Abstract

Coupled metasurfaces may refer to a composite plasmonic structure, which consists of multilayered but usually different metasurfaces. A pair of orthogonal plasmonic polarizers, which represents one of such systems, can induce a transmission of light and 90-degree polarization rotation. We explored the effect systematically and found that such effect may be highly efficient and broadband in the near-infrared region. By combining the low-loss metal (silver), the longer operating wavelength, and a work style using propagating waveguide mode, conversion efficiency more than 80% has been suggested near the telecom wavelength. We also suggested that, by overlapping the internal surface-plasmon (2, 0) and (1, 1) modes, an efficient and wideband polarization rotation can be realized. The maximal efficiency is 83% around the wavelength 1340 nm, and the working bandwidth reaches 300 nm. Similar effect has also been revealed in the THz band. The results are useful for constructing compact and high-performance polarization rotators.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and experimental verification of terahertz wideband filter based on double-layered metal hole arrays

Lei Rao, Dongxiao Yang, Le Zhang, Tao Li, and Song Xia
Appl. Opt. 51(7) 912-916 (2012)

Effect of a thin dielectric layer on terahertz transmission characteristics for metal hole arrays

Masaki Tanaka, Fumiaki Miyamaru, Masanori Hangyo, Takeshi Tanaka, Masamichi Akazawa, and Eiichi Sano
Opt. Lett. 30(10) 1210-1212 (2005)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
    [Crossref] [PubMed]
  2. J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
    [Crossref]
  3. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  4. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  5. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  6. Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4, 7511 (2014).
    [Crossref] [PubMed]
  7. Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
    [Crossref] [PubMed]
  8. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  9. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
    [Crossref] [PubMed]
  10. E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett. 36(13), 2498–2500 (2011).
    [Crossref] [PubMed]
  11. F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B 84(3), 035107 (2011).
    [Crossref]
  12. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
    [Crossref] [PubMed]
  13. Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
    [Crossref] [PubMed]
  14. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
    [Crossref] [PubMed]
  15. L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
    [Crossref]
  16. R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for Terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
    [Crossref] [PubMed]
  17. Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
    [Crossref]
  18. C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
    [Crossref]
  19. X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
    [Crossref]
  20. Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
    [Crossref]
  21. Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
    [Crossref]
  22. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
    [Crossref]
  23. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  24. S. Collin, F. Pardo, and J. L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express 15(7), 4310–4320 (2007).
    [Crossref] [PubMed]
  25. R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polariton on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
    [Crossref]
  26. C. P. Huang, Y. Zhang, Q. J. Wang, X. G. Yin, G. D. Wang, J. Q. Liu, and Y. Y. Zhu, “Dual channels of transmission using rectangular hole dimers,” J. Phys. Chem. C 115(50), 24621–24626 (2011).
    [Crossref]
  27. Y. Zhang, X. G. Yin, M. Han, and C. P. Huang, “Decreased cutoff wavelength of a rectangular hole dimer in a metal,” J. Opt. 15(2), 025005 (2013).
    [Crossref]

2015 (2)

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for Terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

2014 (5)

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
[Crossref]

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4, 7511 (2014).
[Crossref] [PubMed]

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

2013 (6)

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Y. Zhang, X. G. Yin, M. Han, and C. P. Huang, “Decreased cutoff wavelength of a rectangular hole dimer in a metal,” J. Opt. 15(2), 025005 (2013).
[Crossref]

2012 (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

2011 (4)

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B 84(3), 035107 (2011).
[Crossref]

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

C. P. Huang, Y. Zhang, Q. J. Wang, X. G. Yin, G. D. Wang, J. Q. Liu, and Y. Y. Zhu, “Dual channels of transmission using rectangular hole dimers,” J. Phys. Chem. C 115(50), 24621–24626 (2011).
[Crossref]

E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett. 36(13), 2498–2500 (2011).
[Crossref] [PubMed]

2009 (2)

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polariton on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

2008 (2)

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

2007 (2)

2005 (1)

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Alù, A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Azad, A. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Baida, F. I.

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B 84(3), 035107 (2011).
[Crossref]

Belkin, M. A.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Boutria, M.

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B 84(3), 035107 (2011).
[Crossref]

Bower, J. E.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Briggs, D. P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Cao, W.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Capasso, F.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Carr, D. W.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Chan, H. B.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Chen, H. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Chen, S.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Cheng, H.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Chiang, Y.

Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Chin, J. Y.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Chowdhury, D. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cirelli, R. A.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Collin, S.

Cong, L.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Crozier, K. B.

Cui, J.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Cui, T. J.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Dalvit, D. A. R.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Ebbesen, T. W.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Enoch, S.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]

Fan, R. H.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for Terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

García-Meca, C.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polariton on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Genet, C.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Grady, N. K.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Gu, J.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Han, J.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Han, M.

Y. Zhang, X. G. Yin, M. Han, and C. P. Huang, “Decreased cutoff wavelength of a rectangular hole dimer in a metal,” J. Opt. 15(2), 025005 (2013).
[Crossref]

Heyes, J. E.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Huang, C.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Huang, C. P.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
[Crossref]

Y. Zhang, X. G. Yin, M. Han, and C. P. Huang, “Decreased cutoff wavelength of a rectangular hole dimer in a metal,” J. Opt. 15(2), 025005 (2013).
[Crossref]

C. P. Huang, Y. Zhang, Q. J. Wang, X. G. Yin, G. D. Wang, J. Q. Liu, and Y. Y. Zhu, “Dual channels of transmission using rectangular hole dimers,” J. Phys. Chem. C 115(50), 24621–24626 (2011).
[Crossref]

Huang, X. R.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for Terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Jiang, S. C.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for Terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Jiang, Z. H.

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4, 7511 (2014).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Khoo, E. H.

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Klein Koerkamp, K. J.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]

Klemens, F.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Kravchenko, I. I.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Kuipers, L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]

Li, E. P.

Li, J.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Li, J. Q.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
[Crossref]

Li, Z.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Lin, L.

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4, 7511 (2014).
[Crossref] [PubMed]

Linden, S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Liu, J. Q.

C. P. Huang, Y. Zhang, Q. J. Wang, X. G. Yin, G. D. Wang, J. Q. Liu, and Y. Y. Zhu, “Dual channels of transmission using rectangular hole dimers,” J. Phys. Chem. C 115(50), 24621–24626 (2011).
[Crossref]

Liu, W.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Liu, Z.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4, 7511 (2014).
[Crossref] [PubMed]

Lu, M.

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Luo, X.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Ma, D.

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4, 7511 (2014).
[Crossref] [PubMed]

Ma, X.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Mansfield, W. M.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Marcet, Z.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Martí, J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polariton on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Martínez, A.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polariton on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Mayer, T. S.

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4, 7511 (2014).
[Crossref] [PubMed]

Miner, J. F.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Moitra, P.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Ortuño, R.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polariton on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Oussaid, R.

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B 84(3), 035107 (2011).
[Crossref]

Pai, C. S.

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

Pan, W.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Pardo, F.

Pelouard, J. L.

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Peng, R. W.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for Terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Pu, M.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Reiten, M. T.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Ren, X. P.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for Terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rodríguez-Fortuño, F. J.

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polariton on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Segerink, F. B.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

Singh, R.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Smith, D. R.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Taylor, A. J.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tian, J.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Tian, Z.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Valentine, J.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

van der Molen, K. L.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]

van Hulst, N. F.

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]

Van Labeke, D.

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B 84(3), 035107 (2011).
[Crossref]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, C.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Wang, G. D.

C. P. Huang, Y. Zhang, Q. J. Wang, X. G. Yin, G. D. Wang, J. Q. Liu, and Y. Y. Zhu, “Dual channels of transmission using rectangular hole dimers,” J. Phys. Chem. C 115(50), 24621–24626 (2011).
[Crossref]

Wang, M.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for Terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Wang, Q. J.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
[Crossref]

C. P. Huang, Y. Zhang, Q. J. Wang, X. G. Yin, G. D. Wang, J. Q. Liu, and Y. Y. Zhu, “Dual channels of transmission using rectangular hole dimers,” J. Phys. Chem. C 115(50), 24621–24626 (2011).
[Crossref]

Wang, W.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Wang, Y.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Wegener, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Werner, D. H.

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4, 7511 (2014).
[Crossref] [PubMed]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Wu, S.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Xie, B.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Xiong, X.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for Terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Xu, D. H.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for Terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Yen, T.

Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

Yin, X. G.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
[Crossref]

Y. Zhang, X. G. Yin, M. Han, and C. P. Huang, “Decreased cutoff wavelength of a rectangular hole dimer in a metal,” J. Opt. 15(2), 025005 (2013).
[Crossref]

C. P. Huang, Y. Zhang, Q. J. Wang, X. G. Yin, G. D. Wang, J. Q. Liu, and Y. Y. Zhu, “Dual channels of transmission using rectangular hole dimers,” J. Phys. Chem. C 115(50), 24621–24626 (2011).
[Crossref]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yu, P.

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Yun, S.

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4, 7511 (2014).
[Crossref] [PubMed]

Zeng, Y.

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

Zhang, K.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, W.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

Zhang, X.

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhang, Y.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
[Crossref]

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Y. Zhang, X. G. Yin, M. Han, and C. P. Huang, “Decreased cutoff wavelength of a rectangular hole dimer in a metal,” J. Opt. 15(2), 025005 (2013).
[Crossref]

C. P. Huang, Y. Zhang, Q. J. Wang, X. G. Yin, G. D. Wang, J. Q. Liu, and Y. Y. Zhu, “Dual channels of transmission using rectangular hole dimers,” J. Phys. Chem. C 115(50), 24621–24626 (2011).
[Crossref]

Zhang, Z.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhao, B.

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Zhao, Y.

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Zhou, L.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhou, Y.

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for Terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Zhu, Y.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

Zhu, Y. Y.

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
[Crossref]

C. P. Huang, Y. Zhang, Q. J. Wang, X. G. Yin, G. D. Wang, J. Q. Liu, and Y. Y. Zhu, “Dual channels of transmission using rectangular hole dimers,” J. Phys. Chem. C 115(50), 24621–24626 (2011).
[Crossref]

Adv. Mater. (1)

R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and M. Wang, “Freely tunable broadband polarization rotator for Terahertz waves,” Adv. Mater. 27(7), 1201–1206 (2015).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

C. P. Huang, Q. J. Wang, X. G. Yin, Y. Zhang, J. Q. Li, and Y. Y. Zhu, “Break through the limitation of Malus’ law with plasmonic polarizers,” Adv. Opt. Mater. 2(8), 723–728 (2014).
[Crossref]

X. Ma, W. Pan, C. Huang, M. Pu, Y. Wang, B. Zhao, J. Cui, C. Wang, and X. Luo, “An active metamaterial for polarization manipulating,” Adv. Opt. Mater. 2(10), 945–949 (2014).
[Crossref]

Appl. Phys. Lett. (4)

Y. Chiang and T. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013).
[Crossref]

L. Cong, W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, “A perfect metamaterial polarization rotator,” Appl. Phys. Lett. 103(17), 171107 (2013).
[Crossref]

J. Y. Chin, M. Lu, and T. J. Cui, “Metamaterial polarizers by electric-field-coupled resonators,” Appl. Phys. Lett. 93(25), 251903 (2008).
[Crossref]

Z. Marcet, H. B. Chan, D. W. Carr, J. E. Bower, R. A. Cirelli, F. Klemens, W. M. Mansfield, J. F. Miner, C. S. Pai, and I. I. Kravchenko, “A half wave retarder made of bilayer subwavelength metallic apertures,” Appl. Phys. Lett. 98(15), 151107 (2011).
[Crossref]

J. Opt. (1)

Y. Zhang, X. G. Yin, M. Han, and C. P. Huang, “Decreased cutoff wavelength of a rectangular hole dimer in a metal,” J. Opt. 15(2), 025005 (2013).
[Crossref]

J. Phys. Chem. C (1)

C. P. Huang, Y. Zhang, Q. J. Wang, X. G. Yin, G. D. Wang, J. Q. Liu, and Y. Y. Zhu, “Dual channels of transmission using rectangular hole dimers,” J. Phys. Chem. C 115(50), 24621–24626 (2011).
[Crossref]

Nano Lett. (1)

Y. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, “Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation,” Nano Lett. 14(3), 1394–1399 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

Y. Zhao, M. A. Belkin, and A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (4)

F. I. Baida, M. Boutria, R. Oussaid, and D. Van Labeke, “Enhanced-transmission metamaterials as anisotropic plates,” Phys. Rev. B 84(3), 035107 (2011).
[Crossref]

R. Ortuño, C. García-Meca, F. J. Rodríguez-Fortuño, J. Martí, and A. Martínez, “Role of surface plasmon polariton on optical transmission through double layer metallic hole arrays,” Phys. Rev. B 79(7), 075425 (2009).
[Crossref]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B 72(4), 045421 (2005).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (2)

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013).
[Crossref] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett. 101(4), 043902 (2008).
[Crossref] [PubMed]

Plasmonics (1)

Z. Li, S. Chen, W. Liu, H. Cheng, Z. Liu, J. Li, P. Yu, B. Xie, and J. Tian, “High performance broadband asymmetric polarization conversion due to polarization-dependent reflection,” Plasmonics 10(6), 1703–1711 (2015).
[Crossref]

Sci. Rep. (1)

Z. H. Jiang, L. Lin, D. Ma, S. Yun, D. H. Werner, Z. Liu, and T. S. Mayer, “Broadband and wide field-of-view plasmonic metasurface-enabled waveplates,” Sci. Rep. 4, 7511 (2014).
[Crossref] [PubMed]

Science (4)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H. T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013).
[Crossref] [PubMed]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a, b) Schematic view of the coupled metasurfaces: two orthogonal plasmonic polarizers separated by a spacer layer; (c) transmission of a single metal film with rectangle holes; (d) polarization conversion of the coupled metasurfaces (the incident light is x-polarized). Here, d = 1000 nm, l*w = 750 nm*280 nm, t = 150 nm, h = 120 nm, and ns = 2.

Fig. 2
Fig. 2

Electric field (a) Ex and (b) Ey distributions in the xz plane (y = 235 nm, λ = 1500 nm); magnetic-field (Hz) distributions, in the middle planes of output and input polarizers, for the split peaks at 1430 nm (c, d) and 1504 nm (e, f).

Fig. 3
Fig. 3

Dependence of polarization conversion efficiency Txy on the parameters: (a) electron collision frequency; (b) metal film thickness; (c) hole lattice constant; and (d) hole size. Here, the thin solid lines (green) in the four figures correspond to the same structure parameters: d = 1000 nm, l*w = 750 nm*280 nm, t = 150 nm, h = 120 nm, ns = 2, and γ = 5*1013 Hz.

Fig. 4
Fig. 4

Polarization conversion efficiency Txy as a function of wavelength for different spacer thickness (h = 100, 140, 180, and 220 nm). Here, d = 1000 nm, l*w = 750 nm*280 nm, t = 150 nm, ns = 2.

Fig. 5
Fig. 5

Polarization conversion efficiency Txy as a function of wavelength for different spacer refractive index (ns = 2.0, 1.73, 1.5, and 1.3). Here, d = 1000 nm, l*w = 750 nm*280 nm, t = 150 nm, and h = 120 nm.

Fig. 6
Fig. 6

Polarization conversion effect in the THz band: d = 100 μm, l*w = 75 μm*30 μm, t = 15 μm, h = 9 μm, and ns = 1.5. The arrow indicates the hole cutoff wavelength.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ mn = n s d m 2 + n 2 1+ 2δ h coth t δ ,
Δλ 2 1 2 n s d 1+ 2δ h .

Metrics