Abstract

A one-dimensional photonic crystal sustaining Bloch Surface Waves (BSWs) is used as a platform for two-dimensional integrated optics. The dielectric platform shows low loss, long propagation distance and high surface field enhancement. In order to study the potential of the platform for future photonic chips, polymer ultra-thin prisms and gratings (~100 nm) are engineered on the top of the platform. This polymer layer modifies the BSWs effective index enabling a direct manipulation of light. The BSW deflection effects caused by surface prisms are observed in the near-field and Snells law is verified; then the BSW diffractions through surface gratings are experimentally and theoretically characterized. The results show a robust platform that can be used for integrated optics that includes different optical components. One of the main advantages is that these 2D photonic devices can have arbitrary shapes, which is difficult to obtain in 3D.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-thin Bloch-surface-wave-based reflector at telecommunication wavelength

R. Dubey, B. Vosoughi Lahijani, M. Häyrinen, M. Roussey, M. Kuittinen, and H. P. Herzig
Photon. Res. 5(5) 494-499 (2017)

Experimental evidence of Bloch surface waves on photonic crystals with thin-film LiNbO3 as a top layer

Tatiana Kovalevich, Djaffar Belharet, Laurent Robert, Myun-Sik Kim, Hans Peter Herzig, Thierry Grosjean, and Maria-Pilar Bernal
Photon. Res. 5(6) 649-653 (2017)

Investigation of ultra-thin waveguide arrays on a Bloch surface wave platform

Libo Yu, Elsie Barakat, Wataru Nakagawa, and Hans Peter Herzig
J. Opt. Soc. Am. B 31(12) 2996-3000 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Ann. Rev. Phys. Chem. 49, 569–638 (1998).
    [Crossref]
  2. A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A.: Pure Appl. Opt. 5, S16–S50 (2003).
    [Crossref]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [Crossref] [PubMed]
  4. L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H.-P. Herzig, “Manipulating Bloch surface waves in 2D a platform concept based flat lens and resonators,” Light: Sci. Appl. 124e124 (2014).
    [Crossref]
  5. F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 20, 8087–8093(2010).
    [Crossref]
  6. L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B: Chem. 174, 292–298 (2012).
    [Crossref]
  7. N. Danz, A. Sinibaldi, F. Michelotti, E. Descrovi, P. Munzert, P. Munzert, and U. Sculz, “Improving the sensitivity of optical biosensors by means of Bloch surface waves,” Biomed. Tech. 57, 584–587 (2012).
    [Crossref]
  8. M. Liscidini and J. E. Sipe, “Analysis of Bloch-surface-wave assisted diffraction-based biosensors,” J. Opt. Soc. Am. B. 2, 279–289 (2009).
    [Crossref]
  9. V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sen. Actuat. B: Chem. 157260–264 (2011).
    [Crossref]
  10. V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
    [Crossref] [PubMed]
  11. L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
    [Crossref]
  12. I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
    [Crossref]
  13. M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express 20, 6703–6711 (2012).
    [Crossref] [PubMed]
  14. E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H.-P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
    [Crossref] [PubMed]
  15. T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H.-P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
    [Crossref]
  16. M. Menotti and M. Liscidini, “Optical resonators based on Bloch surface waves,” J. Opt. Soc. Am. B. 32, 431 (2015).
    [Crossref]
  17. L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Concurrent polarization retrieval in multi-heterodyne scanning near-field optical microscopy: validation on silicon form-birefringent grating,” Opt. Express 20, 23088–23099 (2012).
    [Crossref] [PubMed]
  18. M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
    [Crossref]
  19. H. Wei and H. Xu, “Controlling surface plasmon interference in branched silver nanowire structures,” Nanoscale 4, 7149–7154 (2012).
    [Crossref] [PubMed]
  20. X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
    [Crossref]
  21. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
    [Crossref] [PubMed]
  22. Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22, 21403–21410 (2014).
    [Crossref] [PubMed]
  23. J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
    [Crossref] [PubMed]
  24. Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
    [Crossref]
  25. E. Devaux, J.-Y. Laluet, B. Stein, C. Genet, T. Ebbesen, J.-C. Weeber, and A. Dereux, “Refractive micro-optical elements for surface plasmons: from classical to gradient index optics,” Opt. Express 18, 20610–20619 (2010).
    [Crossref] [PubMed]
  26. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2012).
    [Crossref]
  27. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
    [Crossref] [PubMed]

2015 (1)

M. Menotti and M. Liscidini, “Optical resonators based on Bloch surface waves,” J. Opt. Soc. Am. B. 32, 431 (2015).
[Crossref]

2014 (2)

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H.-P. Herzig, “Manipulating Bloch surface waves in 2D a platform concept based flat lens and resonators,” Light: Sci. Appl. 124e124 (2014).
[Crossref]

Y. Li, T. Yang, Z. Pang, G. Du, S. Song, and S. Han, “Phase-sensitive Bloch surface wave sensor based on variable angle spectroscopic ellipsometry,” Opt. Express 22, 21403–21410 (2014).
[Crossref] [PubMed]

2013 (1)

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref] [PubMed]

2012 (8)

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

H. Wei and H. Xu, “Controlling surface plasmon interference in branched silver nanowire structures,” Nanoscale 4, 7149–7154 (2012).
[Crossref] [PubMed]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B: Chem. 174, 292–298 (2012).
[Crossref]

N. Danz, A. Sinibaldi, F. Michelotti, E. Descrovi, P. Munzert, P. Munzert, and U. Sculz, “Improving the sensitivity of optical biosensors by means of Bloch surface waves,” Biomed. Tech. 57, 584–587 (2012).
[Crossref]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express 20, 6703–6711 (2012).
[Crossref] [PubMed]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Concurrent polarization retrieval in multi-heterodyne scanning near-field optical microscopy: validation on silicon form-birefringent grating,” Opt. Express 20, 23088–23099 (2012).
[Crossref] [PubMed]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2012).
[Crossref]

2011 (3)

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sen. Actuat. B: Chem. 157260–264 (2011).
[Crossref]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[Crossref]

2010 (5)

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 20, 8087–8093(2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H.-P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

E. Devaux, J.-Y. Laluet, B. Stein, C. Genet, T. Ebbesen, J.-C. Weeber, and A. Dereux, “Refractive micro-optical elements for surface plasmons: from classical to gradient index optics,” Opt. Express 18, 20610–20619 (2010).
[Crossref] [PubMed]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H.-P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

2009 (2)

M. Liscidini and J. E. Sipe, “Analysis of Bloch-surface-wave assisted diffraction-based biosensors,” J. Opt. Soc. Am. B. 2, 279–289 (2009).
[Crossref]

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
[Crossref]

2006 (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

2005 (1)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref] [PubMed]

2003 (2)

A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A.: Pure Appl. Opt. 5, S16–S50 (2003).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

1998 (1)

W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Ann. Rev. Phys. Chem. 49, 569–638 (1998).
[Crossref]

Alieva, E. V.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref] [PubMed]

Bai, B.

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

Ballarini, M.

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express 20, 6703–6711 (2012).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

Barakat, E.

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H.-P. Herzig, “Manipulating Bloch surface waves in 2D a platform concept based flat lens and resonators,” Light: Sci. Appl. 124e124 (2014).
[Crossref]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2012).
[Crossref]

Brunazzo, D.

Capasso, F.

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

Cluzel, B.

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

Danz, N.

N. Danz, A. Sinibaldi, F. Michelotti, E. Descrovi, P. Munzert, P. Munzert, and U. Sculz, “Improving the sensitivity of optical biosensors by means of Bloch surface waves,” Biomed. Tech. 57, 584–587 (2012).
[Crossref]

de Fornel, F.

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

De Leo, N.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express 20, 6703–6711 (2012).
[Crossref] [PubMed]

Dellinger, J.

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

Dereux, A.

Descrovi, E.

N. Danz, A. Sinibaldi, F. Michelotti, E. Descrovi, P. Munzert, P. Munzert, and U. Sculz, “Improving the sensitivity of optical biosensors by means of Bloch surface waves,” Biomed. Tech. 57, 584–587 (2012).
[Crossref]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express 20, 6703–6711 (2012).
[Crossref] [PubMed]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 20, 8087–8093(2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H.-P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H.-P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
[Crossref]

Devaux, E.

E. Devaux, J.-Y. Laluet, B. Stein, C. Genet, T. Ebbesen, J.-C. Weeber, and A. Dereux, “Refractive micro-optical elements for surface plasmons: from classical to gradient index optics,” Opt. Express 18, 20610–20619 (2010).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Di Francesco, J.

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H.-P. Herzig, “Manipulating Bloch surface waves in 2D a platform concept based flat lens and resonators,” Light: Sci. Appl. 124e124 (2014).
[Crossref]

Dietler, G.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref] [PubMed]

Dominici, L.

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 20, 8087–8093(2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H.-P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H.-P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

Du, G.

Ebbesen, T.

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

Enrico, E.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express 20, 6703–6711 (2012).
[Crossref] [PubMed]

Fang, Z.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[Crossref]

Fedyanin, A. A.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
[Crossref]

Frascella, F.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express 20, 6703–6711 (2012).
[Crossref] [PubMed]

Genet, C.

Genevet, P.

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

Giorgis, F.

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express 20, 6703–6711 (2012).
[Crossref] [PubMed]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H.-P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 20, 8087–8093(2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H.-P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
[Crossref]

Han, S.

Hao, F.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[Crossref]

Herminjard, S.

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sen. Actuat. B: Chem. 157260–264 (2011).
[Crossref]

Herzig, H. P.

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B: Chem. 174, 292–298 (2012).
[Crossref]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Concurrent polarization retrieval in multi-heterodyne scanning near-field optical microscopy: validation on silicon form-birefringent grating,” Opt. Express 20, 23088–23099 (2012).
[Crossref] [PubMed]

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sen. Actuat. B: Chem. 157260–264 (2011).
[Crossref]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

Herzig, H.-P.

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H.-P. Herzig, “Manipulating Bloch surface waves in 2D a platform concept based flat lens and resonators,” Light: Sci. Appl. 124e124 (2014).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H.-P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H.-P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

Hiller, J. M.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2012).
[Crossref]

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2012).
[Crossref]

Hvozdara, L.

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H.-P. Herzig, “Manipulating Bloch surface waves in 2D a platform concept based flat lens and resonators,” Light: Sci. Appl. 124e124 (2014).
[Crossref]

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sen. Actuat. B: Chem. 157260–264 (2011).
[Crossref]

Jin, G.

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

Karakouz, T.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref] [PubMed]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2012).
[Crossref]

Knoll, W.

W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Ann. Rev. Phys. Chem. 49, 569–638 (1998).
[Crossref]

Konopsky, V. N.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref] [PubMed]

Kuittinen, M.

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B: Chem. 174, 292–298 (2012).
[Crossref]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Concurrent polarization retrieval in multi-heterodyne scanning near-field optical microscopy: validation on silicon form-birefringent grating,” Opt. Express 20, 23088–23099 (2012).
[Crossref] [PubMed]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

Laluet, J.-Y.

E. Devaux, J.-Y. Laluet, B. Stein, C. Genet, T. Ebbesen, J.-C. Weeber, and A. Dereux, “Refractive micro-optical elements for surface plasmons: from classical to gradient index optics,” Opt. Express 18, 20610–20619 (2010).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Li, X.

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

Li, Y.

Lin, J.

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

Liscidini, M.

M. Menotti and M. Liscidini, “Optical resonators based on Bloch surface waves,” J. Opt. Soc. Am. B. 32, 431 (2015).
[Crossref]

M. Liscidini and J. E. Sipe, “Analysis of Bloch-surface-wave assisted diffraction-based biosensors,” J. Opt. Soc. Am. B. 2, 279–289 (2009).
[Crossref]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref] [PubMed]

Mandracci, P.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express 20, 6703–6711 (2012).
[Crossref] [PubMed]

Martin, O.

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H.-P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

Martin, O. J. F.

Menotti, M.

M. Menotti and M. Liscidini, “Optical resonators based on Bloch surface waves,” J. Opt. Soc. Am. B. 32, 431 (2015).
[Crossref]

Michelotti, F.

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

N. Danz, A. Sinibaldi, F. Michelotti, E. Descrovi, P. Munzert, P. Munzert, and U. Sculz, “Improving the sensitivity of optical biosensors by means of Bloch surface waves,” Biomed. Tech. 57, 584–587 (2012).
[Crossref]

M. Ballarini, F. Frascella, N. De Leo, S. Ricciardi, P. Rivolo, P. Mandracci, E. Enrico, F. Giorgis, F. Michelotti, and E. Descrovi, “A polymer-based functional pattern on one-dimensional photonic crystals for photon sorting of fluorescence radiation,” Opt. Express 20, 6703–6711 (2012).
[Crossref] [PubMed]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H.-P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 20, 8087–8093(2010).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H.-P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

Munzert, P.

N. Danz, A. Sinibaldi, F. Michelotti, E. Descrovi, P. Munzert, P. Munzert, and U. Sculz, “Improving the sensitivity of optical biosensors by means of Bloch surface waves,” Biomed. Tech. 57, 584–587 (2012).
[Crossref]

N. Danz, A. Sinibaldi, F. Michelotti, E. Descrovi, P. Munzert, P. Munzert, and U. Sculz, “Improving the sensitivity of optical biosensors by means of Bloch surface waves,” Biomed. Tech. 57, 584–587 (2012).
[Crossref]

Musi, V.

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sen. Actuat. B: Chem. 157260–264 (2011).
[Crossref]

Nakagawa, W.

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B: Chem. 174, 292–298 (2012).
[Crossref]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Concurrent polarization retrieval in multi-heterodyne scanning near-field optical microscopy: validation on silicon form-birefringent grating,” Opt. Express 20, 23088–23099 (2012).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H.-P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

Nordlander, P.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[Crossref]

Paeder, V.

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B: Chem. 174, 292–298 (2012).
[Crossref]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Concurrent polarization retrieval in multi-heterodyne scanning near-field optical microscopy: validation on silicon form-birefringent grating,” Opt. Express 20, 23088–23099 (2012).
[Crossref] [PubMed]

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sen. Actuat. B: Chem. 157260–264 (2011).
[Crossref]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

Pang, Z.

Pearson, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2012).
[Crossref]

Peng, Q.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[Crossref]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref] [PubMed]

Quaglio, M.

Ricciardi, S.

Rivolo, P.

Sculz, U.

N. Danz, A. Sinibaldi, F. Michelotti, E. Descrovi, P. Munzert, P. Munzert, and U. Sculz, “Improving the sensitivity of optical biosensors by means of Bloch surface waves,” Biomed. Tech. 57, 584–587 (2012).
[Crossref]

Sekatskii, S. K.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref] [PubMed]

Sfez, T.

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H.-P. Herzig, “Manipulating Bloch surface waves in 2D a platform concept based flat lens and resonators,” Light: Sci. Appl. 124e124 (2014).
[Crossref]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Concurrent polarization retrieval in multi-heterodyne scanning near-field optical microscopy: validation on silicon form-birefringent grating,” Opt. Express 20, 23088–23099 (2012).
[Crossref] [PubMed]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B: Chem. 174, 292–298 (2012).
[Crossref]

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H.-P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H.-P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

Sinibaldi, A.

N. Danz, A. Sinibaldi, F. Michelotti, E. Descrovi, P. Munzert, P. Munzert, and U. Sculz, “Improving the sensitivity of optical biosensors by means of Bloch surface waves,” Biomed. Tech. 57, 584–587 (2012).
[Crossref]

Sipe, J. E.

M. Liscidini and J. E. Sipe, “Analysis of Bloch-surface-wave assisted diffraction-based biosensors,” J. Opt. Soc. Am. B. 2, 279–289 (2009).
[Crossref]

Smolyaninov, I.

A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A.: Pure Appl. Opt. 5, S16–S50 (2003).
[Crossref]

Soboleva, I. V.

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
[Crossref]

Song, S.

Song, W.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[Crossref]

Srituravanich, W.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref] [PubMed]

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref] [PubMed]

Stein, B.

Stenberg, P.

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Concurrent polarization retrieval in multi-heterodyne scanning near-field optical microscopy: validation on silicon form-birefringent grating,” Opt. Express 20, 23088–23099 (2012).
[Crossref] [PubMed]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B: Chem. 174, 292–298 (2012).
[Crossref]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

Summonte, C.

F. Giorgis, E. Descrovi, C. Summonte, L. Dominici, and F. Michelotti, “Experimental determination of the sensitivity of Bloch surface waves based sensors,” Opt. Express 20, 8087–8093(2010).
[Crossref]

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
[Crossref]

Sun, C.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref] [PubMed]

Tan, Q.

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

Vicario, C.

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref] [PubMed]

Vlasko-Vlasov, V. K.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2012).
[Crossref]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Wang, J.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[Crossref]

Weeber, J.-C.

Wei, H.

H. Wei and H. Xu, “Controlling surface plasmon interference in branched silver nanowire structures,” Nanoscale 4, 7149–7154 (2012).
[Crossref] [PubMed]

Welp, U.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2012).
[Crossref]

Xu, H.

H. Wei and H. Xu, “Controlling surface plasmon interference in branched silver nanowire structures,” Nanoscale 4, 7149–7154 (2012).
[Crossref] [PubMed]

Yang, T.

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2012).
[Crossref]

Yu, L.

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H.-P. Herzig, “Manipulating Bloch surface waves in 2D a platform concept based flat lens and resonators,” Light: Sci. Appl. 124e124 (2014).
[Crossref]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Concurrent polarization retrieval in multi-heterodyne scanning near-field optical microscopy: validation on silicon form-birefringent grating,” Opt. Express 20, 23088–23099 (2012).
[Crossref] [PubMed]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B: Chem. 174, 292–298 (2012).
[Crossref]

T. Sfez, E. Descrovi, L. Yu, D. Brunazzo, M. Quaglio, L. Dominici, W. Nakagawa, F. Michelotti, F. Giorgis, O. J. F. Martin, and H.-P. Herzig, “Bloch surface waves in ultrathin waveguides: near-field investigation of mode polarization and propagation,” J. Opt. Soc. Am. B 27, 1617–1625 (2010).
[Crossref]

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

Zayats, A.

A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A.: Pure Appl. Opt. 5, S16–S50 (2003).
[Crossref]

Zhang, X.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref] [PubMed]

Zhu, X.

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[Crossref]

Ann. Rev. Phys. Chem. (1)

W. Knoll, “Interfaces and thin films as seen by bound electromagnetic waves,” Ann. Rev. Phys. Chem. 49, 569–638 (1998).
[Crossref]

Appl. Phys. Lett. (3)

I. V. Soboleva, E. Descrovi, C. Summonte, A. A. Fedyanin, and F. Giorgis, “Fluorescence emission enhanced by surface electromagnetic waves on one-dimensional photonic crystals,” Appl. Phys. Lett. 94, 231122 (2009).
[Crossref]

M. Ballarini, F. Frascella, E. Enrico, P. Mandracci, N. De Leo, F. Michelotti, F. Giorgis, and E. Descrovi, “Bloch surface waves-controlled fluorescence emission: coupling into nanometer-sized polymeric waveguides,” Appl. Phys. Lett. 100, 063305 (2012).
[Crossref]

X. Li, Q. Tan, B. Bai, and G. Jin, “Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit,” Appl. Phys. Lett. 98, 251109 (2011).
[Crossref]

Biomed. Tech. (1)

N. Danz, A. Sinibaldi, F. Michelotti, E. Descrovi, P. Munzert, P. Munzert, and U. Sculz, “Improving the sensitivity of optical biosensors by means of Bloch surface waves,” Biomed. Tech. 57, 584–587 (2012).
[Crossref]

J. Opt. A.: Pure Appl. Opt. (1)

A. Zayats and I. Smolyaninov, “Near-field photonics: surface plasmon polaritons and localized surface plasmons,” J. Opt. A.: Pure Appl. Opt. 5, S16–S50 (2003).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Opt. Soc. Am. B. (2)

M. Liscidini and J. E. Sipe, “Analysis of Bloch-surface-wave assisted diffraction-based biosensors,” J. Opt. Soc. Am. B. 2, 279–289 (2009).
[Crossref]

M. Menotti and M. Liscidini, “Optical resonators based on Bloch surface waves,” J. Opt. Soc. Am. B. 32, 431 (2015).
[Crossref]

Light: Sci. Appl. (1)

L. Yu, E. Barakat, T. Sfez, L. Hvozdara, J. Di Francesco, and H.-P. Herzig, “Manipulating Bloch surface waves in 2D a platform concept based flat lens and resonators,” Light: Sci. Appl. 124e124 (2014).
[Crossref]

Nano Lett. (4)

E. Descrovi, T. Sfez, M. Quaglio, D. Brunazzo, L. Dominici, F. Michelotti, H.-P. Herzig, O. Martin, and F. Giorgis, “Guided Bloch surface waves on ultrathin polymeric ridges,” Nano Lett. 10, 2087–2091 (2010).
[Crossref] [PubMed]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[Crossref] [PubMed]

Z. Fang, Q. Peng, W. Song, F. Hao, J. Wang, P. Nordlander, and X. Zhu, “Plasmonic focusing in symmetry broken nanocorrals,” Nano Lett. 11, 893–897 (2011).
[Crossref]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Subwavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2012).
[Crossref]

Nanoscale (1)

H. Wei and H. Xu, “Controlling surface plasmon interference in branched silver nanowire structures,” Nanoscale 4, 7149–7154 (2012).
[Crossref] [PubMed]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508–511 (2006).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Chem. Chem. Phys. (1)

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Fast optical vapour sensing by Bloch surface waves on porous silicon membranes,” Phys. Chem. Chem. Phys. 12, 502–506 (2010).
[Crossref]

Phys. Rev. Lett. (1)

J. Lin, J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, “Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave,” Phys. Rev. Lett. 109, 093904 (2012).
[Crossref] [PubMed]

Sen. Actuat. B: Chem. (1)

V. Paeder, V. Musi, L. Hvozdara, S. Herminjard, and H. P. Herzig, “Detection of protein aggregation with a Bloch surface wave based sensor,” Sen. Actuat. B: Chem. 157260–264 (2011).
[Crossref]

Sens. Actuat. B: Chem. (1)

L. Yu, T. Sfez, V. Paeder, P. Stenberg, W. Nakagawa, M. Kuittinen, and H. P. Herzig, “Direct comparison of the performance of Bloch surface wave and surface plasmon polariton sensors,” Sens. Actuat. B: Chem. 174, 292–298 (2012).
[Crossref]

Sensors (1)

V. N. Konopsky, T. Karakouz, E. V. Alieva, C. Vicario, S. K. Sekatskii, and G. Dietler, “Photonic crystal biosensor based on optical surface waves,” Sensors 13, 2566–2578 (2013).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic setup of the Kretschmann configuration for BSWs coupling along with the reflectance as a function of the incident angle. Optical polymer elements are engineered on top of the platform. (b) The platform consists of 6 periods of silicon nitride (263 nm, n = 1.79) and silicon dioxide (492 nm, n = 1.45) and of a top layer of silicon nitride (80 nm). (c) Calculated reflectance map of the multilayer as a function of the wavelength and the incident angle.

Fig. 2
Fig. 2

(a) Schematic of a 2D right angled prism, Λ is the hypotenuse, ξ is the angle between the prism hypotenuse and the y−axis; η is the angle between the transmitted beam and the prism hypotenuse. (b) Topography of a 100 nm thin prism. (c) Measured near-field intensity at and nearby the prism. (d) Phase distribution of the inset area marked by a solid square in (c). (e) Plot of an unwrapped phase along z for a given y position.

Fig. 3
Fig. 3

(a) Schematic of a 2D gratings on top of a right angled prism, Λ is the grating period, γ is the incident angle, and α is the angle between the normal and nth diffracted order. (b) and (c) show the intensity distribution of a 4µm period grating. The incident angle is 45° and 32°, respectively. (d) Intensity distribution of a 6µm grating illuminated with an incident angle of 32°. The insets of figures (b), (c), and (d) show the phase distribution along with the intensity distribution of the areas defines by squares.

Tables (1)

Tables Icon

Table 1 Theoretical and measured angles of the interference pattern.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

tan ϕ = 2 π n P R λ cos η
n p l a t form sin α m = n P R sin γ + m λ Λ , m = 0 , ± 1 , ± 2 ,

Metrics