Abstract

In this paper, we present a plasmonic model system for the realization of ultrafast all-optical NOT, AND, OR, and XOR gate operations using linear interference effects in dielectric crossed waveguide structures. The waveguides for the surface plasmon-polaritons are produced by a simple but highly accurate microscopic lithographic process and are optimized for single mode operation at an excitation laser wavelength of 800 nm. The functionality of the presented structures is demonstrated using sub-30 fs laser pulses from a mode locked titanium:sapphire laser. Using leakage radiation microscopy we show ultrafast SPP switching and logic operations of one basic structure consisting of two crossed waveguides with an additional output waveguide along the bisecting line of the input waveguides. The individual gates are realized on a footprint of 10 µm × 20 µm. Experimental investigations are supported by finite-difference time-domain simulations, where good agreement between experimental results and numerical simulations is obtained. To exploit the high precision of the fabrication method and its huge potential for realizing functional complex plasmonic circuitry we experimentally demonstrate a half-adder structure and its operation by combining and cascading several plasmonic waveguide components and logic gate elements on an area of only 10 µm × 28 µm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical logic gates based on unidirectional surface plasmon polaritons

Ping Li, Yongxing Wang, and Ping Xu
Appl. Opt. 58(16) 4205-4210 (2019)

All-optical half adder based on cross structures in two-dimensional photonic crystals

Qiang Liu, Zhengbiao Ouyang, Chih Jung Wu, Chung Ping Liu, and Jong C. Wang
Opt. Express 16(23) 18992-19000 (2008)

Single-PPLN-based simultaneous half-adder, half-subtracter, and OR logic gate: proposal and simulation

Jian Wang, Junqiang Sun, and Qizhen Sun
Opt. Express 15(4) 1690-1699 (2007)

References

  • View by:
  • |
  • |
  • |

  1. G. E. Moore, “Cramming more components onto integrated circuits (Reprinted from Electronics, 114–117,April 19, 1965),” Proc. IEEE 86, 82–85 (1998).
    [Crossref]
  2. H. Wei, Z. Wang, X. Tian, M. Kll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
    [Crossref] [PubMed]
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44–50 (2008).
    [Crossref]
  4. H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
    [Crossref]
  5. Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4, e294 (2015).
    [Crossref]
  6. S. K. Kwong, G. A. Rakuljic, and A. Yariv, “Real time image subtraction and exclusive or operation using a self-pumped phase conjugate mirror,” Appl. Phys. Lett. 48, 201–203 (1986).
    [Crossref]
  7. Y. Fainman, C. C. Guest, and S. H. Lee, “Optical digital logic operations by two-beam coupling in photorefractive material.,” Appl. Opt. 25, 1598–1603 (1986).
    [Crossref] [PubMed]
  8. M. Ogusu, S. Tanaka, and K. Kuroda, “Optical logic operations using three-beam phase-conjugate interferometry,” Jpn. J. Appl. Phys. 29, 1265–1267 (1990).
    [Crossref]
  9. V. R. Almeida, C. A. Barrios, R. R. Penepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
    [Crossref] [PubMed]
  10. Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15, 9287–9292 (2007).
    [Crossref] [PubMed]
  11. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924–929 (2007).
    [Crossref] [PubMed]
  12. J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
    [Crossref]
  13. X. Fang, M. L. Tseng, J. Y. Ou, K. F. Macdonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
    [Crossref]
  14. X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
    [Crossref]
  15. D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, “10-Gb / s All-Optical Half-Adder With Interferometric,” IEEE Photonics Technol. Lett. 16, 284–286 (2004).
    [Crossref]
  16. S. C. Xavier, K. Arunachalam, E. Caroline, and W. Johnson, “Design of two-dimensional photonic crystal-based all-optical binary adder,” Opt. Eng. 52, 025201 (2013).
    [Crossref]
  17. P. Phongsanam, S. Mitatha, C. Teeka, and P. P. Yupapin, “All-Optical half adder/subtractor using dark-bright soliton conversion control,” Mircow. Opt. Technol. Lett. 53(7), 1541–1544 (2012).
    [Crossref]
  18. M. Nady, K. F. A. Hussein, and A.-E. A. Ammar, “Ultrafast all-optical full adder using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer,” Prog. Electromagn. Res. B 54, 69–88 (2013).
    [Crossref]
  19. S. Kaur, R. Kaler, and T. Kamal, “All-Optical Binary Full Adder Using Logic Operations Based on the Nonlinear Properties of a Semiconductor Optical Amplifier,” J. Opt. Soc. Korea 19, 222–227 (2015).
    [Crossref]
  20. H. J. Caulfield and J. Westphal, “The logic of optics and the optics of logic,” Inf. Sci. 162, 21–33 (2004).
    [Crossref]
  21. L. Qian and H. J. Caulfield, “What can we do with a linear optical logic gate?” Inf. Sci. 176, 3379–3392 (2006).
    [Crossref]
  22. Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
    [Crossref] [PubMed]
  23. C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
    [Crossref]
  24. C. Lu, X. Hu, H. Yang, and Q. Gong, “Integrated all-optical logic discriminators based on plasmonic bandgap engineering,” Sci. Rep. 3, 2778 (2013).
    [Crossref] [PubMed]
  25. D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
    [Crossref]
  26. U. Tietze and C. Schenk, Halbleiterschaltungstechnik (Springer, 1986).
  27. D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 1–5 (2013).
    [Crossref]
  28. A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
    [Crossref]
  29. A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84, 1416–1418 (2004).
    [Crossref]
  30. H. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, 1985).
  31. J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986).
    [Crossref]
  32. J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, “Numerical evidence for nonstationary, nonlinear, slab-guided waves,” Opt. Lett. 11, 315–317 (1986).
    [Crossref] [PubMed]
  33. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals,” Nat. Photonics 3, 55–58 (2008).
    [Crossref]
  34. C. Schwarz, O. Hter, and T. Brixner, “Full vector-field control of ultrashort laser pulses utilizing a single dual-layer spatial light modulator in a common-path setup,” J. Opt. Soc. Am. B 32, 933–945 (2015).
    [Crossref]
  35. M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast broadband tuning of resonant optical nanostructures using phase change materials,” arXiv 1506.03739 (2015).
  36. T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
    [Crossref]
  37. X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
    [Crossref]
  38. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
    [Crossref]
  39. T. Hellwig, J. P. Epping, M. Schnack, K.-J. Boller, and C. Fallnich, “Ultrafast, low-power, all-optical switching via birefringent phase-matched transverse mode conversion in integrated waveguides,” Opt. Express 23, 19189–19201 (2015).
    [Crossref] [PubMed]
  40. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vam-vakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymer ization microfabrication,” ACS Nano 2, 2257–2262 (2008).
    [Crossref]
  41. H. Kawata, J. M. Carter, A. Yen, and H. I. Smith, “Optical projection lithography using lenses with numerical apertures greater than unity,” Microelectron. Eng. 9, 31–36 (1989).
    [Crossref]
  42. J. C. Love, D. B. Wolfe, H. O. Jacobs, and G. M. Whitesides, “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir 17, 6005–6012 (2001).
    [Crossref]
  43. C. Reinhardt, R. Kiyan, S. Passinger, A. L. Stepanov, A. Ostendorf, and B. N. Chichkov, “Rapid laser prototyping of plasmonic components,” Appl. Phys. A Mater. Sci. Process. 89, 321–325 (2007).
    [Crossref]
  44. C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,”, Plasmon. Nanoimaging, Nanofabrication, Their Appl. III 6642, 664205 (2007).
    [Crossref]
  45. A. Drezet, a. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 149, 220–229 (2008).
    [Crossref]
  46. C. Reinhardt, A. Seidel, A. B. Evlyukhin, W. Cheng, and B. N. Chichkov, “Mode-selective excitation of laser-written dielectric-loaded surface plasmon polariton waveguides,” J. Opt. Soc. Am. B 26, B55 (2009).
    [Crossref]
  47. C. Reinhardt, A. Seidel, A. Evlyukhin, W. Cheng, R. Kiyan, and B. Chichkov, “Direct laser-writing of dielectric-loaded surface plasmon-polariton waveguides for the visible and near infrared,” Appl. Phys. A Mater. Sci. Process. 100, 347–352 (2010).
    [Crossref]
  48. C. Reinhardt, A. B. Evlyukhin, W. Cheng, T. Birr, A. Markov, B. Ung, M. Skorobogatiy, and B. N. Chichkov, “Bandgap-confined large-mode waveguides for surface plasmon-polaritons,” J. Opt. Soc. Am. B 30, 2898–2905 (2013).
    [Crossref]
  49. N. Sardana, T. Birr, S. Schlenker, C. Reinhardt, and J. Schilling, “Surface plasmons on ordered and bi-continuous spongy nanoporous gold,” New J. Phys. 16, 063053 (2014).
    [Crossref]
  50. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  51. C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013).
    [Crossref] [PubMed]
  52. C. Lemke, T. Leissner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The interplay between localized and propagating plasmonic excitations tracked in space and time,” Nano Lett. 14, 2431–2435 (2014).
    [Crossref] [PubMed]

2015 (5)

2014 (3)

N. Sardana, T. Birr, S. Schlenker, C. Reinhardt, and J. Schilling, “Surface plasmons on ordered and bi-continuous spongy nanoporous gold,” New J. Phys. 16, 063053 (2014).
[Crossref]

C. Lemke, T. Leissner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The interplay between localized and propagating plasmonic excitations tracked in space and time,” Nano Lett. 14, 2431–2435 (2014).
[Crossref] [PubMed]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. Macdonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

2013 (7)

S. C. Xavier, K. Arunachalam, E. Caroline, and W. Johnson, “Design of two-dimensional photonic crystal-based all-optical binary adder,” Opt. Eng. 52, 025201 (2013).
[Crossref]

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Integrated all-optical logic discriminators based on plasmonic bandgap engineering,” Sci. Rep. 3, 2778 (2013).
[Crossref] [PubMed]

M. Nady, K. F. A. Hussein, and A.-E. A. Ammar, “Ultrafast all-optical full adder using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer,” Prog. Electromagn. Res. B 54, 69–88 (2013).
[Crossref]

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 1–5 (2013).
[Crossref]

C. Reinhardt, A. B. Evlyukhin, W. Cheng, T. Birr, A. Markov, B. Ung, M. Skorobogatiy, and B. N. Chichkov, “Bandgap-confined large-mode waveguides for surface plasmon-polaritons,” J. Opt. Soc. Am. B 30, 2898–2905 (2013).
[Crossref]

C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013).
[Crossref] [PubMed]

2012 (3)

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

P. Phongsanam, S. Mitatha, C. Teeka, and P. P. Yupapin, “All-Optical half adder/subtractor using dark-bright soliton conversion control,” Mircow. Opt. Technol. Lett. 53(7), 1541–1544 (2012).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

2011 (3)

H. Wei, Z. Wang, X. Tian, M. Kll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[Crossref]

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

2010 (3)

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

C. Reinhardt, A. Seidel, A. Evlyukhin, W. Cheng, R. Kiyan, and B. Chichkov, “Direct laser-writing of dielectric-loaded surface plasmon-polariton waveguides for the visible and near infrared,” Appl. Phys. A Mater. Sci. Process. 100, 347–352 (2010).
[Crossref]

2009 (1)

2008 (5)

A. Drezet, a. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 149, 220–229 (2008).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vam-vakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymer ization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[Crossref]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44–50 (2008).
[Crossref]

2007 (5)

Y. Zhang, Y. Zhang, and B. Li, “Optical switches and logic gates based on self-collimated beams in two-dimensional photonic crystals,” Opt. Express 15, 9287–9292 (2007).
[Crossref] [PubMed]

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924–929 (2007).
[Crossref] [PubMed]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

C. Reinhardt, R. Kiyan, S. Passinger, A. L. Stepanov, A. Ostendorf, and B. N. Chichkov, “Rapid laser prototyping of plasmonic components,” Appl. Phys. A Mater. Sci. Process. 89, 321–325 (2007).
[Crossref]

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,”, Plasmon. Nanoimaging, Nanofabrication, Their Appl. III 6642, 664205 (2007).
[Crossref]

2006 (1)

L. Qian and H. J. Caulfield, “What can we do with a linear optical logic gate?” Inf. Sci. 176, 3379–3392 (2006).
[Crossref]

2004 (4)

H. J. Caulfield and J. Westphal, “The logic of optics and the optics of logic,” Inf. Sci. 162, 21–33 (2004).
[Crossref]

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84, 1416–1418 (2004).
[Crossref]

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, “10-Gb / s All-Optical Half-Adder With Interferometric,” IEEE Photonics Technol. Lett. 16, 284–286 (2004).
[Crossref]

V. R. Almeida, C. A. Barrios, R. R. Penepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

2001 (1)

J. C. Love, D. B. Wolfe, H. O. Jacobs, and G. M. Whitesides, “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir 17, 6005–6012 (2001).
[Crossref]

1998 (1)

G. E. Moore, “Cramming more components onto integrated circuits (Reprinted from Electronics, 114–117,April 19, 1965),” Proc. IEEE 86, 82–85 (1998).
[Crossref]

1990 (1)

M. Ogusu, S. Tanaka, and K. Kuroda, “Optical logic operations using three-beam phase-conjugate interferometry,” Jpn. J. Appl. Phys. 29, 1265–1267 (1990).
[Crossref]

1989 (1)

H. Kawata, J. M. Carter, A. Yen, and H. I. Smith, “Optical projection lithography using lenses with numerical apertures greater than unity,” Microelectron. Eng. 9, 31–36 (1989).
[Crossref]

1986 (4)

S. K. Kwong, G. A. Rakuljic, and A. Yariv, “Real time image subtraction and exclusive or operation using a self-pumped phase conjugate mirror,” Appl. Phys. Lett. 48, 201–203 (1986).
[Crossref]

Y. Fainman, C. C. Guest, and S. H. Lee, “Optical digital logic operations by two-beam coupling in photorefractive material.,” Appl. Opt. 25, 1598–1603 (1986).
[Crossref] [PubMed]

J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986).
[Crossref]

J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, “Numerical evidence for nonstationary, nonlinear, slab-guided waves,” Opt. Lett. 11, 315–317 (1986).
[Crossref] [PubMed]

Aeschlimann, M.

C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013).
[Crossref] [PubMed]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Penepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Altug, H.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast broadband tuning of resonant optical nanostructures using phase change materials,” arXiv 1506.03739 (2015).

Ammar, A.-E. A.

M. Nady, K. F. A. Hussein, and A.-E. A. Ammar, “Ultrafast all-optical full adder using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer,” Prog. Electromagn. Res. B 54, 69–88 (2013).
[Crossref]

Ariyasu, J.

J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986).
[Crossref]

J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, “Numerical evidence for nonstationary, nonlinear, slab-guided waves,” Opt. Lett. 11, 315–317 (1986).
[Crossref] [PubMed]

Arunachalam, K.

S. C. Xavier, K. Arunachalam, E. Caroline, and W. Johnson, “Design of two-dimensional photonic crystal-based all-optical binary adder,” Opt. Eng. 52, 025201 (2013).
[Crossref]

Aussenegg, F. R.

A. Drezet, a. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 149, 220–229 (2008).
[Crossref]

Avramopoulos, H.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, “10-Gb / s All-Optical Half-Adder With Interferometric,” IEEE Photonics Technol. Lett. 16, 284–286 (2004).
[Crossref]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Penepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Bauer, M.

C. Lemke, T. Leissner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The interplay between localized and propagating plasmonic excitations tracked in space and time,” Nano Lett. 14, 2431–2435 (2014).
[Crossref] [PubMed]

C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013).
[Crossref] [PubMed]

Bayer, D.

C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013).
[Crossref] [PubMed]

Birr, T.

N. Sardana, T. Birr, S. Schlenker, C. Reinhardt, and J. Schilling, “Surface plasmons on ordered and bi-continuous spongy nanoporous gold,” New J. Phys. 16, 063053 (2014).
[Crossref]

C. Reinhardt, A. B. Evlyukhin, W. Cheng, T. Birr, A. Markov, B. Ung, M. Skorobogatiy, and B. N. Chichkov, “Bandgap-confined large-mode waveguides for surface plasmon-polaritons,” J. Opt. Soc. Am. B 30, 2898–2905 (2013).
[Crossref]

Boller, K.-J.

Bozhevolnyi, S. I.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44–50 (2008).
[Crossref]

Brixner, T.

Caroline, E.

S. C. Xavier, K. Arunachalam, E. Caroline, and W. Johnson, “Design of two-dimensional photonic crystal-based all-optical binary adder,” Opt. Eng. 52, 025201 (2013).
[Crossref]

Carrilero, A.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast broadband tuning of resonant optical nanostructures using phase change materials,” arXiv 1506.03739 (2015).

Carter, J. M.

H. Kawata, J. M. Carter, A. Yen, and H. I. Smith, “Optical projection lithography using lenses with numerical apertures greater than unity,” Microelectron. Eng. 9, 31–36 (1989).
[Crossref]

Caulfield, H. J.

L. Qian and H. J. Caulfield, “What can we do with a linear optical logic gate?” Inf. Sci. 176, 3379–3392 (2006).
[Crossref]

H. J. Caulfield and J. Westphal, “The logic of optics and the optics of logic,” Inf. Sci. 162, 21–33 (2004).
[Crossref]

Cetin, A. E.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast broadband tuning of resonant optical nanostructures using phase change materials,” arXiv 1506.03739 (2015).

Cheng, W.

Chichkov, B.

C. Reinhardt, A. Seidel, A. Evlyukhin, W. Cheng, R. Kiyan, and B. Chichkov, “Direct laser-writing of dielectric-loaded surface plasmon-polariton waveguides for the visible and near infrared,” Appl. Phys. A Mater. Sci. Process. 100, 347–352 (2010).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vam-vakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymer ization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Chichkov, B. N.

C. Lemke, T. Leissner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The interplay between localized and propagating plasmonic excitations tracked in space and time,” Nano Lett. 14, 2431–2435 (2014).
[Crossref] [PubMed]

C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013).
[Crossref] [PubMed]

C. Reinhardt, A. B. Evlyukhin, W. Cheng, T. Birr, A. Markov, B. Ung, M. Skorobogatiy, and B. N. Chichkov, “Bandgap-confined large-mode waveguides for surface plasmon-polaritons,” J. Opt. Soc. Am. B 30, 2898–2905 (2013).
[Crossref]

C. Reinhardt, A. Seidel, A. B. Evlyukhin, W. Cheng, and B. N. Chichkov, “Mode-selective excitation of laser-written dielectric-loaded surface plasmon polariton waveguides,” J. Opt. Soc. Am. B 26, B55 (2009).
[Crossref]

C. Reinhardt, R. Kiyan, S. Passinger, A. L. Stepanov, A. Ostendorf, and B. N. Chichkov, “Rapid laser prototyping of plasmonic components,” Appl. Phys. A Mater. Sci. Process. 89, 321–325 (2007).
[Crossref]

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,”, Plasmon. Nanoimaging, Nanofabrication, Their Appl. III 6642, 664205 (2007).
[Crossref]

Cong, F.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[Crossref]

de Abajo, F. J. G.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast broadband tuning of resonant optical nanostructures using phase change materials,” arXiv 1506.03739 (2015).

Ding, C.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[Crossref]

Ditlbacher, H.

A. Drezet, a. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 149, 220–229 (2008).
[Crossref]

Drezet, A.

A. Drezet, a. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 149, 220–229 (2008).
[Crossref]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44–50 (2008).
[Crossref]

Epping, J. P.

Evlyukhin, A.

C. Reinhardt, A. Seidel, A. Evlyukhin, W. Cheng, R. Kiyan, and B. Chichkov, “Direct laser-writing of dielectric-loaded surface plasmon-polariton waveguides for the visible and near infrared,” Appl. Phys. A Mater. Sci. Process. 100, 347–352 (2010).
[Crossref]

Evlyukhin, A. B.

C. Lemke, T. Leissner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The interplay between localized and propagating plasmonic excitations tracked in space and time,” Nano Lett. 14, 2431–2435 (2014).
[Crossref] [PubMed]

C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013).
[Crossref] [PubMed]

C. Reinhardt, A. B. Evlyukhin, W. Cheng, T. Birr, A. Markov, B. Ung, M. Skorobogatiy, and B. N. Chichkov, “Bandgap-confined large-mode waveguides for surface plasmon-polaritons,” J. Opt. Soc. Am. B 30, 2898–2905 (2013).
[Crossref]

C. Reinhardt, A. Seidel, A. B. Evlyukhin, W. Cheng, and B. N. Chichkov, “Mode-selective excitation of laser-written dielectric-loaded surface plasmon polariton waveguides,” J. Opt. Soc. Am. B 26, B55 (2009).
[Crossref]

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,”, Plasmon. Nanoimaging, Nanofabrication, Their Appl. III 6642, 664205 (2007).
[Crossref]

Fainman, Y.

Fallnich, C.

Fang, X.

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. Macdonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

Fang, Y.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4, e294 (2015).
[Crossref]

Farsari, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vam-vakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymer ization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Fischer, A.

C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013).
[Crossref] [PubMed]

Fiutowski, J.

C. Lemke, T. Leissner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The interplay between localized and propagating plasmonic excitations tracked in space and time,” Nano Lett. 14, 2431–2435 (2014).
[Crossref] [PubMed]

Fotakis, C.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vam-vakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymer ization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Fu, Y.

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[Crossref]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

Fukuda, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44–50 (2008).
[Crossref]

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vam-vakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymer ization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Gibbs, H.

H. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, 1985).

Gong, Q.

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Integrated all-optical logic discriminators based on plasmonic bandgap engineering,” Sci. Rep. 3, 2778 (2013).
[Crossref] [PubMed]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[Crossref]

Gray, D.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vam-vakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymer ization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Guekos, G.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, “10-Gb / s All-Optical Half-Adder With Interferometric,” IEEE Photonics Technol. Lett. 16, 284–286 (2004).
[Crossref]

Guest, C. C.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Halas, N. J.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[Crossref]

Han, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 1–5 (2013).
[Crossref]

Hellwig, T.

Hohenau, a.

A. Drezet, a. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 149, 220–229 (2008).
[Crossref]

Houbavlis, T.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, “10-Gb / s All-Optical Half-Adder With Interferometric,” IEEE Photonics Technol. Lett. 16, 284–286 (2004).
[Crossref]

Hter, O.

Hu, X.

C. Lu, X. Hu, H. Yang, and Q. Gong, “Integrated all-optical logic discriminators based on plasmonic bandgap engineering,” Sci. Rep. 3, 2778 (2013).
[Crossref] [PubMed]

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[Crossref]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[Crossref]

Hussein, K. F. A.

M. Nady, K. F. A. Hussein, and A.-E. A. Ammar, “Ultrafast all-optical full adder using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer,” Prog. Electromagn. Res. B 54, 69–88 (2013).
[Crossref]

Inokawa, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Itabashi, S.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Jacobs, H. O.

J. C. Love, D. B. Wolfe, H. O. Jacobs, and G. M. Whitesides, “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir 17, 6005–6012 (2001).
[Crossref]

Jiang, P.

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[Crossref]

Johnson, W.

S. C. Xavier, K. Arunachalam, E. Caroline, and W. Johnson, “Design of two-dimensional photonic crystal-based all-optical binary adder,” Opt. Eng. 52, 025201 (2013).
[Crossref]

Kaler, R.

Kamal, T.

Kanellos, G. T.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, “10-Gb / s All-Optical Half-Adder With Interferometric,” IEEE Photonics Technol. Lett. 16, 284–286 (2004).
[Crossref]

Kaur, S.

Kawata, H.

H. Kawata, J. M. Carter, A. Yen, and H. I. Smith, “Optical projection lithography using lenses with numerical apertures greater than unity,” Microelectron. Eng. 9, 31–36 (1989).
[Crossref]

Kehayas, E.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, “10-Gb / s All-Optical Half-Adder With Interferometric,” IEEE Photonics Technol. Lett. 16, 284–286 (2004).
[Crossref]

Kiyan, R.

C. Reinhardt, A. Seidel, A. Evlyukhin, W. Cheng, R. Kiyan, and B. Chichkov, “Direct laser-writing of dielectric-loaded surface plasmon-polariton waveguides for the visible and near infrared,” Appl. Phys. A Mater. Sci. Process. 100, 347–352 (2010).
[Crossref]

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,”, Plasmon. Nanoimaging, Nanofabrication, Their Appl. III 6642, 664205 (2007).
[Crossref]

C. Reinhardt, R. Kiyan, S. Passinger, A. L. Stepanov, A. Ostendorf, and B. N. Chichkov, “Rapid laser prototyping of plasmonic components,” Appl. Phys. A Mater. Sci. Process. 89, 321–325 (2007).
[Crossref]

Kjelstrup-Hansen, J.

C. Lemke, T. Leissner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The interplay between localized and propagating plasmonic excitations tracked in space and time,” Nano Lett. 14, 2431–2435 (2014).
[Crossref] [PubMed]

Klick, A.

C. Lemke, T. Leissner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The interplay between localized and propagating plasmonic excitations tracked in space and time,” Nano Lett. 14, 2431–2435 (2014).
[Crossref] [PubMed]

Kll, M.

H. Wei, Z. Wang, X. Tian, M. Kll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Koller, D.

A. Drezet, a. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 149, 220–229 (2008).
[Crossref]

Krasavin, A. V.

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84, 1416–1418 (2004).
[Crossref]

Krenn, J. R.

A. Drezet, a. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 149, 220–229 (2008).
[Crossref]

Kuramochi, E.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Kuroda, K.

M. Ogusu, S. Tanaka, and K. Kuroda, “Optical logic operations using three-beam phase-conjugate interferometry,” Jpn. J. Appl. Phys. 29, 1265–1267 (1990).
[Crossref]

Kwong, S. K.

S. K. Kwong, G. A. Rakuljic, and A. Yariv, “Real time image subtraction and exclusive or operation using a self-pumped phase conjugate mirror,” Appl. Phys. Lett. 48, 201–203 (1986).
[Crossref]

Lee, S. H.

Leissner, T.

C. Lemke, T. Leissner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The interplay between localized and propagating plasmonic excitations tracked in space and time,” Nano Lett. 14, 2431–2435 (2014).
[Crossref] [PubMed]

C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013).
[Crossref] [PubMed]

Leitner, A.

A. Drezet, a. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 149, 220–229 (2008).
[Crossref]

Lemke, C.

C. Lemke, T. Leissner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The interplay between localized and propagating plasmonic excitations tracked in space and time,” Nano Lett. 14, 2431–2435 (2014).
[Crossref] [PubMed]

C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013).
[Crossref] [PubMed]

Li, B.

Li, Z.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[Crossref]

Lipson, M.

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15, 924–929 (2007).
[Crossref] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Penepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Liu, N.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[Crossref]

Liu, X.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 1–5 (2013).
[Crossref]

Love, J. C.

J. C. Love, D. B. Wolfe, H. O. Jacobs, and G. M. Whitesides, “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir 17, 6005–6012 (2001).
[Crossref]

Lu, C.

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Integrated all-optical logic discriminators based on plasmonic bandgap engineering,” Sci. Rep. 3, 2778 (2013).
[Crossref] [PubMed]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

Lu, H.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 1–5 (2013).
[Crossref]

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vam-vakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymer ization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

MacDonald, K. F.

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. Macdonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

Mao, D.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 1–5 (2013).
[Crossref]

Markov, A.

Matsuo, S.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Melchior, P.

C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013).
[Crossref] [PubMed]

Miller, D. A. B.

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
[Crossref]

Miller, T. A.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast broadband tuning of resonant optical nanostructures using phase change materials,” arXiv 1506.03739 (2015).

Mitatha, S.

P. Phongsanam, S. Mitatha, C. Teeka, and P. P. Yupapin, “All-Optical half adder/subtractor using dark-bright soliton conversion control,” Mircow. Opt. Technol. Lett. 53(7), 1541–1544 (2012).
[Crossref]

Mkhitaryan, V.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast broadband tuning of resonant optical nanostructures using phase change materials,” arXiv 1506.03739 (2015).

Moloney, J. V.

J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, “Numerical evidence for nonstationary, nonlinear, slab-guided waves,” Opt. Lett. 11, 315–317 (1986).
[Crossref] [PubMed]

J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986).
[Crossref]

Moore, G. E.

G. E. Moore, “Cramming more components onto integrated circuits (Reprinted from Electronics, 114–117,April 19, 1965),” Proc. IEEE 86, 82–85 (1998).
[Crossref]

Nady, M.

M. Nady, K. F. A. Hussein, and A.-E. A. Ammar, “Ultrafast all-optical full adder using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer,” Prog. Electromagn. Res. B 54, 69–88 (2013).
[Crossref]

Nishiguchi, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Nordlander, P.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[Crossref]

Notomi, M.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Nozaki, K.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Ogusu, M.

M. Ogusu, S. Tanaka, and K. Kuroda, “Optical logic operations using three-beam phase-conjugate interferometry,” Jpn. J. Appl. Phys. 29, 1265–1267 (1990).
[Crossref]

Ostendorf, A.

C. Reinhardt, R. Kiyan, S. Passinger, A. L. Stepanov, A. Ostendorf, and B. N. Chichkov, “Rapid laser prototyping of plasmonic components,” Appl. Phys. A Mater. Sci. Process. 89, 321–325 (2007).
[Crossref]

Ou, J. Y.

X. Fang, M. L. Tseng, J. Y. Ou, K. F. Macdonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vam-vakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymer ization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Ovsianikov, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vam-vakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymer ization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Passinger, S.

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,”, Plasmon. Nanoimaging, Nanofabrication, Their Appl. III 6642, 664205 (2007).
[Crossref]

C. Reinhardt, R. Kiyan, S. Passinger, A. L. Stepanov, A. Ostendorf, and B. N. Chichkov, “Rapid laser prototyping of plasmonic components,” Appl. Phys. A Mater. Sci. Process. 89, 321–325 (2007).
[Crossref]

Penepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Penepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

Phongsanam, P.

P. Phongsanam, S. Mitatha, C. Teeka, and P. P. Yupapin, “All-Optical half adder/subtractor using dark-bright soliton conversion control,” Mircow. Opt. Technol. Lett. 53(7), 1541–1544 (2012).
[Crossref]

Pleros, N.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, “10-Gb / s All-Optical Half-Adder With Interferometric,” IEEE Photonics Technol. Lett. 16, 284–286 (2004).
[Crossref]

Pruneri, V.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast broadband tuning of resonant optical nanostructures using phase change materials,” arXiv 1506.03739 (2015).

Qian, L.

L. Qian and H. J. Caulfield, “What can we do with a linear optical logic gate?” Inf. Sci. 176, 3379–3392 (2006).
[Crossref]

Radke, J. W.

C. Lemke, T. Leissner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The interplay between localized and propagating plasmonic excitations tracked in space and time,” Nano Lett. 14, 2431–2435 (2014).
[Crossref] [PubMed]

C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013).
[Crossref] [PubMed]

Rakuljic, G. A.

S. K. Kwong, G. A. Rakuljic, and A. Yariv, “Real time image subtraction and exclusive or operation using a self-pumped phase conjugate mirror,” Appl. Phys. Lett. 48, 201–203 (1986).
[Crossref]

Reinhardt, C.

N. Sardana, T. Birr, S. Schlenker, C. Reinhardt, and J. Schilling, “Surface plasmons on ordered and bi-continuous spongy nanoporous gold,” New J. Phys. 16, 063053 (2014).
[Crossref]

C. Lemke, T. Leissner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The interplay between localized and propagating plasmonic excitations tracked in space and time,” Nano Lett. 14, 2431–2435 (2014).
[Crossref] [PubMed]

C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013).
[Crossref] [PubMed]

C. Reinhardt, A. B. Evlyukhin, W. Cheng, T. Birr, A. Markov, B. Ung, M. Skorobogatiy, and B. N. Chichkov, “Bandgap-confined large-mode waveguides for surface plasmon-polaritons,” J. Opt. Soc. Am. B 30, 2898–2905 (2013).
[Crossref]

C. Reinhardt, A. Seidel, A. Evlyukhin, W. Cheng, R. Kiyan, and B. Chichkov, “Direct laser-writing of dielectric-loaded surface plasmon-polariton waveguides for the visible and near infrared,” Appl. Phys. A Mater. Sci. Process. 100, 347–352 (2010).
[Crossref]

C. Reinhardt, A. Seidel, A. B. Evlyukhin, W. Cheng, and B. N. Chichkov, “Mode-selective excitation of laser-written dielectric-loaded surface plasmon polariton waveguides,” J. Opt. Soc. Am. B 26, B55 (2009).
[Crossref]

C. Reinhardt, R. Kiyan, S. Passinger, A. L. Stepanov, A. Ostendorf, and B. N. Chichkov, “Rapid laser prototyping of plasmonic components,” Appl. Phys. A Mater. Sci. Process. 89, 321–325 (2007).
[Crossref]

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,”, Plasmon. Nanoimaging, Nanofabrication, Their Appl. III 6642, 664205 (2007).
[Crossref]

Rubahn, H.-G.

C. Lemke, T. Leissner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The interplay between localized and propagating plasmonic excitations tracked in space and time,” Nano Lett. 14, 2431–2435 (2014).
[Crossref] [PubMed]

Rudé, M.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast broadband tuning of resonant optical nanostructures using phase change materials,” arXiv 1506.03739 (2015).

Sakellari, I.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vam-vakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymer ization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

Sardana, N.

N. Sardana, T. Birr, S. Schlenker, C. Reinhardt, and J. Schilling, “Surface plasmons on ordered and bi-continuous spongy nanoporous gold,” New J. Phys. 16, 063053 (2014).
[Crossref]

Sato, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Schenk, C.

U. Tietze and C. Schenk, Halbleiterschaltungstechnik (Springer, 1986).

Schilling, J.

N. Sardana, T. Birr, S. Schlenker, C. Reinhardt, and J. Schilling, “Surface plasmons on ordered and bi-continuous spongy nanoporous gold,” New J. Phys. 16, 063053 (2014).
[Crossref]

Schlenker, S.

N. Sardana, T. Birr, S. Schlenker, C. Reinhardt, and J. Schilling, “Surface plasmons on ordered and bi-continuous spongy nanoporous gold,” New J. Phys. 16, 063053 (2014).
[Crossref]

Schnack, M.

Schneider, C.

C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013).
[Crossref] [PubMed]

Schwarz, C.

Seaton, C. T.

J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, “Numerical evidence for nonstationary, nonlinear, slab-guided waves,” Opt. Lett. 11, 315–317 (1986).
[Crossref] [PubMed]

J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986).
[Crossref]

Seidel, A.

C. Reinhardt, A. Seidel, A. Evlyukhin, W. Cheng, R. Kiyan, and B. Chichkov, “Direct laser-writing of dielectric-loaded surface plasmon-polariton waveguides for the visible and near infrared,” Appl. Phys. A Mater. Sci. Process. 100, 347–352 (2010).
[Crossref]

C. Reinhardt, A. Seidel, A. B. Evlyukhin, W. Cheng, and B. N. Chichkov, “Mode-selective excitation of laser-written dielectric-loaded surface plasmon polariton waveguides,” J. Opt. Soc. Am. B 26, B55 (2009).
[Crossref]

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,”, Plasmon. Nanoimaging, Nanofabrication, Their Appl. III 6642, 664205 (2007).
[Crossref]

Shinojima, H.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Shinya, A.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Skorobogatiy, M.

Smith, H. I.

H. Kawata, J. M. Carter, A. Yen, and H. I. Smith, “Optical projection lithography using lenses with numerical apertures greater than unity,” Microelectron. Eng. 9, 31–36 (1989).
[Crossref]

Stampoulidis, L.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, “10-Gb / s All-Optical Half-Adder With Interferometric,” IEEE Photonics Technol. Lett. 16, 284–286 (2004).
[Crossref]

Stegeman, G. I.

J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986).
[Crossref]

J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, “Numerical evidence for nonstationary, nonlinear, slab-guided waves,” Opt. Lett. 11, 315–317 (1986).
[Crossref] [PubMed]

Steinberger, B.

A. Drezet, a. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 149, 220–229 (2008).
[Crossref]

Stepanov, A.

A. Drezet, a. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 149, 220–229 (2008).
[Crossref]

Stepanov, A. L.

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,”, Plasmon. Nanoimaging, Nanofabrication, Their Appl. III 6642, 664205 (2007).
[Crossref]

C. Reinhardt, R. Kiyan, S. Passinger, A. L. Stepanov, A. Ostendorf, and B. N. Chichkov, “Rapid laser prototyping of plasmonic components,” Appl. Phys. A Mater. Sci. Process. 89, 321–325 (2007).
[Crossref]

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

Sun, M.

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4, e294 (2015).
[Crossref]

Sun, Z.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 1–5 (2013).
[Crossref]

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Tanaka, S.

M. Ogusu, S. Tanaka, and K. Kuroda, “Optical logic operations using three-beam phase-conjugate interferometry,” Jpn. J. Appl. Phys. 29, 1265–1267 (1990).
[Crossref]

Taniyama, H.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

Teeka, C.

P. Phongsanam, S. Mitatha, C. Teeka, and P. P. Yupapin, “All-Optical half adder/subtractor using dark-bright soliton conversion control,” Mircow. Opt. Technol. Lett. 53(7), 1541–1544 (2012).
[Crossref]

Tian, X.

H. Wei, Z. Wang, X. Tian, M. Kll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[Crossref]

Tietze, U.

U. Tietze and C. Schenk, Halbleiterschaltungstechnik (Springer, 1986).

Tsai, D. P.

X. Fang, M. L. Tseng, J. Y. Ou, K. F. Macdonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

Tseng, M. L.

X. Fang, M. L. Tseng, J. Y. Ou, K. F. Macdonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

Tsiokos, D.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, “10-Gb / s All-Optical Half-Adder With Interferometric,” IEEE Photonics Technol. Lett. 16, 284–286 (2004).
[Crossref]

Tsuchizawa, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Ung, B.

Vam-vakaki, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vam-vakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymer ization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vam-vakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymer ization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Vyrsokinos, K.

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, “10-Gb / s All-Optical Half-Adder With Interferometric,” IEEE Photonics Technol. Lett. 16, 284–286 (2004).
[Crossref]

Wall, S.

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast broadband tuning of resonant optical nanostructures using phase change materials,” arXiv 1506.03739 (2015).

Wang, F.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 1–5 (2013).
[Crossref]

Wang, G.

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 1–5 (2013).
[Crossref]

Wang, Z.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[Crossref]

H. Wei, Z. Wang, X. Tian, M. Kll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Watanabe, T.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Wei, H.

H. Wei, Z. Wang, X. Tian, M. Kll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[Crossref]

Weiner, A. M.

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

Westphal, J.

H. J. Caulfield and J. Westphal, “The logic of optics and the optics of logic,” Inf. Sci. 162, 21–33 (2004).
[Crossref]

Whitesides, G. M.

J. C. Love, D. B. Wolfe, H. O. Jacobs, and G. M. Whitesides, “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir 17, 6005–6012 (2001).
[Crossref]

Wolfe, D. B.

J. C. Love, D. B. Wolfe, H. O. Jacobs, and G. M. Whitesides, “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir 17, 6005–6012 (2001).
[Crossref]

Xavier, S. C.

S. C. Xavier, K. Arunachalam, E. Caroline, and W. Johnson, “Design of two-dimensional photonic crystal-based all-optical binary adder,” Opt. Eng. 52, 025201 (2013).
[Crossref]

Xu, H.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[Crossref]

H. Wei, Z. Wang, X. Tian, M. Kll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Xu, Q.

Yamada, K.

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

Yang, H.

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Integrated all-optical logic discriminators based on plasmonic bandgap engineering,” Sci. Rep. 3, 2778 (2013).
[Crossref] [PubMed]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[Crossref]

Yariv, A.

S. K. Kwong, G. A. Rakuljic, and A. Yariv, “Real time image subtraction and exclusive or operation using a self-pumped phase conjugate mirror,” Appl. Phys. Lett. 48, 201–203 (1986).
[Crossref]

Yen, A.

H. Kawata, J. M. Carter, A. Yen, and H. I. Smith, “Optical projection lithography using lenses with numerical apertures greater than unity,” Microelectron. Eng. 9, 31–36 (1989).
[Crossref]

Yue, S.

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[Crossref]

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

Yupapin, P. P.

P. Phongsanam, S. Mitatha, C. Teeka, and P. P. Yupapin, “All-Optical half adder/subtractor using dark-bright soliton conversion control,” Mircow. Opt. Technol. Lett. 53(7), 1541–1544 (2012).
[Crossref]

Zhang, J.

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

Zhang, S.

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[Crossref]

Zhang, Y.

Zheludev, N. I.

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. Macdonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84, 1416–1418 (2004).
[Crossref]

ACS Nano (1)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vam-vakaki, M. Farsari, and C. Fotakis, “Ultra-low shrinkage hybrid photosensitive material for two-photon polymer ization microfabrication,” ACS Nano 2, 2257–2262 (2008).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A Mater. Sci. Process. (2)

C. Reinhardt, R. Kiyan, S. Passinger, A. L. Stepanov, A. Ostendorf, and B. N. Chichkov, “Rapid laser prototyping of plasmonic components,” Appl. Phys. A Mater. Sci. Process. 89, 321–325 (2007).
[Crossref]

C. Reinhardt, A. Seidel, A. Evlyukhin, W. Cheng, R. Kiyan, and B. Chichkov, “Direct laser-writing of dielectric-loaded surface plasmon-polariton waveguides for the visible and near infrared,” Appl. Phys. A Mater. Sci. Process. 100, 347–352 (2010).
[Crossref]

Appl. Phys. Lett. (5)

T. Tanabe, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90, 031115 (2007).
[Crossref]

J. V. Moloney, J. Ariyasu, C. T. Seaton, and G. I. Stegeman, “Stability of nonlinear stationary waves guided by a thin film bounded by nonlinear media,” Appl. Phys. Lett. 48, 826–828 (1986).
[Crossref]

S. K. Kwong, G. A. Rakuljic, and A. Yariv, “Real time image subtraction and exclusive or operation using a self-pumped phase conjugate mirror,” Appl. Phys. Lett. 48, 201–203 (1986).
[Crossref]

X. Fang, M. L. Tseng, J. Y. Ou, K. F. Macdonald, D. P. Tsai, and N. I. Zheludev, “Ultrafast all-optical switching via coherent modulation of metamaterial absorption,” Appl. Phys. Lett. 104, 141102 (2014).
[Crossref]

A. V. Krasavin and N. I. Zheludev, “Active plasmonics: controlling signals in Au/Ga waveguide using nanoscale structural transformations,” Appl. Phys. Lett. 84, 1416–1418 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Tsiokos, E. Kehayas, K. Vyrsokinos, T. Houbavlis, L. Stampoulidis, G. T. Kanellos, N. Pleros, G. Guekos, and H. Avramopoulos, “10-Gb / s All-Optical Half-Adder With Interferometric,” IEEE Photonics Technol. Lett. 16, 284–286 (2004).
[Crossref]

Inf. Sci. (2)

H. J. Caulfield and J. Westphal, “The logic of optics and the optics of logic,” Inf. Sci. 162, 21–33 (2004).
[Crossref]

L. Qian and H. J. Caulfield, “What can we do with a linear optical logic gate?” Inf. Sci. 176, 3379–3392 (2006).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Opt. Soc. Korea (1)

Jpn. J. Appl. Phys. (1)

M. Ogusu, S. Tanaka, and K. Kuroda, “Optical logic operations using three-beam phase-conjugate interferometry,” Jpn. J. Appl. Phys. 29, 1265–1267 (1990).
[Crossref]

Langmuir (1)

J. C. Love, D. B. Wolfe, H. O. Jacobs, and G. M. Whitesides, “Microscope projection photolithography for rapid prototyping of masters with micron-scale features for use in soft lithography,” Langmuir 17, 6005–6012 (2001).
[Crossref]

Light Sci. Appl. (3)

Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light Sci. Appl. 4, e294 (2015).
[Crossref]

X. Fang, K. F. MacDonald, and N. I. Zheludev, “Controlling light with light using coherent metadevices: all-optical transistor, summator and invertor,” Light Sci. Appl. 4, e292 (2015).
[Crossref]

J. Zhang, K. F. MacDonald, and N. I. Zheludev, “Controlling light-with-light without nonlinearity,” Light Sci. Appl. 1, e18 (2012).
[Crossref]

Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. (1)

A. Drezet, a. Hohenau, D. Koller, A. Stepanov, H. Ditlbacher, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Leakage radiation microscopy of surface plasmon polaritons,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 149, 220–229 (2008).
[Crossref]

Microelectron. Eng. (1)

H. Kawata, J. M. Carter, A. Yen, and H. I. Smith, “Optical projection lithography using lenses with numerical apertures greater than unity,” Microelectron. Eng. 9, 31–36 (1989).
[Crossref]

Mircow. Opt. Technol. Lett. (1)

P. Phongsanam, S. Mitatha, C. Teeka, and P. P. Yupapin, “All-Optical half adder/subtractor using dark-bright soliton conversion control,” Mircow. Opt. Technol. Lett. 53(7), 1541–1544 (2012).
[Crossref]

Nano Lett. (4)

Y. Fu, X. Hu, C. Lu, S. Yue, H. Yang, and Q. Gong, “All-optical logic gates based on nanoscale plasmonic slot waveguides,” Nano Lett. 12, 5784–5790 (2012).
[Crossref] [PubMed]

H. Wei, Z. Li, X. Tian, Z. Wang, F. Cong, N. Liu, S. Zhang, P. Nordlander, N. J. Halas, and H. Xu, “Quantum dot-based local field imaging reveals plasmon-based interferometric logic in silver nanowire networks,” Nano Lett. 11, 471–475 (2011).
[Crossref]

C. Lemke, C. Schneider, T. Leissner, D. Bayer, J. W. Radke, A. Fischer, P. Melchior, A. B. Evlyukhin, B. N. Chichkov, C. Reinhardt, M. Bauer, and M. Aeschlimann, “Spatiotemporal characterization of SPP pulse propagation in two-dimensional plasmonic focusing devices,” Nano Lett. 13, 1053–1058 (2013).
[Crossref] [PubMed]

C. Lemke, T. Leissner, A. B. Evlyukhin, J. W. Radke, A. Klick, J. Fiutowski, J. Kjelstrup-Hansen, H.-G. Rubahn, B. N. Chichkov, C. Reinhardt, and M. Bauer, “The interplay between localized and propagating plasmonic excitations tracked in space and time,” Nano Lett. 14, 2431–2435 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

H. Wei, Z. Wang, X. Tian, M. Kll, and H. Xu, “Cascaded logic gates in nanophotonic plasmon networks,” Nat. Commun. 2, 387 (2011).
[Crossref] [PubMed]

Nat. Photonics (4)

X. Hu, P. Jiang, C. Ding, H. Yang, and Q. Gong, “Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity,” Nat. Photonics 2, 185–189 (2008).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4, 477–483 (2010).
[Crossref]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics: transmission and control of femtosecond plasmon signals,” Nat. Photonics 3, 55–58 (2008).
[Crossref]

D. A. B. Miller, “Are optical transistors the logical next step?” Nat. Photonics 4, 3–5 (2010).
[Crossref]

Nature (1)

V. R. Almeida, C. A. Barrios, R. R. Penepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431, 1081–1084 (2004).
[Crossref] [PubMed]

New J. Phys. (1)

N. Sardana, T. Birr, S. Schlenker, C. Reinhardt, and J. Schilling, “Surface plasmons on ordered and bi-continuous spongy nanoporous gold,” New J. Phys. 16, 063053 (2014).
[Crossref]

Opt. Commun. (1)

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284, 3669–3692 (2011).
[Crossref]

Opt. Eng. (1)

S. C. Xavier, K. Arunachalam, E. Caroline, and W. Johnson, “Design of two-dimensional photonic crystal-based all-optical binary adder,” Opt. Eng. 52, 025201 (2013).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44–50 (2008).
[Crossref]

Plasmon. Nanoimaging, Nanofabrication, Their Appl. III (1)

C. Reinhardt, R. Kiyan, A. Seidel, S. Passinger, A. L. Stepanov, A. B. Evlyukhin, and B. N. Chichkov, “Focusing and manipulation of surface plasmon polaritons by laser fabricated dielectric structures,”, Plasmon. Nanoimaging, Nanofabrication, Their Appl. III 6642, 664205 (2007).
[Crossref]

Plasmonics (1)

C. Lu, X. Hu, S. Yue, Y. Fu, H. Yang, and Q. Gong, “Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications,” Plasmonics 8, 749–754 (2013).
[Crossref]

Proc. IEEE (1)

G. E. Moore, “Cramming more components onto integrated circuits (Reprinted from Electronics, 114–117,April 19, 1965),” Proc. IEEE 86, 82–85 (1998).
[Crossref]

Prog. Electromagn. Res. B (1)

M. Nady, K. F. A. Hussein, and A.-E. A. Ammar, “Ultrafast all-optical full adder using quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer,” Prog. Electromagn. Res. B 54, 69–88 (2013).
[Crossref]

Sci. Rep. (2)

D. Mao, X. Liu, Z. Sun, H. Lu, D. Han, G. Wang, and F. Wang, “Flexible high-repetition-rate ultrafast fiber laser,” Sci. Rep. 3, 1–5 (2013).
[Crossref]

C. Lu, X. Hu, H. Yang, and Q. Gong, “Integrated all-optical logic discriminators based on plasmonic bandgap engineering,” Sci. Rep. 3, 2778 (2013).
[Crossref] [PubMed]

Other (4)

H. Gibbs, Optical Bistability: Controlling Light with Light (Academic Press, 1985).

U. Tietze and C. Schenk, Halbleiterschaltungstechnik (Springer, 1986).

M. Rudé, V. Mkhitaryan, A. E. Cetin, T. A. Miller, A. Carrilero, S. Wall, F. J. G. de Abajo, H. Altug, and V. Pruneri, “Ultrafast broadband tuning of resonant optical nanostructures using phase change materials,” arXiv 1506.03739 (2015).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 FDTD simulation (a),(e), darkfield LRM (b),(d) and Brightfield microscopy images(c) of plasmonic gate structures. The structures are made of Ormosil on a thin gold layer atop a standard microscopic cover glass. The diagonal waveguides are 20 µm long. The vertical waveguide is 10 µm long. All structures are 320 nm wide and 300 nm high. The excitation laser pulses offer a phase difference of 0 (a),(b) or π (c),(d), respectively, causing a switching of the SPP intensity in the vertical waveguide. The differences of simulated and experimental results may be due to the limited resolution of the fabrication process. The scale bar represents 5 µm.
Fig. 2
Fig. 2 FDTD simulation of only one excitation laser pulse (a). Experimental realization of an NOT gate (b),(c) with its respective truth table (d). The excitation laser pulses offer a phase difference of π, causing no SPP intensity in the vertical waveguide in the case of two excitation laser pulses. The differences of simulated and experimental results may be due to the limited resolution of the fabrication process. The scale bar represents 5 µm.
Fig. 3
Fig. 3 Experimental realization of an OR gate (a)–(c) and an AND gate (e)–(g) with the associated truth tables (d),(h) respectively. The experimental difference between the shown OR and AND gates is just the level of the set threshold for recognition of a certain intensity as off state, as is described in detail in Sec. 3.1.2. This difference in threshold is depicted in the use of higher camera sensitivity in the images (a)–(c), compared to the images (e)–(g). The excitation laser pulses offer a phase difference of 0, resulting in a propagating SPP in the vertical waveguide. The scale bar represents 5 µm.
Fig. 4
Fig. 4 Experimental realization of an XOR gate (a)–(c) with the associated truth table (d). The excitation laser pulses offer a phase difference of π, causing no SPP intensity in the vertical waveguide in the case of two excitation laser pulses. The scale bar represents 5 µm.
Fig. 5
Fig. 5 Experimental realization of a plasmonic half-adder, generated with the combination of an XOR and an AND gate (a),(c)–(e) with the associated truth table (b). Input port A is connected with both gates by a straight waveguide (blue dashed line). Input port B is connected with the XOR gate by a straight waveguide (yellow dashed line) whereas it is connected with the AND gate by a delay waveguide (red dashed line). This delay waveguide offers a phase shift of π, compared to the waveguide from the A input port to the AND gate (blue dashed line). The excitation laser pulses offer a phase difference of π, maintaining, in combination with the mentioned phase delay, the correct operation of both gates. This is described in detail in Sec. 3.2. The scale bar represents 5 µm.

Metrics