Abstract

We pursued the extremely low loss of photonic-crystal waveguides composed of a silicon slab with high resistivity (20 kΩ-cm) in the terahertz region. Propagation and bending losses as small as <0.1 dB/cm (0.326–0.331 THz) and 0.2 dB/bend (0.323–0.331 THz), respectively, were achieved in the 0.3-THz band. We also developed 1.5-Gbit/s terahertz links and demonstrated an error-free uncompressed high-definition video transmission by using a photonic-crystal waveguide with a length of as long as 50 cm and up to 28 bends thanks to the low-loss properties. Our results show the potential of photonic crystals for application as terahertz integration platforms.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length

Yoshimasa Sugimoto, Yu Tanaka, Naoki Ikeda, Yusui Nakamura, Kiyoshi Asakawa, and Kuon Inoue
Opt. Express 12(6) 1090-1096 (2004)

Photonic-crystal diplexers for terahertz-wave applications

Masahiro Yata, Masayuki Fujita, and Tadao Nagatsuma
Opt. Express 24(7) 7835-7849 (2016)

Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides

Sharee J. McNab, Nikolaj Moll, and Yurii A. Vlasov
Opt. Express 11(22) 2927-2939 (2003)

References

  • View by:
  • |
  • |
  • |

  1. B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
    [Crossref] [PubMed]
  2. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
    [Crossref]
  3. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  4. T. Nagatsuma, “Terahertz technologies: present and future,” IEICE Electron. Express 8(14), 1127–1142 (2011).
    [Crossref]
  5. J.-H. Son, “Principle and applications of terahertz molecular imaging,” Nanotechnology 24(21), 214001 (2013).
    [Crossref] [PubMed]
  6. D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
    [Crossref]
  7. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21(20), 23736–23747 (2013).
    [Crossref] [PubMed]
  8. M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
    [Crossref]
  9. H. J. Cheng, J. F. Whitaker, T. M. Weller, and L. P. B. Katehi, “Terahertz-bandwidth characteristics of coplanar transmission lines on low permittivity substrates,” IEEE Trans. Microw. Theory Tech. 42(12), 2399–2406 (1994).
    [Crossref]
  10. H. M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey, and K. Ploog, “Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium,” Appl. Phys. Lett. 70(17), 2233–2235 (1997).
    [Crossref]
  11. K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys. 44(28), L1011–L1014 (2005).
    [Crossref]
  12. J. J. Zhang, S. Alexandrou, and Y. Hsiang, “Attenuation characteristics of coplanar waveguides at subterahertz frequencies,” IEEE Trans. Microw. Theory Tech. 53(11), 3281–3287 (2005).
    [Crossref]
  13. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  14. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [Crossref] [PubMed]
  15. S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
    [Crossref] [PubMed]
  16. A. Scherer, O. Painter, J. Vuckovic, M. Lončar, and T. Yoshie, “Photonic crystals for confining, guiding and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
    [Crossref]
  17. T. Baba, “Photonic crystals remember the light,” Nat. Photonics 1(1), 11–12 (2007).
    [Crossref]
  18. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  19. H. G. Park, M. K. Seo, S. H. Kim, and Y. H. Lee, “Electrically pumped photonic crystal nanolasers,” Opt. Photonics News 19(5), 40–45 (2008).
    [Crossref]
  20. M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
    [Crossref]
  21. R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
    [Crossref]
  22. M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystal,” Science 308, 1296–1298 (2005).
    [Crossref] [PubMed]
  23. Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87(19), 191113 (2005).
    [Crossref]
  24. Z. Jian and D. M. Mittleman, “Broadband group velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73(11), 115118 (2006).
    [Crossref]
  25. Z. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100(12), 123113 (2006).
    [Crossref]
  26. N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
    [Crossref]
  27. C. Yee, N. Jukam, and M. S. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91(19), 194104 (2007).
    [Crossref]
  28. T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15(25), 16954–16965 (2007).
    [Crossref] [PubMed]
  29. T. Prasad, V. L. Colvin, and D. M. Mittleman, “Dependence of guided resonances on the structural parameters of terahertz photonic crystal slabs,” J. Opt. Soc. Am. B 25(4), 633–644 (2008).
    [Crossref]
  30. C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
    [Crossref]
  31. K. Tsuruda, T. Ishigaki, A. Suminokura, R. Kakimi, M. Fujita, and T. Nagatsuma, “Ultralow-loss photonic- crystal waveguides for gigabit terahertz-wave communications,” in International Topical Meeting on Microwave Photonics (IEEE, 2013), pp. 9–12.
    [Crossref]
  32. A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62(7), 4488–4492 (2000).
    [Crossref]
  33. S. Adachi, Properties of Group-IV, III–V and II–VI Semiconductors (Wiley, 2005).
  34. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering low of line-defect waveguides in photonics crystal slab,” Phys. Rev. B 72(16), 161318 (2005).
    [Crossref]
  35. E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B 72(11), 115102 (2005).
    [Crossref]
  36. B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60° bend in a planar photonic crystal single-line defect waveguide,” IEEE Photonics Technol. Lett. 16(11), 2469–2471 (2004).
    [Crossref]
  37. T. Baba, N. Fukaya, and J. Yonekura, “Observation of light transmission in photonic crystal waveguides with bends,” Electron. Lett. 35(8), 654–655 (1999).
    [Crossref]
  38. C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813 (2000).
    [Crossref]
  39. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37(5), 293 (2001).
    [Crossref]
  40. M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
    [Crossref]
  41. S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
    [Crossref] [PubMed]
  42. Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, “Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,” Opt. Express 12(6), 1090–1096 (2004).
    [Crossref] [PubMed]
  43. M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004).
    [Crossref] [PubMed]
  44. L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42(25), 1454–1455 (2006).
    [Crossref]
  45. M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15(26), 17458–17481 (2007).
    [Crossref] [PubMed]
  46. J. O. Grepstad, M. M. Greve, B. Holst, I.-R. Johansen, O. Solgaard, and A. Sudbø, “Finite-size limitations on Quality Factor of guided resonance modes in 2D Photonic Crystals,” Opt. Express 21(20), 23640–23654 (2013).
    [Crossref] [PubMed]

2014 (1)

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

2013 (4)

2011 (1)

T. Nagatsuma, “Terahertz technologies: present and future,” IEICE Electron. Express 8(14), 1127–1142 (2011).
[Crossref]

2010 (1)

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
[Crossref]

2009 (1)

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

2008 (2)

H. G. Park, M. K. Seo, S. H. Kim, and Y. H. Lee, “Electrically pumped photonic crystal nanolasers,” Opt. Photonics News 19(5), 40–45 (2008).
[Crossref]

T. Prasad, V. L. Colvin, and D. M. Mittleman, “Dependence of guided resonances on the structural parameters of terahertz photonic crystal slabs,” J. Opt. Soc. Am. B 25(4), 633–644 (2008).
[Crossref]

2007 (5)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15(25), 16954–16965 (2007).
[Crossref] [PubMed]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15(26), 17458–17481 (2007).
[Crossref] [PubMed]

T. Baba, “Photonic crystals remember the light,” Nat. Photonics 1(1), 11–12 (2007).
[Crossref]

C. Yee, N. Jukam, and M. S. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91(19), 194104 (2007).
[Crossref]

2006 (4)

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42(25), 1454–1455 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Broadband group velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73(11), 115118 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100(12), 123113 (2006).
[Crossref]

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
[Crossref]

2005 (6)

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystal,” Science 308, 1296–1298 (2005).
[Crossref] [PubMed]

Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87(19), 191113 (2005).
[Crossref]

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys. 44(28), L1011–L1014 (2005).
[Crossref]

J. J. Zhang, S. Alexandrou, and Y. Hsiang, “Attenuation characteristics of coplanar waveguides at subterahertz frequencies,” IEEE Trans. Microw. Theory Tech. 53(11), 3281–3287 (2005).
[Crossref]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering low of line-defect waveguides in photonics crystal slab,” Phys. Rev. B 72(16), 161318 (2005).
[Crossref]

E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B 72(11), 115102 (2005).
[Crossref]

2004 (4)

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60° bend in a planar photonic crystal single-line defect waveguide,” IEEE Photonics Technol. Lett. 16(11), 2469–2471 (2004).
[Crossref]

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, “Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,” Opt. Express 12(6), 1090–1096 (2004).
[Crossref] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004).
[Crossref] [PubMed]

2003 (1)

2002 (3)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[Crossref]

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

A. Scherer, O. Painter, J. Vuckovic, M. Lončar, and T. Yoshie, “Photonic crystals for confining, guiding and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
[Crossref]

2001 (1)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37(5), 293 (2001).
[Crossref]

2000 (3)

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813 (2000).
[Crossref]

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62(7), 4488–4492 (2000).
[Crossref]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

1999 (1)

T. Baba, N. Fukaya, and J. Yonekura, “Observation of light transmission in photonic crystal waveguides with bends,” Electron. Lett. 35(8), 654–655 (1999).
[Crossref]

1997 (1)

H. M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey, and K. Ploog, “Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium,” Appl. Phys. Lett. 70(17), 2233–2235 (1997).
[Crossref]

1994 (1)

H. J. Cheng, J. F. Whitaker, T. M. Weller, and L. P. B. Katehi, “Terahertz-bandwidth characteristics of coplanar transmission lines on low permittivity substrates,” IEEE Trans. Microw. Theory Tech. 42(12), 2399–2406 (1994).
[Crossref]

1991 (1)

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[Crossref]

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Alexandrou, S.

J. J. Zhang, S. Alexandrou, and Y. Hsiang, “Attenuation characteristics of coplanar waveguides at subterahertz frequencies,” IEEE Trans. Microw. Theory Tech. 53(11), 3281–3287 (2005).
[Crossref]

Asakawa, K.

Asano, T.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystal,” Science 308, 1296–1298 (2005).
[Crossref] [PubMed]

Ashida, M.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Baba, T.

T. Baba, “Photonic crystals remember the light,” Nat. Photonics 1(1), 11–12 (2007).
[Crossref]

T. Baba, N. Fukaya, and J. Yonekura, “Observation of light transmission in photonic crystal waveguides with bends,” Electron. Lett. 35(8), 654–655 (1999).
[Crossref]

Benisty, H.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813 (2000).
[Crossref]

Chen, C. H.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60° bend in a planar photonic crystal single-line defect waveguide,” IEEE Photonics Technol. Lett. 16(11), 2469–2471 (2004).
[Crossref]

Cheng, H. J.

H. J. Cheng, J. F. Whitaker, T. M. Weller, and L. P. B. Katehi, “Terahertz-bandwidth characteristics of coplanar transmission lines on low permittivity substrates,” IEEE Trans. Microw. Theory Tech. 42(12), 2399–2406 (1994).
[Crossref]

Chong, H.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42(25), 1454–1455 (2006).
[Crossref]

Chutinan, A.

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62(7), 4488–4492 (2000).
[Crossref]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Colvin, V. L.

De La Rue, R. M.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42(25), 1454–1455 (2006).
[Crossref]

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813 (2000).
[Crossref]

Dulkeith, E.

E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B 72(11), 115102 (2005).
[Crossref]

Ferguson, B.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Frankel, M. Y.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[Crossref]

Fujita, M.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystal,” Science 308, 1296–1298 (2005).
[Crossref] [PubMed]

K. Tsuruda, T. Ishigaki, A. Suminokura, R. Kakimi, M. Fujita, and T. Nagatsuma, “Ultralow-loss photonic- crystal waveguides for gigabit terahertz-wave communications,” in International Topical Meeting on Microwave Photonics (IEEE, 2013), pp. 9–12.
[Crossref]

Fukaya, N.

T. Baba, N. Fukaya, and J. Yonekura, “Observation of light transmission in photonic crystal waveguides with bends,” Electron. Lett. 35(8), 654–655 (1999).
[Crossref]

Fushman, I.

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
[Crossref]

Grepstad, J. O.

Greve, M. M.

Gupta, S.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[Crossref]

Heiliger, H. M.

H. M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey, and K. Ploog, “Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium,” Appl. Phys. Lett. 70(17), 2233–2235 (1997).
[Crossref]

Heinrich, W.

H. M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey, and K. Ploog, “Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium,” Appl. Phys. Lett. 70(17), 2233–2235 (1997).
[Crossref]

Hey, R.

H. M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey, and K. Ploog, “Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium,” Appl. Phys. Lett. 70(17), 2233–2235 (1997).
[Crossref]

Hisatake, S.

Holst, B.

Horiguchi, S.

Houdré, R.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813 (2000).
[Crossref]

Hsiang, Y.

J. J. Zhang, S. Alexandrou, and Y. Hsiang, “Attenuation characteristics of coplanar waveguides at subterahertz frequencies,” IEEE Trans. Microw. Theory Tech. 53(11), 3281–3287 (2005).
[Crossref]

Hughes, S.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering low of line-defect waveguides in photonics crystal slab,” Phys. Rev. B 72(16), 161318 (2005).
[Crossref]

Ikeda, N.

Imada, M.

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Inoue, K.

Ishigaki, T.

K. Tsuruda, T. Ishigaki, A. Suminokura, R. Kakimi, M. Fujita, and T. Nagatsuma, “Ultralow-loss photonic- crystal waveguides for gigabit terahertz-wave communications,” in International Topical Meeting on Microwave Photonics (IEEE, 2013), pp. 9–12.
[Crossref]

Jian, Z.

Z. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100(12), 123113 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Broadband group velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73(11), 115118 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87(19), 191113 (2005).
[Crossref]

Johansen, I.-R.

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Jukam, N.

C. Yee, N. Jukam, and M. S. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91(19), 194104 (2007).
[Crossref]

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
[Crossref]

Kadoya, Y.

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys. 44(28), L1011–L1014 (2005).
[Crossref]

Kakimi, R.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

K. Tsuruda, T. Ishigaki, A. Suminokura, R. Kakimi, M. Fujita, and T. Nagatsuma, “Ultralow-loss photonic- crystal waveguides for gigabit terahertz-wave communications,” in International Topical Meeting on Microwave Photonics (IEEE, 2013), pp. 9–12.
[Crossref]

Katehi, L. P. B.

H. J. Cheng, J. F. Whitaker, T. M. Weller, and L. P. B. Katehi, “Terahertz-bandwidth characteristics of coplanar transmission lines on low permittivity substrates,” IEEE Trans. Microw. Theory Tech. 42(12), 2399–2406 (1994).
[Crossref]

Kim, S. H.

H. G. Park, M. K. Seo, S. H. Kim, and Y. H. Lee, “Electrically pumped photonic crystal nanolasers,” Opt. Photonics News 19(5), 40–45 (2008).
[Crossref]

Kitagawa, J.

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys. 44(28), L1011–L1014 (2005).
[Crossref]

Krauss, T. F.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42(25), 1454–1455 (2006).
[Crossref]

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813 (2000).
[Crossref]

Kuramochi, E.

Kurz, H.

H. M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey, and K. Ploog, “Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium,” Appl. Phys. Lett. 70(17), 2233–2235 (1997).
[Crossref]

Kuwano, S.

Lee, Y. H.

H. G. Park, M. K. Seo, S. H. Kim, and Y. H. Lee, “Electrically pumped photonic crystal nanolasers,” Opt. Photonics News 19(5), 40–45 (2008).
[Crossref]

Loncar, M.

A. Scherer, O. Painter, J. Vuckovic, M. Lončar, and T. Yoshie, “Photonic crystals for confining, guiding and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
[Crossref]

McIntyre, D.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42(25), 1454–1455 (2006).
[Crossref]

McNab, S.

McNab, S. J.

E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B 72(11), 115102 (2005).
[Crossref]

Miao, B. L.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60° bend in a planar photonic crystal single-line defect waveguide,” IEEE Photonics Technol. Lett. 16(11), 2469–2471 (2004).
[Crossref]

Minamikata, Y.

Mitsugi, S.

Mittleman, D. M.

D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
[Crossref]

T. Prasad, V. L. Colvin, and D. M. Mittleman, “Dependence of guided resonances on the structural parameters of terahertz photonic crystal slabs,” J. Opt. Soc. Am. B 25(4), 633–644 (2008).
[Crossref]

T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15(25), 16954–16965 (2007).
[Crossref] [PubMed]

Z. Jian and D. M. Mittleman, “Broadband group velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73(11), 115118 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100(12), 123113 (2006).
[Crossref]

Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87(19), 191113 (2005).
[Crossref]

Moll, N.

Morita, M.

Mourou, G. A.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[Crossref]

Murakowski, J.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60° bend in a planar photonic crystal single-line defect waveguide,” IEEE Photonics Technol. Lett. 16(11), 2469–2471 (2004).
[Crossref]

Nagai, M.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

Nagatsuma, T.

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21(20), 23736–23747 (2013).
[Crossref] [PubMed]

T. Nagatsuma, “Terahertz technologies: present and future,” IEICE Electron. Express 8(14), 1127–1142 (2011).
[Crossref]

K. Tsuruda, T. Ishigaki, A. Suminokura, R. Kakimi, M. Fujita, and T. Nagatsuma, “Ultralow-loss photonic- crystal waveguides for gigabit terahertz-wave communications,” in International Topical Meeting on Microwave Photonics (IEEE, 2013), pp. 9–12.
[Crossref]

Nagayama, D.

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys. 44(28), L1011–L1014 (2005).
[Crossref]

Nagel, M.

H. M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey, and K. Ploog, “Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium,” Appl. Phys. Lett. 70(17), 2233–2235 (1997).
[Crossref]

Nakamura, Y.

Noda, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystal,” Science 308, 1296–1298 (2005).
[Crossref] [PubMed]

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62(7), 4488–4492 (2000).
[Crossref]

Notomi, M.

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
[Crossref]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15(26), 17458–17481 (2007).
[Crossref] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering low of line-defect waveguides in photonics crystal slab,” Phys. Rev. B 72(16), 161318 (2005).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004).
[Crossref] [PubMed]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[Crossref]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37(5), 293 (2001).
[Crossref]

O’Faolain, L.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42(25), 1454–1455 (2006).
[Crossref]

Oesterle, U.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813 (2000).
[Crossref]

Ohkubo, T.

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys. 44(28), L1011–L1014 (2005).
[Crossref]

Olivier, S.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813 (2000).
[Crossref]

Painter, O.

A. Scherer, O. Painter, J. Vuckovic, M. Lončar, and T. Yoshie, “Photonic crystals for confining, guiding and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
[Crossref]

Park, H. G.

H. G. Park, M. K. Seo, S. H. Kim, and Y. H. Lee, “Electrically pumped photonic crystal nanolasers,” Opt. Photonics News 19(5), 40–45 (2008).
[Crossref]

Ploog, K.

H. M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey, and K. Ploog, “Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium,” Appl. Phys. Lett. 70(17), 2233–2235 (1997).
[Crossref]

Prasad, T.

Prather, D. W.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60° bend in a planar photonic crystal single-line defect waveguide,” IEEE Photonics Technol. Lett. 16(11), 2469–2471 (2004).
[Crossref]

Ramunno, L.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering low of line-defect waveguides in photonics crystal slab,” Phys. Rev. B 72(16), 161318 (2005).
[Crossref]

Rattier, M.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813 (2000).
[Crossref]

Roskos, H. G.

H. M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey, and K. Ploog, “Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium,” Appl. Phys. Lett. 70(17), 2233–2235 (1997).
[Crossref]

Ryu, H.

Sawada, F.

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys. 44(28), L1011–L1014 (2005).
[Crossref]

Scherer, A.

A. Scherer, O. Painter, J. Vuckovic, M. Lončar, and T. Yoshie, “Photonic crystals for confining, guiding and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
[Crossref]

Schnieder, F.

H. M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey, and K. Ploog, “Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium,” Appl. Phys. Lett. 70(17), 2233–2235 (1997).
[Crossref]

Seo, M. K.

H. G. Park, M. K. Seo, S. H. Kim, and Y. H. Lee, “Electrically pumped photonic crystal nanolasers,” Opt. Photonics News 19(5), 40–45 (2008).
[Crossref]

Sherwin, M. S.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

C. Yee, N. Jukam, and M. S. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91(19), 194104 (2007).
[Crossref]

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
[Crossref]

Shi, S. Y.

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60° bend in a planar photonic crystal single-line defect waveguide,” IEEE Photonics Technol. Lett. 16(11), 2469–2471 (2004).
[Crossref]

Shinya, A.

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15(26), 17458–17481 (2007).
[Crossref] [PubMed]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering low of line-defect waveguides in photonics crystal slab,” Phys. Rev. B 72(16), 161318 (2005).
[Crossref]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004).
[Crossref] [PubMed]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[Crossref]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37(5), 293 (2001).
[Crossref]

Siegel, P. H.

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

Smith, C. J. M.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813 (2000).
[Crossref]

Solgaard, O.

Son, J.-H.

J.-H. Son, “Principle and applications of terahertz molecular imaging,” Nanotechnology 24(21), 214001 (2013).
[Crossref] [PubMed]

Sudbø, A.

Sugimoto, Y.

Suminokura, A.

K. Tsuruda, T. Ishigaki, A. Suminokura, R. Kakimi, M. Fujita, and T. Nagatsuma, “Ultralow-loss photonic- crystal waveguides for gigabit terahertz-wave communications,” in International Topical Meeting on Microwave Photonics (IEEE, 2013), pp. 9–12.
[Crossref]

Takahashi, C.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[Crossref]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37(5), 293 (2001).
[Crossref]

Takahashi, H.

Takahashi, J.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[Crossref]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37(5), 293 (2001).
[Crossref]

Takahashi, S.

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystal,” Science 308, 1296–1298 (2005).
[Crossref] [PubMed]

Takase, K.

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys. 44(28), L1011–L1014 (2005).
[Crossref]

Tanabe, T.

Tanaka, Y.

Taniyama, H.

Terada, J.

Thoms, S.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42(25), 1454–1455 (2006).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tsuruda, K.

K. Tsuruda, T. Ishigaki, A. Suminokura, R. Kakimi, M. Fujita, and T. Nagatsuma, “Ultralow-loss photonic- crystal waveguides for gigabit terahertz-wave communications,” in International Topical Meeting on Microwave Photonics (IEEE, 2013), pp. 9–12.
[Crossref]

Valdmanis, J. A.

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[Crossref]

Vlasov, Y.

Vlasov, Y. A.

E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B 72(11), 115102 (2005).
[Crossref]

Vuckovic, J.

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
[Crossref]

A. Scherer, O. Painter, J. Vuckovic, M. Lončar, and T. Yoshie, “Photonic crystals for confining, guiding and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
[Crossref]

Watanabe, T.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering low of line-defect waveguides in photonics crystal slab,” Phys. Rev. B 72(16), 161318 (2005).
[Crossref]

Weisbuch, C.

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813 (2000).
[Crossref]

Weller, T. M.

H. J. Cheng, J. F. Whitaker, T. M. Weller, and L. P. B. Katehi, “Terahertz-bandwidth characteristics of coplanar transmission lines on low permittivity substrates,” IEEE Trans. Microw. Theory Tech. 42(12), 2399–2406 (1994).
[Crossref]

Whitaker, J. F.

H. J. Cheng, J. F. Whitaker, T. M. Weller, and L. P. B. Katehi, “Terahertz-bandwidth characteristics of coplanar transmission lines on low permittivity substrates,” IEEE Trans. Microw. Theory Tech. 42(12), 2399–2406 (1994).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yamada, K.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[Crossref]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37(5), 293 (2001).
[Crossref]

Yee, C.

C. Yee, N. Jukam, and M. S. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91(19), 194104 (2007).
[Crossref]

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
[Crossref]

Yee, C. M.

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

Yokohama, I.

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[Crossref]

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37(5), 293 (2001).
[Crossref]

Yonekura, J.

T. Baba, N. Fukaya, and J. Yonekura, “Observation of light transmission in photonic crystal waveguides with bends,” Electron. Lett. 35(8), 654–655 (1999).
[Crossref]

Yoshie, T.

A. Scherer, O. Painter, J. Vuckovic, M. Lončar, and T. Yoshie, “Photonic crystals for confining, guiding and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
[Crossref]

Yoshimizu, Y.

Yoshimoto, N.

Yuan, X.

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42(25), 1454–1455 (2006).
[Crossref]

Zhang, J. J.

J. J. Zhang, S. Alexandrou, and Y. Hsiang, “Attenuation characteristics of coplanar waveguides at subterahertz frequencies,” IEEE Trans. Microw. Theory Tech. 53(11), 3281–3287 (2005).
[Crossref]

Zhang, X.-C.

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Appl. Phys. Lett. (6)

H. M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, W. Heinrich, R. Hey, and K. Ploog, “Low-dispersion thin-film microstrip lines with cyclotene (benzocyclobutene) as dielectric medium,” Appl. Phys. Lett. 70(17), 2233–2235 (1997).
[Crossref]

Z. Jian and D. M. Mittleman, “Out-of-plane dispersion and homogenization in photonic crystal slabs,” Appl. Phys. Lett. 87(19), 191113 (2005).
[Crossref]

N. Jukam, C. Yee, M. S. Sherwin, I. Fushman, and J. Vučković, “Patterned femtosecond laser excitation of terahertz leaky modes in GaAs photonic crystals,” Appl. Phys. Lett. 89(24), 241112 (2006).
[Crossref]

C. Yee, N. Jukam, and M. S. Sherwin, “Transmission of single mode ultrathin terahertz photonic crystal slabs,” Appl. Phys. Lett. 91(19), 194104 (2007).
[Crossref]

C. M. Yee and M. S. Sherwin, “High-Q terahertz microcavities in silicon photonic crystal slabs,” Appl. Phys. Lett. 94(15), 154104 (2009).
[Crossref]

C. J. M. Smith, H. Benisty, S. Olivier, M. Rattier, C. Weisbuch, T. F. Krauss, R. M. De La Rue, R. Houdré, and U. Oesterle, “Low-loss channel waveguides with two-dimensional photonic crystal boundaries,” Appl. Phys. Lett. 77(18), 2813 (2000).
[Crossref]

Electron. Lett. (3)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Singlemode transmission within photonic bandgap of width-varied single-line-defect photonic crystal waveguides on SOI substrates,” Electron. Lett. 37(5), 293 (2001).
[Crossref]

T. Baba, N. Fukaya, and J. Yonekura, “Observation of light transmission in photonic crystal waveguides with bends,” Electron. Lett. 35(8), 654–655 (1999).
[Crossref]

L. O’Faolain, X. Yuan, D. McIntyre, S. Thoms, H. Chong, R. M. De La Rue, and T. F. Krauss, “Low-loss propagation in photonic crystal waveguides,” Electron. Lett. 42(25), 1454–1455 (2006).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Notomi, A. Shinya, K. Yamada, J. Takahashi, C. Takahashi, and I. Yokohama, “Structural tuning of guiding modes of line-defect waveguides of silicon-on-insulator photonic crystal slabs,” IEEE J. Quantum Electron. 38(7), 736–742 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. L. Miao, C. H. Chen, S. Y. Shi, J. Murakowski, and D. W. Prather, “High-efficiency broad-band transmission through a double-60° bend in a planar photonic crystal single-line defect waveguide,” IEEE Photonics Technol. Lett. 16(11), 2469–2471 (2004).
[Crossref]

IEEE Trans. Microw. Theory Tech. (4)

P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004).
[Crossref]

M. Y. Frankel, S. Gupta, J. A. Valdmanis, and G. A. Mourou, “Terahertz attenuation and dispersion characteristics of coplanar transmission lines,” IEEE Trans. Microw. Theory Tech. 39(6), 910–916 (1991).
[Crossref]

H. J. Cheng, J. F. Whitaker, T. M. Weller, and L. P. B. Katehi, “Terahertz-bandwidth characteristics of coplanar transmission lines on low permittivity substrates,” IEEE Trans. Microw. Theory Tech. 42(12), 2399–2406 (1994).
[Crossref]

J. J. Zhang, S. Alexandrou, and Y. Hsiang, “Attenuation characteristics of coplanar waveguides at subterahertz frequencies,” IEEE Trans. Microw. Theory Tech. 53(11), 3281–3287 (2005).
[Crossref]

IEEE Trans. NanoTechnol. (1)

A. Scherer, O. Painter, J. Vuckovic, M. Lončar, and T. Yoshie, “Photonic crystals for confining, guiding and emitting light,” IEEE Trans. NanoTechnol. 1(1), 4–11 (2002).
[Crossref]

IEICE Electron. Express (1)

T. Nagatsuma, “Terahertz technologies: present and future,” IEICE Electron. Express 8(14), 1127–1142 (2011).
[Crossref]

J. Appl. Phys. (1)

Z. Jian and D. M. Mittleman, “Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy,” J. Appl. Phys. 100(12), 123113 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Takase, T. Ohkubo, F. Sawada, D. Nagayama, J. Kitagawa, and Y. Kadoya, “Propagation characteristics of terahertz electrical signals on micro-strip lines made of optically transparent conductors,” Jpn. J. Appl. Phys. 44(28), L1011–L1014 (2005).
[Crossref]

Nanotechnology (1)

J.-H. Son, “Principle and applications of terahertz molecular imaging,” Nanotechnology 24(21), 214001 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

B. Ferguson and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1(1), 26–33 (2002).
[Crossref] [PubMed]

Nat. Photonics (4)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

T. Baba, “Photonic crystals remember the light,” Nat. Photonics 1(1), 11–12 (2007).
[Crossref]

R. Kakimi, M. Fujita, M. Nagai, M. Ashida, and T. Nagatsuma, “Capture of a terahertz wave in a photonic-crystal slab,” Nat. Photonics 8(8), 657–663 (2014).
[Crossref]

D. M. Mittleman, “Frontiers in terahertz sources and plasmonics,” Nat. Photonics 7(9), 666–669 (2013).
[Crossref]

Nature (1)

S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature 407(6804), 608–610 (2000).
[Crossref] [PubMed]

Opt. Express (7)

J. O. Grepstad, M. M. Greve, B. Holst, I.-R. Johansen, O. Solgaard, and A. Sudbø, “Finite-size limitations on Quality Factor of guided resonance modes in 2D Photonic Crystals,” Opt. Express 21(20), 23640–23654 (2013).
[Crossref] [PubMed]

T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21(20), 23736–23747 (2013).
[Crossref] [PubMed]

S. McNab, N. Moll, and Y. Vlasov, “Ultra-low loss photonic integrated circuit with membrane-type photonic crystal waveguides,” Opt. Express 11(22), 2927–2939 (2003).
[Crossref] [PubMed]

Y. Sugimoto, Y. Tanaka, N. Ikeda, Y. Nakamura, K. Asakawa, and K. Inoue, “Low propagation loss of 0.76 dB/mm in GaAs-based single-line-defect two-dimensional photonic crystal slab waveguides up to 1 cm in length,” Opt. Express 12(6), 1090–1096 (2004).
[Crossref] [PubMed]

M. Notomi, A. Shinya, S. Mitsugi, E. Kuramochi, and H. Ryu, “Waveguides, resonators and their coupled elements in photonic crystal slabs,” Opt. Express 12(8), 1551–1561 (2004).
[Crossref] [PubMed]

T. Prasad, V. L. Colvin, and D. M. Mittleman, “The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy,” Opt. Express 15(25), 16954–16965 (2007).
[Crossref] [PubMed]

M. Notomi, T. Tanabe, A. Shinya, E. Kuramochi, H. Taniyama, S. Mitsugi, and M. Morita, “Nonlinear and adiabatic control of high-Q photonic crystal nanocavities,” Opt. Express 15(26), 17458–17481 (2007).
[Crossref] [PubMed]

Opt. Photonics News (1)

H. G. Park, M. K. Seo, S. H. Kim, and Y. H. Lee, “Electrically pumped photonic crystal nanolasers,” Opt. Photonics News 19(5), 40–45 (2008).
[Crossref]

Phys. Rev. B (4)

Z. Jian and D. M. Mittleman, “Broadband group velocity anomaly in transmission through a terahertz photonic crystal slab,” Phys. Rev. B 73(11), 115118 (2006).
[Crossref]

A. Chutinan and S. Noda, “Waveguides and waveguide bends in two-dimensional photonic crystal slabs,” Phys. Rev. B 62(7), 4488–4492 (2000).
[Crossref]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, “Disorder-induced scattering low of line-defect waveguides in photonics crystal slab,” Phys. Rev. B 72(16), 161318 (2005).
[Crossref]

E. Dulkeith, S. J. McNab, and Y. A. Vlasov, “Mapping the optical properties of slab-type two-dimensional photonic crystal waveguides,” Phys. Rev. B 72(11), 115102 (2005).
[Crossref]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

M. Notomi, “Manipulating light with strongly modulated photonic crystals,” Rep. Prog. Phys. 73(9), 096501 (2010).
[Crossref]

Science (1)

M. Fujita, S. Takahashi, Y. Tanaka, T. Asano, and S. Noda, “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystal,” Science 308, 1296–1298 (2005).
[Crossref] [PubMed]

Other (3)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

S. Adachi, Properties of Group-IV, III–V and II–VI Semiconductors (Wiley, 2005).

K. Tsuruda, T. Ishigaki, A. Suminokura, R. Kakimi, M. Fujita, and T. Nagatsuma, “Ultralow-loss photonic- crystal waveguides for gigabit terahertz-wave communications,” in International Topical Meeting on Microwave Photonics (IEEE, 2013), pp. 9–12.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (6292 KB)      HD video transmission with PC waveguide

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

(a) Schematic of PC waveguide system. Top and cross-sectional scanning electron micrographs of the fabricated sample are inserted. A WR-3 hollow-core waveguide is employed for measurement. (b, d, f) Top views of the straight waveguide, waveguide bend, and tapered structure, respectively. (c, e, g) Corresponding simulated electrical-field amplitude distributions for each structure. The yellow rectangle in (f) denotes the cross-section of the WR-3 waveguide.

Fig. 2
Fig. 2

Simulation results of straight waveguide. (a) Photonic band diagram. The red and blue curves denote the results of the fundamental propagation mode and the higher order mode, respectively. The dashed line is the light line, which corresponds to the dispersion in free space. In the leaky region, the TIR condition is not satisfied. (b) Transmission spectra for various Si resistivities. The red, green, and blue curves correspond to resistivities of 600 Ω-cm, 3 kΩ-cm, and 20 kΩ-cm, respectively. (c) Group velocity vs. frequency; c is the speed of light in vacuum.

Fig. 3
Fig. 3

Measured and simulated bending loss. Solid blue and dashed black curves denote the simulation results for bending used in the experiments shown in Fig. 1 (d) and the simple 60° bend structure without the capsule-shaped defect. Experimental plots are given with the error bar derived from the standard deviation.

Fig. 4
Fig. 4

Fabricated samples for various propagation lengths: (a) 2 cm, (b) 3 cm, (c) 5 cm, (d, e) 8 cm, (f) 20 cm, and (g) 50 cm. (a–d) straight waveguides. (e–g) waveguides with 28 bends.

Fig. 5
Fig. 5

THz spectroscopy image for transmittance measurement: (a) block diagram and (b) photograph.

Fig. 6
Fig. 6

Experimental transmittance spectra for samples with a resistivity of 20 kΩ-cm. (a) straight waveguide and (b) waveguide with 28 bends. The blue, green, red, black, purple, and orange curves denote lengths of 2, 3, 5, 8, 20, and 50 cm, respectively.

Fig. 7
Fig. 7

Experimental transmittance spectra of 8-cm-long straight waveguide for various Si resistivities. The red, green, and blue curves denote resistivities of 600 Ω-cm, 3 kΩ-cm, and 20 kΩ-cm, respectively

Fig. 8
Fig. 8

Measured total loss of each sample as a function of the propagation length of the PC waveguide. The propagation loss is defined using the slope. The bending loss is defined by the difference between the total losses with and without the bending structure. The frequency and resistivity are 0.330 THz and 20 kΩ-cm, respectively.

Fig. 9
Fig. 9

Measured and simulated propagation loss for various Si resistivities. The error bar is derived from the standard deviation. (a) Propagation loss as a function of the frequency. The red triangle, green diamond, and blue circle plots with simulated curves denote samples for 600 Ω-cm, 3 kΩ-cm, and 20 kΩ-cm, respectively. There is a large variation below 0.315 THz because of the low transmittance. Propagation loss of experimental plots and theoretical lines at 0.330 THz as a function of the Si resistivity. Black solid curve is simulated using the FDTD method. Red solid line is calculated with material loss considering a group velocity refractive index of 4.4 and an optical confinement factor of 0.9 in the PC waveguide estimated by simulations. Blue dot line denotes the propagation loss for the simulation of the model without material loss owing to a small amount of in-plane propagation loss caused by the finite number (7 rows for each side of the Γ-X direction) of the PC layer [46].

Fig. 10
Fig. 10

Experimental set up for THz communication.

Fig. 11
Fig. 11

Experimental results of THz communications: (a) BER as a function of the input power at 1.5 Gbit/s, (b) measured eye diagram at 1.5 Gbit/s with a BER of 9.0 × 10−12, and (c) HD video transmission (see Visualization 1).

Fig. 12
Fig. 12

Measured and simulated coupling loss between a WR-3 hollow waveguide and PC waveguide.

Metrics