardimci, and M. Jarrahi, “Responsivity calibration of pyroelectric terahertz detectors,” arXiv:1412.6878v1 (2014).
  36. C. Berry, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Design, fabrication, and experimental characterization of plasmonic photoconductive terahertz emitters,” J. Vis. Exp. 77(77), e50517 (2013).
    [PubMed]

2015 (2)

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. THz Sci. Technol. 5, 223–229 (2015).

M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. THz Sci. Technol. 5, 391–397 (2015).

2014 (3)

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci. Technol. 4, 575–581 (2014).

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

2013 (2)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

C. Berry, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Design, fabrication, and experimental characterization of plasmonic photoconductive terahertz emitters,” J. Vis. Exp. 77(77), e50517 (2013).
[PubMed]

2012 (5)

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Millim. THz Waves 33, 431–454 (2012).

E. M. Krivoy, H. P. Nair, A. M. Crook, S. Rahimi, S. J. Maddox, R. Salas, D. A. Ferrer, V. D. Dasika, D. Akinwande, and S. R. Bank, “Growth and characterization of LuAs films and nanostructures,” Appl. Phys. Lett. 101(14), 141910 (2012).
[Crossref]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

C. W. Berry and M. Jarrahi, “Principles of impedance matching in photoconductive antennas,” J. Infrared Millim. THz Waves 33, 1182–1189 (2012).

2011 (1)

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

2010 (1)

2009 (1)

M. Jarrahi, “Terahertz radiation-band engineering through spatial beam-shaping,” IEEE Photonics Technol. Lett. 21(13), 830–832 (2009).
[Crossref]

2007 (4)

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[Crossref] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

D. Graham-Rowe, “Terahertz takes to the stage,” Nat. Photonics 1(2), 75–77 (2007).
[Crossref]

2006 (1)

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S601–S618 (2006).
[Crossref]

2005 (3)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

R. P. Prasankumar, A. Scopatz, D. J. Hilton, A. J. Taylor, R. D. Averitt, J. M. Zide, and A. C. Gossard, “Carrier dynamics in self-assembled ErAs nanoislands embedded in GaAs measured by optical-pump terahertz-probe spectroscopy,” Appl. Phys. Lett. 86(20), 201107 (2005).
[Crossref]

2004 (2)

N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
[Crossref]

P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

2003 (4)

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref] [PubMed]

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

K. Kawase, Y. Ogawa, Y. Watanabe, and H. Inoue, “Non-destructive terahertz imaging of illicit drugs using spectral fingerprints,” Opt. Express 11(20), 2549–2554 (2003).
[Crossref] [PubMed]

2001 (1)

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90(3), 1303 (2001).
[Crossref]

2000 (1)

D. Van der Weide, J. Murakowski, and F. Keilmann, “Gas-absorption spectroscopy with electronic terahertz techniques,” IEEE Trans. Microw. Theory Tech. 48(4), 740–743 (2000).
[Crossref]

1998 (1)

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” J. Appl. Phys. B 67(3), 379 (1998).
[Crossref]

1990 (1)

1989 (1)

L. L. Van Zandt and V. K. Saxena, “Millimeter-microwave spectrum of DNA: Six predictions for spectroscopy,” Phys. Rev. A 39(5), 2672–2674 (1989).
[Crossref] [PubMed]

Akinwande, D.

E. M. Krivoy, H. P. Nair, A. M. Crook, S. Rahimi, S. J. Maddox, R. Salas, D. A. Ferrer, V. D. Dasika, D. Akinwande, and S. R. Bank, “Growth and characterization of LuAs films and nanostructures,” Appl. Phys. Lett. 101(14), 141910 (2012).
[Crossref]

Arnone, D. D.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref] [PubMed]

Averitt, R. D.

H. T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[Crossref] [PubMed]

R. P. Prasankumar, A. Scopatz, D. J. Hilton, A. J. Taylor, R. D. Averitt, J. M. Zide, and A. C. Gossard, “Carrier dynamics in self-assembled ErAs nanoislands embedded in GaAs measured by optical-pump terahertz-probe spectroscopy,” Appl. Phys. Lett. 86(20), 201107 (2005).
[Crossref]

Bank, S. R.

E. M. Krivoy, H. P. Nair, A. M. Crook, S. Rahimi, S. J. Maddox, R. Salas, D. A. Ferrer, V. D. Dasika, D. Akinwande, and S. R. Bank, “Growth and characterization of LuAs films and nanostructures,” Appl. Phys. Lett. 101(14), 141910 (2012).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[Crossref] [PubMed]

Baraniuk, R. G.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” J. Appl. Phys. B 67(3), 379 (1998).
[Crossref]

Barat, R.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Beck, M.

Berry, C.

C. Berry, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Design, fabrication, and experimental characterization of plasmonic photoconductive terahertz emitters,” J. Vis. Exp. 77(77), e50517 (2013).
[PubMed]

Berry, C. W.

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. THz Sci. Technol. 5, 223–229 (2015).

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci. Technol. 4, 575–581 (2014).

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

C. W. Berry and M. Jarrahi, “Principles of impedance matching in photoconductive antennas,” J. Infrared Millim. THz Waves 33, 1182–1189 (2012).

Chen, H. T.

Cluff, J. A.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

Cole, B. E.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

Crook, A. M.

E. M. Krivoy, H. P. Nair, A. M. Crook, S. Rahimi, S. J. Maddox, R. Salas, D. A. Ferrer, V. D. Dasika, D. Akinwande, and S. R. Bank, “Growth and characterization of LuAs films and nanostructures,” Appl. Phys. Lett. 101(14), 141910 (2012).
[Crossref]

Dasika, V. D.

E. M. Krivoy, H. P. Nair, A. M. Crook, S. Rahimi, S. J. Maddox, R. Salas, D. A. Ferrer, V. D. Dasika, D. Akinwande, and S. R. Bank, “Growth and characterization of LuAs films and nanostructures,” Appl. Phys. Lett. 101(14), 141910 (2012).
[Crossref]

Dekorsy, T.

M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18(9), 9251–9257 (2010).
[Crossref] [PubMed]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Demsar, J.

Diez, C. A.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Dohler, G. H.

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Dreyhaupt, A.

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Driscoll, D. C.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Fattinger, C.

Federici, J. F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Ferrer, D. A.

E. M. Krivoy, H. P. Nair, A. M. Crook, S. Rahimi, S. J. Maddox, R. Salas, D. A. Ferrer, V. D. Dasika, D. Akinwande, and S. R. Bank, “Growth and characterization of LuAs films and nanostructures,” Appl. Phys. Lett. 101(14), 141910 (2012).
[Crossref]

Fitzgerald, A. J.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

Forst, M.

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S601–S618 (2006).
[Crossref]

Freytag, N.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Fukasawa, R.

N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
[Crossref]

Gary, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Gossard, A. C.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[Crossref] [PubMed]

R. P. Prasankumar, A. Scopatz, D. J. Hilton, A. J. Taylor, R. D. Averitt, J. M. Zide, and A. C. Gossard, “Carrier dynamics in self-assembled ErAs nanoislands embedded in GaAs measured by optical-pump terahertz-probe spectroscopy,” Appl. Phys. Lett. 86(20), 201107 (2005).
[Crossref]

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Graham-Rowe, D.

D. Graham-Rowe, “Terahertz takes to the stage,” Nat. Photonics 1(2), 75–77 (2007).
[Crossref]

Griebel, M.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Grischkowsky, D.

Hashemi, M. R.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci. Technol. 4, 575–581 (2014).

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

C. Berry, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Design, fabrication, and experimental characterization of plasmonic photoconductive terahertz emitters,” J. Vis. Exp. 77(77), e50517 (2013).
[PubMed]

Helm, M.

M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18(9), 9251–9257 (2010).
[Crossref] [PubMed]

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Hilton, D. J.

R. P. Prasankumar, A. Scopatz, D. J. Hilton, A. J. Taylor, R. D. Averitt, J. M. Zide, and A. C. Gossard, “Carrier dynamics in self-assembled ErAs nanoislands embedded in GaAs measured by optical-pump terahertz-probe spectroscopy,” Appl. Phys. Lett. 86(20), 201107 (2005).
[Crossref]

Huang, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Imai, T.

N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
[Crossref]

Inoue, H.

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” J. Appl. Phys. B 67(3), 379 (1998).
[Crossref]

Jarrahi, M.

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. THz Sci. Technol. 5, 223–229 (2015).

M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. THz Sci. Technol. 5, 391–397 (2015).

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci. Technol. 4, 575–581 (2014).

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

C. Berry, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Design, fabrication, and experimental characterization of plasmonic photoconductive terahertz emitters,” J. Vis. Exp. 77(77), e50517 (2013).
[PubMed]

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

C. W. Berry and M. Jarrahi, “Principles of impedance matching in photoconductive antennas,” J. Infrared Millim. THz Waves 33, 1182–1189 (2012).

M. Jarrahi, “Terahertz radiation-band engineering through spatial beam-shaping,” IEEE Photonics Technol. Lett. 21(13), 830–832 (2009).
[Crossref]

M. Jarrahi and T. H. Lee, “High power tunable terahertz generation based on photoconductive antenna arrays,” IEEE Microwave Symposium Digest, 391–394 (2008).
[Crossref]

Kadow, C.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Kato, K.

N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
[Crossref]

Kawase, K.

Keiding, S.

Keilmann, F.

D. Van der Weide, J. Murakowski, and F. Keilmann, “Gas-absorption spectroscopy with electronic terahertz techniques,” IEEE Trans. Microw. Theory Tech. 48(4), 740–743 (2000).
[Crossref]

Kemp, M. C.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

Khazan, M.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90(3), 1303 (2001).
[Crossref]

Klatt, G.

Krivoy, E. M.

E. M. Krivoy, H. P. Nair, A. M. Crook, S. Rahimi, S. J. Maddox, R. Salas, D. A. Ferrer, V. D. Dasika, D. Akinwande, and S. R. Bank, “Growth and characterization of LuAs films and nanostructures,” Appl. Phys. Lett. 101(14), 141910 (2012).
[Crossref]

Kuhl, J.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Kurz, H.

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S601–S618 (2006).
[Crossref]

Kuzel, P.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90(3), 1303 (2001).
[Crossref]

Lee, T. H.

M. Jarrahi and T. H. Lee, “High power tunable terahertz generation based on photoconductive antenna arrays,” IEEE Microwave Symposium Digest, 391–394 (2008).
[Crossref]

Linfield, E. H.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref] [PubMed]

Lu, H.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

Maddox, S. J.

E. M. Krivoy, H. P. Nair, A. M. Crook, S. Rahimi, S. J. Maddox, R. Salas, D. A. Ferrer, V. D. Dasika, D. Akinwande, and S. R. Bank, “Growth and characterization of LuAs films and nanostructures,” Appl. Phys. Lett. 101(14), 141910 (2012).
[Crossref]

Malzer, S.

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Mittendorff, M.

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

Mittleman, D. M.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” J. Appl. Phys. B 67(3), 379 (1998).
[Crossref]

Murakowski, J.

D. Van der Weide, J. Murakowski, and F. Keilmann, “Gas-absorption spectroscopy with electronic terahertz techniques,” IEEE Trans. Microw. Theory Tech. 48(4), 740–743 (2000).
[Crossref]

Nagai, N.

N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
[Crossref]

Nagel, M.

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S601–S618 (2006).
[Crossref]

Nair, H. P.

E. M. Krivoy, H. P. Nair, A. M. Crook, S. Rahimi, S. J. Maddox, R. Salas, D. A. Ferrer, V. D. Dasika, D. Akinwande, and S. R. Bank, “Growth and characterization of LuAs films and nanostructures,” Appl. Phys. Lett. 101(14), 141910 (2012).
[Crossref]

Neelamani, R.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” J. Appl. Phys. B 67(3), 379 (1998).
[Crossref]

Nemec, H.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90(3), 1303 (2001).
[Crossref]

Nitsche, S.

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” J. Appl. Phys. B 67(3), 379 (1998).
[Crossref]

Ogawa, Y.

Oliveira, F.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Padilla, W. J.

Pashkin, A.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90(3), 1303 (2001).
[Crossref]

Pepper, M.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref] [PubMed]

Peter, F.

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

Prasankumar, R. P.

R. P. Prasankumar, A. Scopatz, D. J. Hilton, A. J. Taylor, R. D. Averitt, J. M. Zide, and A. C. Gossard, “Carrier dynamics in self-assembled ErAs nanoislands embedded in GaAs measured by optical-pump terahertz-probe spectroscopy,” Appl. Phys. Lett. 86(20), 201107 (2005).
[Crossref]

Preu, S.

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Rahimi, S.

E. M. Krivoy, H. P. Nair, A. M. Crook, S. Rahimi, S. J. Maddox, R. Salas, D. A. Ferrer, V. D. Dasika, D. Akinwande, and S. R. Bank, “Growth and characterization of LuAs films and nanostructures,” Appl. Phys. Lett. 101(14), 141910 (2012).
[Crossref]

Salas, R.

E. M. Krivoy, H. P. Nair, A. M. Crook, S. Rahimi, S. J. Maddox, R. Salas, D. A. Ferrer, V. D. Dasika, D. Akinwande, and S. R. Bank, “Growth and characterization of LuAs films and nanostructures,” Appl. Phys. Lett. 101(14), 141910 (2012).
[Crossref]

Saxena, V. K.

L. L. Van Zandt and V. K. Saxena, “Millimeter-microwave spectrum of DNA: Six predictions for spectroscopy,” Phys. Rev. A 39(5), 2672–2674 (1989).
[Crossref] [PubMed]

Schäfer, H.

Schneider, H.

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

Schnull, S.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90(3), 1303 (2001).
[Crossref]

Schulkin, B.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Scopatz, A.

R. P. Prasankumar, A. Scopatz, D. J. Hilton, A. J. Taylor, R. D. Averitt, J. M. Zide, and A. C. Gossard, “Carrier dynamics in self-assembled ErAs nanoislands embedded in GaAs measured by optical-pump terahertz-probe spectroscopy,” Appl. Phys. Lett. 86(20), 201107 (2005).
[Crossref]

Siegel, P.

P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

Smet, J. H.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Taday, P. F.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

Taylor, A. J.

H. T. Chen, W. J. Padilla, J. M. O. Zide, S. R. Bank, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Ultrafast optical switching of terahertz metamaterials fabricated on ErAs/GaAs nanoisland superlattices,” Opt. Lett. 32(12), 1620–1622 (2007).
[Crossref] [PubMed]

R. P. Prasankumar, A. Scopatz, D. J. Hilton, A. J. Taylor, R. D. Averitt, J. M. Zide, and A. C. Gossard, “Carrier dynamics in self-assembled ErAs nanoislands embedded in GaAs measured by optical-pump terahertz-probe spectroscopy,” Appl. Phys. Lett. 86(20), 201107 (2005).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tribe, W. R.

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

Unlu, M.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

C. Berry, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Design, fabrication, and experimental characterization of plasmonic photoconductive terahertz emitters,” J. Vis. Exp. 77(77), e50517 (2013).
[PubMed]

Van der Weide, D.

D. Van der Weide, J. Murakowski, and F. Keilmann, “Gas-absorption spectroscopy with electronic terahertz techniques,” IEEE Trans. Microw. Theory Tech. 48(4), 740–743 (2000).
[Crossref]

van Exter, M.

Van Zandt, L. L.

L. L. Van Zandt and V. K. Saxena, “Millimeter-microwave spectrum of DNA: Six predictions for spectroscopy,” Phys. Rev. A 39(5), 2672–2674 (1989).
[Crossref] [PubMed]

Von Klitzing, K.

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Wallace, V. P.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref] [PubMed]

Wang, L. J.

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

Wang, N.

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Watanabe, Y.

Weber, H. B.

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

Wilke, I.

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90(3), 1303 (2001).
[Crossref]

Winnerl, S.

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Millim. THz Waves 33, 431–454 (2012).

M. Beck, H. Schäfer, G. Klatt, J. Demsar, S. Winnerl, M. Helm, and T. Dekorsy, “Impulsive terahertz radiation with high electric fields from an amplifier-driven large-area photoconductive antenna,” Opt. Express 18(9), 9251–9257 (2010).
[Crossref] [PubMed]

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

Woodward, R. M.

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref] [PubMed]

Yamauchi, K.

N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
[Crossref]

Yang, S.-H.

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. THz Sci. Technol. 5, 223–229 (2015).

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci. Technol. 4, 575–581 (2014).

Yardimci, N. T.

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. THz Sci. Technol. 5, 223–229 (2015).

Zide, J. M.

R. P. Prasankumar, A. Scopatz, D. J. Hilton, A. J. Taylor, R. D. Averitt, J. M. Zide, and A. C. Gossard, “Carrier dynamics in self-assembled ErAs nanoislands embedded in GaAs measured by optical-pump terahertz-probe spectroscopy,” Appl. Phys. Lett. 86(20), 201107 (2005).
[Crossref]

Zide, J. M. O.

Zimdars, D.

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Appl. Phys. Lett. (8)

N. Nagai, T. Imai, R. Fukasawa, K. Kato, and K. Yamauchi, “Analysis of the intermolecular interaction of nanocomposites by THz spectroscopy,” Appl. Phys. Lett. 85(18), 4010–4012 (2004).
[Crossref]

C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, and M. Jarrahi, “High power terahertz generation using 1550 nm plasmonic photomixers,” Appl. Phys. Lett. 105(1), 011121 (2014).
[Crossref]

C. W. Berry, M. R. Hashemi, and M. Jarrahi, “Generation of high power pulsed terahertz radiation using a plasmonic photoconductive emitter array with logarithmic spiral antennas,” Appl. Phys. Lett. 104(8), 081122 (2014).
[Crossref]

A. Dreyhaupt, S. Winnerl, T. Dekorsy, and M. Helm, “High-intensity terahertz radiation from a microstructured large-area photoconductor,” Appl. Phys. Lett. 86(12), 121114 (2005).
[Crossref]

S. Preu, M. Mittendorff, H. Lu, H. B. Weber, S. Winnerl, and A. C. Gossard, “1550 nm ErAs:In(Al)GaAs large area photoconductive emitters,” Appl. Phys. Lett. 101(10), 101105 (2012).
[Crossref]

F. Peter, S. Winnerl, S. Nitsche, A. Dreyhaupt, H. Schneider, and M. Helm, “Coherent terahertz detection with a large-area photoconductive antenna,” Appl. Phys. Lett. 91(8), 081109 (2007).
[Crossref]

R. P. Prasankumar, A. Scopatz, D. J. Hilton, A. J. Taylor, R. D. Averitt, J. M. Zide, and A. C. Gossard, “Carrier dynamics in self-assembled ErAs nanoislands embedded in GaAs measured by optical-pump terahertz-probe spectroscopy,” Appl. Phys. Lett. 86(20), 201107 (2005).
[Crossref]

E. M. Krivoy, H. P. Nair, A. M. Crook, S. Rahimi, S. J. Maddox, R. Salas, D. A. Ferrer, V. D. Dasika, D. Akinwande, and S. R. Bank, “Growth and characterization of LuAs films and nanostructures,” Appl. Phys. Lett. 101(14), 141910 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

M. Jarrahi, “Terahertz radiation-band engineering through spatial beam-shaping,” IEEE Photonics Technol. Lett. 21(13), 830–832 (2009).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

D. Van der Weide, J. Murakowski, and F. Keilmann, “Gas-absorption spectroscopy with electronic terahertz techniques,” IEEE Trans. Microw. Theory Tech. 48(4), 740–743 (2000).
[Crossref]

P. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

IEEE Trans. THz Sci. Technol. (3)

S.-H. Yang, M. R. Hashemi, C. W. Berry, and M. Jarrahi, “7.5% optical-to-terahertz conversion efficiency offered by photoconductive emitters with three-dimensional plasmonic contact electrodes,” IEEE Trans. THz Sci. Technol. 4, 575–581 (2014).

N. T. Yardimci, S.-H. Yang, C. W. Berry, and M. Jarrahi, “High power terahertz generation using large area plasmonic photoconductive emitters,” IEEE Trans. THz Sci. Technol. 5, 223–229 (2015).

M. Jarrahi, “Advanced photoconductive terahertz optoelectronics based on nano-antennas and nano-plasmonic light concentrators,” IEEE Trans. THz Sci. Technol. 5, 391–397 (2015).

J. Appl. Phys. (2)

H. Nemec, A. Pashkin, P. Kuzel, M. Khazan, S. Schnull, and I. Wilke, “Carrier dynamics in low-temperature grown GaAs studied by terahertz emission spectroscopy,” J. Appl. Phys. 90(3), 1303 (2001).
[Crossref]

S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, “Tunable, continuous-wave Terahertz photomixer sources and applications,” J. Appl. Phys. 109(6), 061301 (2011).
[Crossref]

J. Appl. Phys. B (1)

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” J. Appl. Phys. B 67(3), 379 (1998).
[Crossref]

J. Biol. Phys. (1)

R. M. Woodward, V. P. Wallace, D. D. Arnone, E. H. Linfield, and M. Pepper, “Terahertz pulsed imaging of skin cancer in the time and frequency domain,” J. Biol. Phys. 29(2/3), 257–259 (2003).
[Crossref] [PubMed]

J. Infrared Millim. THz Waves (2)

C. W. Berry and M. Jarrahi, “Principles of impedance matching in photoconductive antennas,” J. Infrared Millim. THz Waves 33, 1182–1189 (2012).

S. Winnerl, “Scalable microstructured photoconductive terahertz emitters,” J. Infrared Millim. THz Waves 33, 431–454 (2012).

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

M. Nagel, M. Forst, and H. Kurz, “THz biosensing devices: fundamentals and technology,” J. Phys. Condens. Matter 18(18), S601–S618 (2006).
[Crossref]

J. Vis. Exp. (1)

C. Berry, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Design, fabrication, and experimental characterization of plasmonic photoconductive terahertz emitters,” J. Vis. Exp. 77(77), e50517 (2013).
[PubMed]

Nat. Commun. (1)

C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, and M. Jarrahi, “Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes,” Nat. Commun. 4, 1622 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, and K. Von Klitzing, “Tunable subpicosecond optoelectronic transduction in superlattices of self-assembled ErAs nanoislands,” Nat. Mater. 2(2), 122–126 (2003).
[Crossref] [PubMed]

Nat. Photonics (2)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

D. Graham-Rowe, “Terahertz takes to the stage,” Nat. Photonics 1(2), 75–77 (2007).
[Crossref]

New J. Phys. (1)

C. W. Berry and M. Jarrahi, “Terahertz generation using plasmonic photoconductive gratings,” New J. Phys. 14(10), 105029 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (1)

L. L. Van Zandt and V. K. Saxena, “Millimeter-microwave spectrum of DNA: Six predictions for spectroscopy,” Phys. Rev. A 39(5), 2672–2674 (1989).
[Crossref] [PubMed]

Proc. SPIE (1)

M. C. Kemp, P. F. Taday, B. E. Cole, J. A. Cluff, A. J. Fitzgerald, and W. R. Tribe, “Security applications of terahertz technology,” Proc. SPIE 5070, 44–52 (2003).
[Crossref]

Semicond. Sci. Technol. (1)

J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D. Zimdars, “THz imaging and sensing for security applications-explosives, weapons and drugs,” Semicond. Sci. Technol. 20(7), S266–S280 (2005).
[Crossref]

Other (2)

C. W. Berry, N. T. Yardimci, and M. Jarrahi, “Responsivity calibration of pyroelectric terahertz detectors,” arXiv:1412.6878v1 (2014).

M. Jarrahi and T. H. Lee, “High power tunable terahertz generation based on photoconductive antenna arrays,” IEEE Microwave Symposium Digest, 391–394 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic diagram and operation concept of the fabricated large area plasmonic photoconductive emitters. (b) Optical microscope and scanning electron microscope (SEM) images of a fabricated large area plasmonic photoconductive emitter prototype.

Fig. 2
Fig. 2

Measured dark current and photocurrent levels of the large area plasmonic photoconductive emitters fabricated on the LT-GaAs and ErAs:GaAs substrates are shown in (a) and (b), respectively. Measured dark current and photocurrent levels of the large area plasmonic photoconductive emitters fabricated on the LT-GaAs and LuAs:GaAs substrates are shown in (c) and (d), respectively. Photocurrent levels are measured at 800 mW optical pump power.

Fig. 3
Fig. 3

(a) Measured terahertz power levels at 800 mW optical pump power for the large area plasmonic photoconductive emitters fabricated on the LT-GaAs and ErAs:GaAs substrates. (b) Measured terahertz power levels at 800 mW optical pump power for the large area plasmonic photoconductive emitters fabricated on the LT-GaAs and LuAs:GaAs substrates.

Fig. 4
Fig. 4

(a) Radiated electric field in the time domain from the large area plasmonic photoconductive emitters fabricated on the LT-GaAs and ErAs:GaAs substrates. (b) Radiated electric field in the time domain from the large area plasmonic photoconductive emitters fabricated on the LT-GaAs and LuAs:GaAs substrates.

Fig. 5
Fig. 5

(a) Radiated spectra from the large area plasmonic photoconductive emitters fabricated on the LT-GaAs and ErAs:GaAs substrates. (b) Radiated spectra from the large area plasmonic photoconductive emitters fabricated on the LT-GaAs and LuAs:GaAs substrates.

Tables (1)

Tables Icon

Table 1 Carrier lifetime of the grown LT-GaAs, ErAs:GaAs, and LuAs:GaAs compounds

Metrics