Abstract

Miniaturized imaging systems combining an ultra-compact form factor in combination with the ability of refocusing and depth imaging have gained much interest in the field of mobile imaging. Therefore, artificial compound eye cameras are an extremely promising approach for the realization of compact monolithic camera modules on wafer level. Up to now, their imaging performance was limited to low resolution in the range of VGA format according to fabrication constrains given by the established microoptical fabrication methods, namely the reflow of photoresist. In order to overcome these classical limitations, the use of refractive freeform arrays (RFFA) instead of conventional microlens arrays is inevitable. To enable high volume and cost efficient mass production of artificial compound eye cameras for mass markets like the consumer electronics industry, their fabrication on wafer level is essential, but has not been published up to now. We present a wafer level based process chain enabling the fabrication of these elements for the first time.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects

Klemens Stollberg, Andreas Brückner, Jacques Duparré, Peter Dannberg, Andreas Bräuer, and Andreas Tünnermann
Opt. Express 17(18) 15747-15759 (2009)

Thin wafer-level camera lenses inspired by insect compound eyes

Andreas Brückner, Jacques Duparré, Robert Leitel, Peter Dannberg, Andreas Bräuer, and Andreas Tünnermann
Opt. Express 18(24) 24379-24394 (2010)

Soft mold-based hot embossing process for precision imprinting of optical components on non-planar surfaces

Jianwei Chen, Chenglin Gu, Hui Lin, and Shih-Chi Chen
Opt. Express 23(16) 20977-20985 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Brückner and M. Schöberl, “Diffraction and photometric limits in today’s miniature digital camera systems,” Proc. SPIE 8616, 861617 (2013).
  2. J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34(1), 222–235 (1995).
    [Crossref]
  3. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, and Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40(11), 1806–1813 (2001).
    [Crossref] [PubMed]
  4. Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
    [Crossref] [PubMed]
  5. A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18(24), 24379–24394 (2010).
    [Crossref] [PubMed]
  6. K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, and R. Mullis, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” Proc. SIGGRAPH Asia32(5) (2013).
    [Crossref]
  7. A. Oberdörster, A. Brückner, F. Wippermann, A. Bräuer, and H. P. A. Lensch, “Digital focusing and re-focusing with thin multi-aperture cameras,” Proc. SPIE8299, 829907 (2012).
    [Crossref]
  8. H. Rudmann and M. Rossi, “Design and fabrication technologies for ultraviolet replicated micro-optics,” Opt. Eng. 43(11), 2575–2582 (2004).
    [Crossref]
  9. J. Duparré, F. Wippermann, P. Dannberg, and A. Reimann, “Chirped arrays of refractive ellipsoidal microlenses for aberration correction under oblique incidence,” Opt. Express 13(26), 10539–10551 (2005).
    [Crossref] [PubMed]
  10. J. Duparré, Microoptical artificial compound eyes (Mensch & Buch, 2005).
  11. F. C. Wippermann, D. Radtke, U. Zeitner, J. W. Duparré, A. Tünnermann, M. Amberg, S. Sinzinger, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Fabrication technologies for chirped refractive microlens arrays,” Proc. SPIE Vol. 6288, 62880O (2006).
    [Crossref]
  12. A. Brückner, “Multiaperture Cameras,” in Smart Mini-Cameras, T. V. Galstian, ed. (CRC Press, 2013).
  13. J. Dunkel, F. Wippermann, A. Brückner, A. Bräuer, and A. Tünnermann, “Laser lithographic approach to micro-optical freeform elements with extremely large sag heights,” Opt. Express 20(4), 4763–4775 (2012).
    [Crossref] [PubMed]
  14. L. Li and A. Y. Yi, “Design and fabrication of a freeform microlens array for a compact large-field-of-view compound-eye camera,” Appl. Opt. 51(12), 1843–1852 (2012).
    [Crossref] [PubMed]
  15. G. Kreindl, T. Glinsner, R. Miller, D. Treiblmayr, and R. Födisch, “High accuracy UV-nanoimprint lithography step-and-repeat master stamp fabrication for wafer level camera application,” J. Vac. Sci. Technol. B 28(6), C6M57 (2010).
    [Crossref]
  16. H. Schmitt, M. Rommel, A. Bauer, L. Frey, A. Bich, M. Eisner, R. Voelkel, and M. Hornung, “Full wafer microlens replication by UV imprint lithography,” Microelectron. Eng. 87(5-8), 1074–1076 (2010).
    [Crossref]
  17. W. Sweatt, D. Gill, D. Adams, M. Vasile, and A. Claudet, “Diamond milling of micro-optics,” IEEE Aerosp. Electron. Syst. Mag. 23(1), 13–17 (2008).
    [Crossref]
  18. A. Y. Yi and L. Li, “Design and fabrication of a microlens array by use of a slow tool servo,” Opt. Lett. 30(13), 1707–1709 (2005).
    [Crossref] [PubMed]
  19. S. Scheiding, A. Y. Yi, A. Gebhardt, L. Li, S. Risse, R. Eberhardt, and A. Tünnermann, “Freeform manufacturing of a microoptical lens array on a steep curved substrate by use of a voice coil fast tool servo,” Opt. Express 19(24), 23938–23951 (2011).
    [Crossref] [PubMed]
  20. S. Stoebenau and S. Sinzinger, “Ultra precision machining techniques for the fabrication of freeform surfaces in highly integrated optical microsystems,” Proc. SPIE7426, 742608 (2009).
    [Crossref]
  21. A. Oberdörster, A. Brückner, and H. P. A. Lensch, “Interactive alignment and image reconstruction for wafer level multi-aperture camera systems,” Proc. SPIE 9217, 921715 (2014).
    [Crossref]

2014 (1)

A. Oberdörster, A. Brückner, and H. P. A. Lensch, “Interactive alignment and image reconstruction for wafer level multi-aperture camera systems,” Proc. SPIE 9217, 921715 (2014).
[Crossref]

2013 (2)

A. Brückner and M. Schöberl, “Diffraction and photometric limits in today’s miniature digital camera systems,” Proc. SPIE 8616, 861617 (2013).

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (1)

2010 (3)

G. Kreindl, T. Glinsner, R. Miller, D. Treiblmayr, and R. Födisch, “High accuracy UV-nanoimprint lithography step-and-repeat master stamp fabrication for wafer level camera application,” J. Vac. Sci. Technol. B 28(6), C6M57 (2010).
[Crossref]

H. Schmitt, M. Rommel, A. Bauer, L. Frey, A. Bich, M. Eisner, R. Voelkel, and M. Hornung, “Full wafer microlens replication by UV imprint lithography,” Microelectron. Eng. 87(5-8), 1074–1076 (2010).
[Crossref]

A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18(24), 24379–24394 (2010).
[Crossref] [PubMed]

2008 (1)

W. Sweatt, D. Gill, D. Adams, M. Vasile, and A. Claudet, “Diamond milling of micro-optics,” IEEE Aerosp. Electron. Syst. Mag. 23(1), 13–17 (2008).
[Crossref]

2005 (2)

2004 (1)

H. Rudmann and M. Rossi, “Design and fabrication technologies for ultraviolet replicated micro-optics,” Opt. Eng. 43(11), 2575–2582 (2004).
[Crossref]

2001 (1)

1995 (1)

J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34(1), 222–235 (1995).
[Crossref]

Adams, D.

W. Sweatt, D. Gill, D. Adams, M. Vasile, and A. Claudet, “Diamond milling of micro-optics,” IEEE Aerosp. Electron. Syst. Mag. 23(1), 13–17 (2008).
[Crossref]

Bauer, A.

H. Schmitt, M. Rommel, A. Bauer, L. Frey, A. Bich, M. Eisner, R. Voelkel, and M. Hornung, “Full wafer microlens replication by UV imprint lithography,” Microelectron. Eng. 87(5-8), 1074–1076 (2010).
[Crossref]

Bich, A.

H. Schmitt, M. Rommel, A. Bauer, L. Frey, A. Bich, M. Eisner, R. Voelkel, and M. Hornung, “Full wafer microlens replication by UV imprint lithography,” Microelectron. Eng. 87(5-8), 1074–1076 (2010).
[Crossref]

Bräuer, A.

Brückner, A.

A. Oberdörster, A. Brückner, and H. P. A. Lensch, “Interactive alignment and image reconstruction for wafer level multi-aperture camera systems,” Proc. SPIE 9217, 921715 (2014).
[Crossref]

A. Brückner and M. Schöberl, “Diffraction and photometric limits in today’s miniature digital camera systems,” Proc. SPIE 8616, 861617 (2013).

J. Dunkel, F. Wippermann, A. Brückner, A. Bräuer, and A. Tünnermann, “Laser lithographic approach to micro-optical freeform elements with extremely large sag heights,” Opt. Express 20(4), 4763–4775 (2012).
[Crossref] [PubMed]

A. Brückner, J. Duparré, R. Leitel, P. Dannberg, A. Bräuer, and A. Tünnermann, “Thin wafer-level camera lenses inspired by insect compound eyes,” Opt. Express 18(24), 24379–24394 (2010).
[Crossref] [PubMed]

A. Oberdörster, A. Brückner, F. Wippermann, A. Bräuer, and H. P. A. Lensch, “Digital focusing and re-focusing with thin multi-aperture cameras,” Proc. SPIE8299, 829907 (2012).
[Crossref]

Chatterjee, P.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, and R. Mullis, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” Proc. SIGGRAPH Asia32(5) (2013).
[Crossref]

Choi, K. J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Claudet, A.

W. Sweatt, D. Gill, D. Adams, M. Vasile, and A. Claudet, “Diamond milling of micro-optics,” IEEE Aerosp. Electron. Syst. Mag. 23(1), 13–17 (2008).
[Crossref]

Crozier, K. B.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Dannberg, P.

Dunkel, J.

Duparré, J.

Eberhardt, R.

Eisner, M.

H. Schmitt, M. Rommel, A. Bauer, L. Frey, A. Bich, M. Eisner, R. Voelkel, and M. Hornung, “Full wafer microlens replication by UV imprint lithography,” Microelectron. Eng. 87(5-8), 1074–1076 (2010).
[Crossref]

Födisch, R.

G. Kreindl, T. Glinsner, R. Miller, D. Treiblmayr, and R. Födisch, “High accuracy UV-nanoimprint lithography step-and-repeat master stamp fabrication for wafer level camera application,” J. Vac. Sci. Technol. B 28(6), C6M57 (2010).
[Crossref]

Frey, L.

H. Schmitt, M. Rommel, A. Bauer, L. Frey, A. Bich, M. Eisner, R. Voelkel, and M. Hornung, “Full wafer microlens replication by UV imprint lithography,” Microelectron. Eng. 87(5-8), 1074–1076 (2010).
[Crossref]

Gebhardt, A.

Gill, D.

W. Sweatt, D. Gill, D. Adams, M. Vasile, and A. Claudet, “Diamond milling of micro-optics,” IEEE Aerosp. Electron. Syst. Mag. 23(1), 13–17 (2008).
[Crossref]

Glinsner, T.

G. Kreindl, T. Glinsner, R. Miller, D. Treiblmayr, and R. Födisch, “High accuracy UV-nanoimprint lithography step-and-repeat master stamp fabrication for wafer level camera application,” J. Vac. Sci. Technol. B 28(6), C6M57 (2010).
[Crossref]

Halford, C. E.

J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34(1), 222–235 (1995).
[Crossref]

Hornung, M.

H. Schmitt, M. Rommel, A. Bauer, L. Frey, A. Bich, M. Eisner, R. Voelkel, and M. Hornung, “Full wafer microlens replication by UV imprint lithography,” Microelectron. Eng. 87(5-8), 1074–1076 (2010).
[Crossref]

Huang, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Ichioka, Y.

Ishida, K.

Jung, I.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Kim, R. H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Kondou, N.

Kreindl, G.

G. Kreindl, T. Glinsner, R. Miller, D. Treiblmayr, and R. Födisch, “High accuracy UV-nanoimprint lithography step-and-repeat master stamp fabrication for wafer level camera application,” J. Vac. Sci. Technol. B 28(6), C6M57 (2010).
[Crossref]

Kumagai, T.

Leitel, R.

Lelescu, D.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, and R. Mullis, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” Proc. SIGGRAPH Asia32(5) (2013).
[Crossref]

Lensch, H. P. A.

A. Oberdörster, A. Brückner, and H. P. A. Lensch, “Interactive alignment and image reconstruction for wafer level multi-aperture camera systems,” Proc. SPIE 9217, 921715 (2014).
[Crossref]

A. Oberdörster, A. Brückner, F. Wippermann, A. Bräuer, and H. P. A. Lensch, “Digital focusing and re-focusing with thin multi-aperture cameras,” Proc. SPIE8299, 829907 (2012).
[Crossref]

Li, L.

Li, R.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Liu, Z.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Lu, C.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Malyarchuk, V.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

McMahon, A.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, and R. Mullis, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” Proc. SIGGRAPH Asia32(5) (2013).
[Crossref]

Miller, R.

G. Kreindl, T. Glinsner, R. Miller, D. Treiblmayr, and R. Födisch, “High accuracy UV-nanoimprint lithography step-and-repeat master stamp fabrication for wafer level camera application,” J. Vac. Sci. Technol. B 28(6), C6M57 (2010).
[Crossref]

Miyatake, S.

Miyazaki, D.

Molina, G.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, and R. Mullis, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” Proc. SIGGRAPH Asia32(5) (2013).
[Crossref]

Morimoto, T.

Mullis, R.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, and R. Mullis, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” Proc. SIGGRAPH Asia32(5) (2013).
[Crossref]

Oberdörster, A.

A. Oberdörster, A. Brückner, and H. P. A. Lensch, “Interactive alignment and image reconstruction for wafer level multi-aperture camera systems,” Proc. SPIE 9217, 921715 (2014).
[Crossref]

A. Oberdörster, A. Brückner, F. Wippermann, A. Bräuer, and H. P. A. Lensch, “Digital focusing and re-focusing with thin multi-aperture cameras,” Proc. SPIE8299, 829907 (2012).
[Crossref]

Park, H.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Reimann, A.

Risse, S.

Rogers, J. A.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Rommel, M.

H. Schmitt, M. Rommel, A. Bauer, L. Frey, A. Bich, M. Eisner, R. Voelkel, and M. Hornung, “Full wafer microlens replication by UV imprint lithography,” Microelectron. Eng. 87(5-8), 1074–1076 (2010).
[Crossref]

Rossi, M.

H. Rudmann and M. Rossi, “Design and fabrication technologies for ultraviolet replicated micro-optics,” Opt. Eng. 43(11), 2575–2582 (2004).
[Crossref]

Rudmann, H.

H. Rudmann and M. Rossi, “Design and fabrication technologies for ultraviolet replicated micro-optics,” Opt. Eng. 43(11), 2575–2582 (2004).
[Crossref]

Sanders, J. S.

J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34(1), 222–235 (1995).
[Crossref]

Scheiding, S.

Schmitt, H.

H. Schmitt, M. Rommel, A. Bauer, L. Frey, A. Bich, M. Eisner, R. Voelkel, and M. Hornung, “Full wafer microlens replication by UV imprint lithography,” Microelectron. Eng. 87(5-8), 1074–1076 (2010).
[Crossref]

Schöberl, M.

A. Brückner and M. Schöberl, “Diffraction and photometric limits in today’s miniature digital camera systems,” Proc. SPIE 8616, 861617 (2013).

Sinzinger, S.

S. Stoebenau and S. Sinzinger, “Ultra precision machining techniques for the fabrication of freeform surfaces in highly integrated optical microsystems,” Proc. SPIE7426, 742608 (2009).
[Crossref]

Song, Y. M.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Stoebenau, S.

S. Stoebenau and S. Sinzinger, “Ultra precision machining techniques for the fabrication of freeform surfaces in highly integrated optical microsystems,” Proc. SPIE7426, 742608 (2009).
[Crossref]

Sweatt, W.

W. Sweatt, D. Gill, D. Adams, M. Vasile, and A. Claudet, “Diamond milling of micro-optics,” IEEE Aerosp. Electron. Syst. Mag. 23(1), 13–17 (2008).
[Crossref]

Tanida, J.

Treiblmayr, D.

G. Kreindl, T. Glinsner, R. Miller, D. Treiblmayr, and R. Födisch, “High accuracy UV-nanoimprint lithography step-and-repeat master stamp fabrication for wafer level camera application,” J. Vac. Sci. Technol. B 28(6), C6M57 (2010).
[Crossref]

Tünnermann, A.

Vasile, M.

W. Sweatt, D. Gill, D. Adams, M. Vasile, and A. Claudet, “Diamond milling of micro-optics,” IEEE Aerosp. Electron. Syst. Mag. 23(1), 13–17 (2008).
[Crossref]

Venkataraman, K.

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, and R. Mullis, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” Proc. SIGGRAPH Asia32(5) (2013).
[Crossref]

Voelkel, R.

H. Schmitt, M. Rommel, A. Bauer, L. Frey, A. Bich, M. Eisner, R. Voelkel, and M. Hornung, “Full wafer microlens replication by UV imprint lithography,” Microelectron. Eng. 87(5-8), 1074–1076 (2010).
[Crossref]

Wippermann, F.

Xiao, J.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Xie, Y.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Yamada, K.

Yi, A. Y.

Appl. Opt. (2)

IEEE Aerosp. Electron. Syst. Mag. (1)

W. Sweatt, D. Gill, D. Adams, M. Vasile, and A. Claudet, “Diamond milling of micro-optics,” IEEE Aerosp. Electron. Syst. Mag. 23(1), 13–17 (2008).
[Crossref]

J. Vac. Sci. Technol. B (1)

G. Kreindl, T. Glinsner, R. Miller, D. Treiblmayr, and R. Födisch, “High accuracy UV-nanoimprint lithography step-and-repeat master stamp fabrication for wafer level camera application,” J. Vac. Sci. Technol. B 28(6), C6M57 (2010).
[Crossref]

Microelectron. Eng. (1)

H. Schmitt, M. Rommel, A. Bauer, L. Frey, A. Bich, M. Eisner, R. Voelkel, and M. Hornung, “Full wafer microlens replication by UV imprint lithography,” Microelectron. Eng. 87(5-8), 1074–1076 (2010).
[Crossref]

Nature (1)

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K. J. Choi, Z. Liu, H. Park, C. Lu, R. H. Kim, R. Li, K. B. Crozier, Y. Huang, and J. A. Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
[Crossref] [PubMed]

Opt. Eng. (2)

H. Rudmann and M. Rossi, “Design and fabrication technologies for ultraviolet replicated micro-optics,” Opt. Eng. 43(11), 2575–2582 (2004).
[Crossref]

J. S. Sanders and C. E. Halford, “Design and analysis of apposition compound eye optical sensors,” Opt. Eng. 34(1), 222–235 (1995).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Proc. SPIE (2)

A. Brückner and M. Schöberl, “Diffraction and photometric limits in today’s miniature digital camera systems,” Proc. SPIE 8616, 861617 (2013).

A. Oberdörster, A. Brückner, and H. P. A. Lensch, “Interactive alignment and image reconstruction for wafer level multi-aperture camera systems,” Proc. SPIE 9217, 921715 (2014).
[Crossref]

Other (6)

S. Stoebenau and S. Sinzinger, “Ultra precision machining techniques for the fabrication of freeform surfaces in highly integrated optical microsystems,” Proc. SPIE7426, 742608 (2009).
[Crossref]

K. Venkataraman, D. Lelescu, J. Duparré, A. McMahon, G. Molina, P. Chatterjee, and R. Mullis, “PiCam: An Ultra-Thin High Performance Monolithic Camera Array,” Proc. SIGGRAPH Asia32(5) (2013).
[Crossref]

A. Oberdörster, A. Brückner, F. Wippermann, A. Bräuer, and H. P. A. Lensch, “Digital focusing and re-focusing with thin multi-aperture cameras,” Proc. SPIE8299, 829907 (2012).
[Crossref]

J. Duparré, Microoptical artificial compound eyes (Mensch & Buch, 2005).

F. C. Wippermann, D. Radtke, U. Zeitner, J. W. Duparré, A. Tünnermann, M. Amberg, S. Sinzinger, C. Reinhardt, A. Ovsianikov, and B. N. Chichkov, “Fabrication technologies for chirped refractive microlens arrays,” Proc. SPIE Vol. 6288, 62880O (2006).
[Crossref]

A. Brückner, “Multiaperture Cameras,” in Smart Mini-Cameras, T. V. Galstian, ed. (CRC Press, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Electronic cluster eye camera in comparison to a one Euro cent coin (a) and schematic representation of an electronic cluster eye camera (b).
Fig. 2
Fig. 2 Rendered representation of a refractive freeform array (RFFA) (a) and conventional microlens array fabricable by reflow of photoresist (b).
Fig. 3
Fig. 3 Schematic representation of the process flow for the fabrication of refractive freeform arrays on wafer level.
Fig. 4
Fig. 4 Schematic representation of the step and repeat micro imprint process.
Fig. 5
Fig. 5 Microscope images of surface artifacts due to polymer shrinkage for different values of the applied imprint force: a) FS = 3 N, b) FS = 6 N, c) FS = 9 N and d) temporal devolution of the applied imprint force during the exposure.
Fig. 6
Fig. 6 White light interferometric measurement of a quarter of a refractive freeform array (a) and surface profilometric measurement of a replicated freeform array (b).
Fig. 7
Fig. 7 Schematic representation of a refractive freeform objective of an electronic cluster eye camera with a resolution of 720p.
Fig. 8
Fig. 8 Photograph of a single master of a refractive freeform array surrounded by process control structures (a) and measurement of the surface deviation (rms) of a quarter of both refractive freeform arrays (b), resulting in an averaged value of all measured lenslets of 41 nm (rms) for the sensor-side array and 52 nm (rms) for the object-side array due to the different sag heights and slopes of both freeform arrays.
Fig. 9
Fig. 9 Photograph of a fabricated master wafer (a) and single refractive freeform objective (b).
Fig. 10
Fig. 10 Measured surface profiles of the central lenslet (a) and the corner lenslet (c) of the fabricated sensor-side refractive freeform array and their corresponding surface deviations to the design surface for the central lenslet (c) and the corner lenslet (d).
Fig. 11
Fig. 11 Image of Siemens star test target captured by 3 x 3 channels (a), measurement of the modulation transfer function of the central channel in comparison to simulation data (b), raw image consisting of 15 x 9 subimages (c) and reconstructed final image of camera demonstrator (d).

Tables (1)

Tables Icon

Table 1 Parameters of fabricated refractive freeform arrays

Metrics