Abstract

We propose a bar-type three-dimensional holographic head mounted display using two holographic optical elements. Conventional stereoscopic head mounted displays may suffer from eye fatigue because the images presented to each eye are two-dimensional ones, which causes mismatch between the accommodation and vergence responses of the eye. The proposed holographic head mounted display delivers three-dimensional holographic images to each eye, removing the eye fatigue problem. In this paper, we discuss the configuration of the bar-type waveguide head mounted displays and analyze the aberration caused by the non-symmetric diffraction angle of the holographic optical elements which are used as input and output couplers. Pre-distortion of the hologram is also proposed in the paper to compensate the aberration. The experimental results show that proposed head mounted display can present three-dimensional see-through holographic images to each eye with correct focus cues.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Astigmatism and deformation correction for a holographic head-mounted display with a wedge-shaped holographic waveguide

Wen-Kai Lin, Osamu Matoba, Bor-Shyh Lin, and Wei-Chia Su
Appl. Opt. 57(25) 7094-7101 (2018)

Compact see-through 3D head-mounted display based on wavefront modulation with holographic grating filter

Qiankun Gao, Juan Liu, Xinhui Duan, Tao Zhao, Xin Li, and Peilin Liu
Opt. Express 25(7) 8412-8424 (2017)

Holographic display for see-through augmented reality using mirror-lens holographic optical element

Gang Li, Dukho Lee, Youngmo Jeong, Jaebum Cho, and Byoungho Lee
Opt. Lett. 41(11) 2486-2489 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Y. Amitai, “A two-dimensional aperture expander for ultra-compact, high-performance head-worn displays,” SID Symposium Digest Of Technical Papers. 36(1), 360–363 (2005).
    [Crossref]
  2. T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
    [Crossref]
  3. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers. 39(1), 89–92 (2008).
  4. H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
    [Crossref]
  5. R. Shi, J. Liu, H. Zhao, Z. Wu, Y. Liu, Y. Hu, Y. Chen, J. Xie, and Y. Wang, “Chromatic dispersion correction in planar waveguide using one-layer volume holograms based on three-step exposure,” Appl. Opt. 51(20), 4703–4708 (2012).
    [Crossref] [PubMed]
  6. J. Piao, G. Li, M. Piao, and N. Kim, “Full Color Holographic Optical Element Fabrication for Waveguide-type Head Mounted Display Using Photopolymer,” J. Opt. Soc. Korea 17(3), 242–248 (2013).
    [Crossref]
  7. M. L. Piao and N. Kim, “Achieving high levels of color uniformity and optical efficiency for a wedge-shaped waveguide head-mounted display using a photopolymer,” Appl. Opt. 53(10), 2180–2186 (2014).
    [Crossref] [PubMed]
  8. L. Xia, K. Xu, Z. Wu, Y. Hu, Z. Li, Y. Wang, and J. Liu, “A green-color portable waveguide eyewear display system,” Proc. SPIE 8913, 89130W (2013).
    [Crossref]
  9. J. Han, J. Liu, X. Yao, and Y. Wang, “Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms,” Opt. Express 23(3), 3534–3549 (2015).
    [Crossref] [PubMed]
  10. J. Hong, Y. Kim, H.-J. Choi, J. Hahn, J.-H. Park, H. Kim, S.-W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues [Invited],” Appl. Opt. 50(34), H87–H115 (2011).
    [Crossref] [PubMed]
  11. S. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inform. Display 15(1), 37–46 (2014).
    [Crossref]
  12. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
    [Crossref]
  13. E. Moon, M. Kim, J. Roh, H. Kim, and J. Hahn, “Holographic head-mounted display with RGB light emitting diode light source,” Opt. Express 22(6), 6526–6534 (2014).
    [Crossref] [PubMed]

2015 (1)

2014 (3)

2013 (2)

L. Xia, K. Xu, Z. Wu, Y. Hu, Z. Li, Y. Wang, and J. Liu, “A green-color portable waveguide eyewear display system,” Proc. SPIE 8913, 89130W (2013).
[Crossref]

J. Piao, G. Li, M. Piao, and N. Kim, “Full Color Holographic Optical Element Fabrication for Waveguide-type Head Mounted Display Using Photopolymer,” J. Opt. Soc. Korea 17(3), 242–248 (2013).
[Crossref]

2012 (1)

2011 (1)

2009 (1)

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

2006 (1)

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Aiki, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers. 39(1), 89–92 (2008).

Akutsu, K.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers. 39(1), 89–92 (2008).

Amitai, Y.

Y. Amitai, “A two-dimensional aperture expander for ultra-compact, high-performance head-worn displays,” SID Symposium Digest Of Technical Papers. 36(1), 360–363 (2005).
[Crossref]

Chen, N.

Chen, Y.

Choi, H.-J.

Hahn, J.

Han, J.

Hong, J.

Hong, J.-Y.

S. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inform. Display 15(1), 37–46 (2014).
[Crossref]

Hu, Y.

Jeong, Y.

S. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inform. Display 15(1), 37–46 (2014).
[Crossref]

Kim, H.

Kim, M.

Kim, N.

Kim, Y.

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

Kuwahara, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers. 39(1), 89–92 (2008).

Lee, B.

Levola, T.

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

Li, G.

Li, Z.

L. Xia, K. Xu, Z. Wu, Y. Hu, Z. Li, Y. Wang, and J. Liu, “A green-color portable waveguide eyewear display system,” Proc. SPIE 8913, 89130W (2013).
[Crossref]

Liu, J.

Liu, Y.

Matsumura, I.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers. 39(1), 89–92 (2008).

Min, S.-W.

Moon, E.

Mukawa, H.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers. 39(1), 89–92 (2008).

Nakano, S.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers. 39(1), 89–92 (2008).

Ogawa, M.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers. 39(1), 89–92 (2008).

Park, J.-H.

Park, S.

S. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inform. Display 15(1), 37–46 (2014).
[Crossref]

Piao, J.

Piao, M.

Piao, M. L.

Roh, J.

Shi, R.

Wang, Y.

Wu, Z.

Xia, L.

L. Xia, K. Xu, Z. Wu, Y. Hu, Z. Li, Y. Wang, and J. Liu, “A green-color portable waveguide eyewear display system,” Proc. SPIE 8913, 89130W (2013).
[Crossref]

Xie, J.

Xu, K.

L. Xia, K. Xu, Z. Wu, Y. Hu, Z. Li, Y. Wang, and J. Liu, “A green-color portable waveguide eyewear display system,” Proc. SPIE 8913, 89130W (2013).
[Crossref]

Yao, X.

Yeom, J.

S. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inform. Display 15(1), 37–46 (2014).
[Crossref]

Yoshida, T.

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers. 39(1), 89–92 (2008).

Zhao, H.

Appl. Opt. (3)

Bell Labs Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Labs Tech. J. 48(9), 2909–2947 (1969).
[Crossref]

J. Inform. Display (1)

S. Park, J. Yeom, Y. Jeong, N. Chen, J.-Y. Hong, and B. Lee, “Recent issues on integral imaging and its applications,” J. Inform. Display 15(1), 37–46 (2014).
[Crossref]

J. Opt. Soc. Korea (1)

J. Soc. Inf. Disp. (2)

T. Levola, “Diffractive optics for virtual reality displays,” J. Soc. Inf. Disp. 14(5), 467–475 (2006).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, and K. Aiki, “A full-color eyewear display using planar waveguides with reflection volume holograms,” J. Soc. Inf. Disp. 17(3), 185–193 (2009).
[Crossref]

Opt. Express (2)

Proc. SPIE (1)

L. Xia, K. Xu, Z. Wu, Y. Hu, Z. Li, Y. Wang, and J. Liu, “A green-color portable waveguide eyewear display system,” Proc. SPIE 8913, 89130W (2013).
[Crossref]

Other (2)

Y. Amitai, “A two-dimensional aperture expander for ultra-compact, high-performance head-worn displays,” SID Symposium Digest Of Technical Papers. 36(1), 360–363 (2005).
[Crossref]

H. Mukawa, K. Akutsu, I. Matsumura, S. Nakano, T. Yoshida, M. Kuwahara, K. Aiki, and M. Ogawa, “A full color eyewear display using holographic planar waveguides,” SID Symposium Digest of Technical Papers. 39(1), 89–92 (2008).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Conceptual diagram of the proposed waveguide-type holographic HMD with two HOEs.
Fig. 2
Fig. 2 Vector diagram of the in-coupling and out-coupling HOEs.
Fig. 3
Fig. 3 Diffraction of arbitrary ray by grating vector in in-coupling HOE.
Fig. 4
Fig. 4 Diffracted wave from the in-coupling HOE
Fig. 5
Fig. 5 Footprint of rays on bottom side of the waveguide; (a) when the rays enter the waveguide from the SLM and, (b) when the rays exit the waveguide toward the eye.
Fig. 6
Fig. 6 Simulation results; (a) ray tracing in yz-plane, (b) ray tracing in zx-plane.
Fig. 7
Fig. 7 (a) Virtual image distances for different polar angles and (b) difference between virtual image distances in x and y directions, i.e. Δz = zy- zx for different object point source distances zo.
Fig. 8
Fig. 8 Experimental setup for recording HOE.
Fig. 9
Fig. 9 Experiment setup.
Fig. 10
Fig. 10 Reconstructed mesh grid pattern (a) without compensation, focused on horizontal lines (b) without compensation, focused on vertical lines, (c) with proposed compensation.
Fig. 11
Fig. 11 Reconstructed teapot image (a) without compensation (b) with proposed compensation.
Fig. 12
Fig. 12 Point spread of the reconstruction (a) with proposed compensation, (b) without compensation, focused in the middle of the vertical and horizontal focal lengths (c) without compensation, focused at vertical focal length, (d) without compensation, focused at horizontal focal length.
Fig. 13
Fig. 13 Holographic images at different depths: (a) 32cm, (b) 37cm, (c) 57cm, (d) 107cm.
Fig. 14
Fig. 14 Real objects and holographic images with 25cm depth difference.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

k so = k ro K.
k 1,in =[ k 1,air,x , k 1,air,y , k o,h 2 k 1,air,x 2 k 1,air,y 2 ],
k 2,in,x = k 1,in,x K in,x = k 1,in,x ,
k 2,in,y = k 1,in,y K in,y ,
k 2,in,z = k o.h 2 k 2,in,x 2 k 2,in,y 2 .
k 2,out =[ k 2,in,x , k 2,in,y , k 2,in,z ],
k 3,out,x = k 2,out,x K out,x = k 2,out,x ,
k 3,out,y = k 2,out,y K out,y ,
k 3,out,z = k o,h 2 k 3,out,x 2 k 3,out,y 2 .
k 2,in,xy =[ k o,h sin θ in cos φ in , k o,h sin θ in sin φ in K in,y ].
Δ θ = cos 1 ( K in,y 2 K in,y k o,h sin θ in sin φ in + ( k o,h 2 K in,y 2 )( k o,h 2 K in,y 2 k o,h 2 sin 2 θ in sin 2 φ in +2 k o,h K in,h sin θ in sin φ in ) k o,h 2 ).
x b,exit =sinθcosφ( z o cosθ + 2t n g 2 sin 2 θ + (m+1)t k o,air | k 2,g,z | ),
y b,exit =sinθsinφ( z o cosθ + 2t n g 2 sin 2 θ + (m+1)t k o,air | k 2,g,z | ) (m+1)t K in,y | k 2,g,z | ,
| k 2,g,z |= k o,air 2 ( n g 2 sin 2 θ ) K in,y 2 +2 K in,y k o,air sinθsinφ ,
z x = | x b,exit,φ=0 x b,exit,φ=π | 2tanθ , z y = | y b,exit,φ=π/2 y b,exit,φ=3π/2 | 2tanθ .
H(u,v)= i A i exp{ j k o,air 2 ( ( x i u ) 2 z i + ( y i v ) 2 z i Δz ) } ,

Metrics