Abstract

Fabrication, characterization, and laser performance of an Yb:Lu2O3 planar waveguide laser are reported. Pulsed laser deposition was employed to grow an 8 µm-thick Yb-doped lutetia waveguide on a YAG substrate. X-ray diffraction was used to determine the crystallinity, and spectroscopic characterization showed the absorption and emission cross-sections were indistinguishable from those reported for bulk material. When end-pumped by a diode-laser bar an output power of 7.4 W was achieved, limited by the available pump power, at a wavelength of 1033 nm and a slope efficiency of 38% with respect to the absorbed pump power.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Laser operation of a Tm:Y2O3 planar waveguide

Jakub W. Szela, Katherine A. Sloyan, Tina L. Parsonage, Jacob I. Mackenzie, and Robert W. Eason
Opt. Express 21(10) 12460-12468 (2013)

Ytterbium-doped-garnet crystal waveguide lasers grown by pulsed laser deposition

Stephen J. Beecher, James A. Grant-Jacob, Ping Hua, Jake J. Prentice, Robert W. Eason, David P. Shepherd, and Jacob I. Mackenzie
Opt. Mater. Express 7(5) 1628-1633 (2017)

Diode-end-pumped 1.2 W Yb:Y2O3 planar waveguide laser

Stephen J. Beecher, Tina L. Parsonage, Jacob I. Mackenzie, Katherine A. Sloyan, James A. Grant-Jacob, and Robert W. Eason
Opt. Express 22(18) 22056-22061 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. J. Baker, J. R. Lee, and D. R. Hall, “Self-imaging and high-beam-quality operation in multi-mode planar waveguide optical amplifiers,” Opt. Express,  10(6), 297–302 (2002).
    [Crossref] [PubMed]
  2. C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, and D. C. Hanna, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71(9), 1139–1141 (1997).
    [Crossref]
  3. J. I. Mackenzie, “An efficient high-power 946 nm Nd:YAG planar waveguide laser,” Appl. Phys. B,  97, 297–306 (2009).
    [Crossref]
  4. R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express,  15(11), 7075–7082 (2007).
    [Crossref] [PubMed]
  5. J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Sel. Top. Quant.,  13(3), 626–637 (2007).
    [Crossref]
  6. T. Bhutta, J. I. Mackenzie, D. P. Shepherd, and R. J. Beach, “Spatial dopant profiles for transverse-mode selection in multimode waveguides”, J. Opt. Soc. Am. B 19(7), 1539–1543 (2002).
    [Crossref]
  7. T. C. May-Smith, J. Wang, J. I. Mackenzie, D. P Shepherd, and R. W. Eason, “Diode-pumped garnet crystal waveguide structures fabricated by pulsed laser deposition,” Confererence on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS), Long Beach, California (2006).
  8. S. J. Beecher, T. L. Parsonage, J. I. Mackenzie, K. A. Sloyan, J. A. Grant-Jacob, and R. W. Eason, “Diode-end-pumped 1.2 W Yb:Y2O3 planar waveguide laser,” Opt. Express,  22(18), 22056–22061 (2014).
    [Crossref] [PubMed]
  9. T. C. May-Smith, A. C. Muir, M. S. B. Darby, and R. W. Eason, “Design and performance of a ZnSe tetra-prism for homogenous substrate heating using a CO2 laser for pulsed laser deposition experiments,” Appl. Opt. 47(11) 1767–1780 (2008).
    [Crossref] [PubMed]
  10. “National Chemical Database Service,” www.icsd.cds.rsc.org
  11. J. W. Szela, K. A. Sloyan, T. L. Parsonage, J. I. Mackenzie, and R. W. Eason, “Laser operation of a Tm:Y2O3 planar waveguide,” Opt. Express,  21(10) 12460–12468 (2013).
    [Crossref] [PubMed]
  12. C. Kränkel, “Rare-earth-doped sesquioxides for diode-pumped high-power Lasers in the 1-, 2-, and 3-µ m spectral range,” IEEE J. Sel. Top. Quant.,  21(1), 1602013 (2015).
    [Crossref]
  13. V. Peters, Growth and spectroscopy of ytterbium-doped sesquioxides, PhD thesis, University of Hamburg (2001).
  14. J. A. Caird, S. A. Payne, P. RandallStaver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Elect.,  24(6), 1077–1099 (1988).
    [Crossref]

2015 (1)

C. Kränkel, “Rare-earth-doped sesquioxides for diode-pumped high-power Lasers in the 1-, 2-, and 3-µ m spectral range,” IEEE J. Sel. Top. Quant.,  21(1), 1602013 (2015).
[Crossref]

2014 (1)

2013 (1)

2009 (1)

J. I. Mackenzie, “An efficient high-power 946 nm Nd:YAG planar waveguide laser,” Appl. Phys. B,  97, 297–306 (2009).
[Crossref]

2008 (1)

2007 (2)

2002 (2)

1997 (1)

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, and D. C. Hanna, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71(9), 1139–1141 (1997).
[Crossref]

1988 (1)

J. A. Caird, S. A. Payne, P. RandallStaver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Elect.,  24(6), 1077–1099 (1988).
[Crossref]

Baker, H. J.

Beach, R. J.

Beecher, S. J.

Bhutta, T.

Bonner, C. L.

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, and D. C. Hanna, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71(9), 1139–1141 (1997).
[Crossref]

Brown, C. T. A.

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, and D. C. Hanna, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71(9), 1139–1141 (1997).
[Crossref]

Caird, J. A.

J. A. Caird, S. A. Payne, P. RandallStaver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Elect.,  24(6), 1077–1099 (1988).
[Crossref]

Chase, L. L.

J. A. Caird, S. A. Payne, P. RandallStaver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Elect.,  24(6), 1077–1099 (1988).
[Crossref]

Darby, M. S. B.

Eason, R. W.

Grant-Jacob, J. A.

Hall, D. R.

Hanna, D. C.

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, and D. C. Hanna, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71(9), 1139–1141 (1997).
[Crossref]

Huber, G.

Kränkel, C.

C. Kränkel, “Rare-earth-doped sesquioxides for diode-pumped high-power Lasers in the 1-, 2-, and 3-µ m spectral range,” IEEE J. Sel. Top. Quant.,  21(1), 1602013 (2015).
[Crossref]

R. Peters, C. Kränkel, K. Petermann, and G. Huber, “Broadly tunable high-power Yb:Lu2O3 thin disk laser with 80% slope efficiency,” Opt. Express,  15(11), 7075–7082 (2007).
[Crossref] [PubMed]

Krupke, W. F.

J. A. Caird, S. A. Payne, P. RandallStaver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Elect.,  24(6), 1077–1099 (1988).
[Crossref]

Lee, J. R.

Mackenzie, J. I.

S. J. Beecher, T. L. Parsonage, J. I. Mackenzie, K. A. Sloyan, J. A. Grant-Jacob, and R. W. Eason, “Diode-end-pumped 1.2 W Yb:Y2O3 planar waveguide laser,” Opt. Express,  22(18), 22056–22061 (2014).
[Crossref] [PubMed]

J. W. Szela, K. A. Sloyan, T. L. Parsonage, J. I. Mackenzie, and R. W. Eason, “Laser operation of a Tm:Y2O3 planar waveguide,” Opt. Express,  21(10) 12460–12468 (2013).
[Crossref] [PubMed]

J. I. Mackenzie, “An efficient high-power 946 nm Nd:YAG planar waveguide laser,” Appl. Phys. B,  97, 297–306 (2009).
[Crossref]

J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Sel. Top. Quant.,  13(3), 626–637 (2007).
[Crossref]

T. Bhutta, J. I. Mackenzie, D. P. Shepherd, and R. J. Beach, “Spatial dopant profiles for transverse-mode selection in multimode waveguides”, J. Opt. Soc. Am. B 19(7), 1539–1543 (2002).
[Crossref]

T. C. May-Smith, J. Wang, J. I. Mackenzie, D. P Shepherd, and R. W. Eason, “Diode-pumped garnet crystal waveguide structures fabricated by pulsed laser deposition,” Confererence on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS), Long Beach, California (2006).

May-Smith, T. C.

T. C. May-Smith, A. C. Muir, M. S. B. Darby, and R. W. Eason, “Design and performance of a ZnSe tetra-prism for homogenous substrate heating using a CO2 laser for pulsed laser deposition experiments,” Appl. Opt. 47(11) 1767–1780 (2008).
[Crossref] [PubMed]

T. C. May-Smith, J. Wang, J. I. Mackenzie, D. P Shepherd, and R. W. Eason, “Diode-pumped garnet crystal waveguide structures fabricated by pulsed laser deposition,” Confererence on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS), Long Beach, California (2006).

Muir, A. C.

Parsonage, T. L.

Payne, S. A.

J. A. Caird, S. A. Payne, P. RandallStaver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Elect.,  24(6), 1077–1099 (1988).
[Crossref]

Petermann, K.

Peters, R.

Peters, V.

V. Peters, Growth and spectroscopy of ytterbium-doped sesquioxides, PhD thesis, University of Hamburg (2001).

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. RandallStaver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Elect.,  24(6), 1077–1099 (1988).
[Crossref]

RandallStaver, P.

J. A. Caird, S. A. Payne, P. RandallStaver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Elect.,  24(6), 1077–1099 (1988).
[Crossref]

Shepherd, D. P

T. C. May-Smith, J. Wang, J. I. Mackenzie, D. P Shepherd, and R. W. Eason, “Diode-pumped garnet crystal waveguide structures fabricated by pulsed laser deposition,” Confererence on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS), Long Beach, California (2006).

Shepherd, D. P.

T. Bhutta, J. I. Mackenzie, D. P. Shepherd, and R. J. Beach, “Spatial dopant profiles for transverse-mode selection in multimode waveguides”, J. Opt. Soc. Am. B 19(7), 1539–1543 (2002).
[Crossref]

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, and D. C. Hanna, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71(9), 1139–1141 (1997).
[Crossref]

Sloyan, K. A.

Szela, J. W.

Tropper, A. C.

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, and D. C. Hanna, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71(9), 1139–1141 (1997).
[Crossref]

Wang, J.

T. C. May-Smith, J. Wang, J. I. Mackenzie, D. P Shepherd, and R. W. Eason, “Diode-pumped garnet crystal waveguide structures fabricated by pulsed laser deposition,” Confererence on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS), Long Beach, California (2006).

Warburton, T. J.

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, and D. C. Hanna, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71(9), 1139–1141 (1997).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

J. I. Mackenzie, “An efficient high-power 946 nm Nd:YAG planar waveguide laser,” Appl. Phys. B,  97, 297–306 (2009).
[Crossref]

Appl. Phys. Lett. (1)

C. T. A. Brown, C. L. Bonner, T. J. Warburton, D. P. Shepherd, A. C. Tropper, and D. C. Hanna, “Thermally bonded planar waveguide lasers,” Appl. Phys. Lett. 71(9), 1139–1141 (1997).
[Crossref]

IEEE J. Quantum Elect. (1)

J. A. Caird, S. A. Payne, P. RandallStaver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ Laser,” IEEE J. Quantum Elect.,  24(6), 1077–1099 (1988).
[Crossref]

IEEE J. Sel. Top. Quant (1)

J. I. Mackenzie, “Dielectric Solid-State Planar Waveguide Lasers: A Review,” IEEE J. Sel. Top. Quant.,  13(3), 626–637 (2007).
[Crossref]

IEEE J. Sel. Top. Quant. (1)

C. Kränkel, “Rare-earth-doped sesquioxides for diode-pumped high-power Lasers in the 1-, 2-, and 3-µ m spectral range,” IEEE J. Sel. Top. Quant.,  21(1), 1602013 (2015).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Other (3)

V. Peters, Growth and spectroscopy of ytterbium-doped sesquioxides, PhD thesis, University of Hamburg (2001).

T. C. May-Smith, J. Wang, J. I. Mackenzie, D. P Shepherd, and R. W. Eason, “Diode-pumped garnet crystal waveguide structures fabricated by pulsed laser deposition,” Confererence on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (CLEO/QELS), Long Beach, California (2006).

“National Chemical Database Service,” www.icsd.cds.rsc.org

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) XRD spectrum of Yb:Lu2O3 grown on a YAG substrate in red, plotted with the XRD spectrum obtained from the bare YAG substrate prior to deposition in black. (b) Lifetime measurement taken for the Yb:Lu2O3 sample. (c) Absorption and emission cross-sections calculated from the fluorescence spectrum obtained from the Yb:Lu2O3 waveguide sample. (d) Transmission measurement of the sample as a means to obtaining the Yb concentration, with the experimentally measured points in black and modelled transmission in red.
Fig. 2
Fig. 2 Schematic of the optical system: FAC - fast axis collimator, SAC - slow axis collimator, PBS - polarising beam splitter, C1, C2 & C3 - cylindrical lenses, AC1 - acylindrical lens, M1 - pump input mirror, WG - waveguide, M2 - output coupler, A1 - aspheric lens, M3 - dichroic mirror.
Fig. 3
Fig. 3 (a) Laser output results for three different configurations, with the highest power measured at 7.4 W. The slope efficiency for each output coupler is displayed next to each slope in the corresponding colour. T = 10% OC in black, T = 55% OC in red, and lasing from Fresnel reflection at the output facet in blue. Inset image of the laser mode. (b) Yb:Lu2O3 laser spectrum at 7.4 W output power. Inset shows a zoomed-in view around the peak, from 1028 nm to 1038 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Transmission ( λ ) = P out P in = T 0 e n 0 σ abs ( λ ) l

Metrics