Abstract

We use three-photon photoemission electron microscopy (PEEM) to investigate the interference of coherently excited dipolar and quadrupolar resonant modes of plasmonic whispering gallery resonators formed by circular grooves patterned into a flat Au surface. Optical scattering and cathodoluminescence spectroscopy are used to characterize the cavity resonance spectra for a wide range of cavity radii and groove depths. Using PEEM, we directly resolve the interference between the modal field distribution of dipolar and quadrupolar modes that are coherently excited at λ = 795 nm under oblique incidence. Characteristic asymmetries in the photoelectron images for both TM and TE excitation are a direct consequence of the coherent excitation of the resonant modes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Deep subwavelength plasmonic whispering-gallery-mode cavity

Soon-Hong Kwon
Opt. Express 20(22) 24918-24924 (2012)

A general model for taper coupling of multiple modes of whispering gallery resonators and application to analysis of coupling-induced Fano interference in a single cavity

Shahab Bakhtiari Gorajoobi, Ganapathy Senthil Murugan, and Michalis N. Zervas
Opt. Express 27(18) 25493-25501 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  2. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
    [Crossref] [PubMed]
  3. E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface-plasmon whispering gallery resonators,” Nano Lett. 9(9), 3147–3150 (2009).
    [Crossref] [PubMed]
  4. E. J. R. Vesseur, F. J. Garcia de Abajo, and A. Polman, “Broadband Purcell enhancement in plasmonic ring cavities,” Phys. Rev. B 82(16), 165419 (2010).
    [Crossref]
  5. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
    [Crossref] [PubMed]
  6. E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical nanoantennas,” Nano Lett. 11(12), 5524–5530 (2011).
    [Crossref] [PubMed]
  7. P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F.-J. Meyer zu Heringdorf, “Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons,” Plasmonics 9(6), 1401–1407 (2014).
    [Crossref]
  8. P. A. Anderson, “Work function of gold,” Phys. Rev. 115(3), 553–554 (1959).
    [Crossref]
  9. H. B. Michaelson, “The work function of the elements and its periodicty,” J. Appl. Phys. 48(11), 4729–4733 (1977).
    [Crossref]
  10. M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
    [Crossref] [PubMed]
  11. W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
    [Crossref] [PubMed]
  12. E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
    [Crossref] [PubMed]
  13. T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
    [Crossref] [PubMed]
  14. R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Positional control of plasmonic fields and electron emission,” Appl. Phys. Lett. 105(11), 111114 (2014).
    [Crossref]

2014 (3)

P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F.-J. Meyer zu Heringdorf, “Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons,” Plasmonics 9(6), 1401–1407 (2014).
[Crossref]

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Positional control of plasmonic fields and electron emission,” Appl. Phys. Lett. 105(11), 111114 (2014).
[Crossref]

2011 (1)

E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical nanoantennas,” Nano Lett. 11(12), 5524–5530 (2011).
[Crossref] [PubMed]

2010 (1)

E. J. R. Vesseur, F. J. Garcia de Abajo, and A. Polman, “Broadband Purcell enhancement in plasmonic ring cavities,” Phys. Rev. B 82(16), 165419 (2010).
[Crossref]

2009 (2)

E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface-plasmon whispering gallery resonators,” Nano Lett. 9(9), 3147–3150 (2009).
[Crossref] [PubMed]

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[Crossref] [PubMed]

2008 (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

2007 (1)

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[Crossref] [PubMed]

2006 (1)

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

2005 (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

1977 (1)

H. B. Michaelson, “The work function of the elements and its periodicty,” J. Appl. Phys. 48(11), 4729–4733 (1977).
[Crossref]

1959 (1)

P. A. Anderson, “Work function of gold,” Phys. Rev. 115(3), 553–554 (1959).
[Crossref]

Aeschlimann, M.

P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F.-J. Meyer zu Heringdorf, “Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons,” Plasmonics 9(6), 1401–1407 (2014).
[Crossref]

Anderson, P. A.

P. A. Anderson, “Work function of gold,” Phys. Rev. 115(3), 553–554 (1959).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Bashevoy, M. V.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

Bayer, D.

P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F.-J. Meyer zu Heringdorf, “Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons,” Plasmonics 9(6), 1401–1407 (2014).
[Crossref]

Bernal Arango, F.

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Cai, W.

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[Crossref] [PubMed]

Chen, Y.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

Coenen, T.

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

de Waele, R.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[Crossref] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Femius Koenderink, A.

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

Fischer, A.

P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F.-J. Meyer zu Heringdorf, “Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons,” Plasmonics 9(6), 1401–1407 (2014).
[Crossref]

Fitzgerald, J. P. S.

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Positional control of plasmonic fields and electron emission,” Appl. Phys. Lett. 105(11), 111114 (2014).
[Crossref]

Garcia de Abajo, F. J.

E. J. R. Vesseur, F. J. Garcia de Abajo, and A. Polman, “Broadband Purcell enhancement in plasmonic ring cavities,” Phys. Rev. B 82(16), 165419 (2010).
[Crossref]

García de Abajo, F. J.

E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface-plasmon whispering gallery resonators,” Nano Lett. 9(9), 3147–3150 (2009).
[Crossref] [PubMed]

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[Crossref] [PubMed]

Horn-von Hoegen, M.

P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F.-J. Meyer zu Heringdorf, “Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons,” Plasmonics 9(6), 1401–1407 (2014).
[Crossref]

Jonsson, F.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

Kahl, P.

P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F.-J. Meyer zu Heringdorf, “Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons,” Plasmonics 9(6), 1401–1407 (2014).
[Crossref]

Könenkamp, R.

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Positional control of plasmonic fields and electron emission,” Appl. Phys. Lett. 105(11), 111114 (2014).
[Crossref]

Krasavin, A. V.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

Kuttge, M.

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[Crossref] [PubMed]

Melchior, P.

P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F.-J. Meyer zu Heringdorf, “Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons,” Plasmonics 9(6), 1401–1407 (2014).
[Crossref]

Meyer zu Heringdorf, F.-J.

P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F.-J. Meyer zu Heringdorf, “Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons,” Plasmonics 9(6), 1401–1407 (2014).
[Crossref]

Michaelson, H. B.

H. B. Michaelson, “The work function of the elements and its periodicty,” J. Appl. Phys. 48(11), 4729–4733 (1977).
[Crossref]

Polman, A.

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical nanoantennas,” Nano Lett. 11(12), 5524–5530 (2011).
[Crossref] [PubMed]

E. J. R. Vesseur, F. J. Garcia de Abajo, and A. Polman, “Broadband Purcell enhancement in plasmonic ring cavities,” Phys. Rev. B 82(16), 165419 (2010).
[Crossref]

E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface-plasmon whispering gallery resonators,” Nano Lett. 9(9), 3147–3150 (2009).
[Crossref] [PubMed]

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[Crossref] [PubMed]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[Crossref] [PubMed]

Sainidou, R.

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[Crossref] [PubMed]

Schneider, C.

P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F.-J. Meyer zu Heringdorf, “Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons,” Plasmonics 9(6), 1401–1407 (2014).
[Crossref]

Stockman, M. I.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

Vesseur, E. J. R.

E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical nanoantennas,” Nano Lett. 11(12), 5524–5530 (2011).
[Crossref] [PubMed]

E. J. R. Vesseur, F. J. Garcia de Abajo, and A. Polman, “Broadband Purcell enhancement in plasmonic ring cavities,” Phys. Rev. B 82(16), 165419 (2010).
[Crossref]

E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface-plasmon whispering gallery resonators,” Nano Lett. 9(9), 3147–3150 (2009).
[Crossref] [PubMed]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[Crossref] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Wall, S.

P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F.-J. Meyer zu Heringdorf, “Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons,” Plasmonics 9(6), 1401–1407 (2014).
[Crossref]

Witt, C.

P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F.-J. Meyer zu Heringdorf, “Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons,” Plasmonics 9(6), 1401–1407 (2014).
[Crossref]

Word, R. C.

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Positional control of plasmonic fields and electron emission,” Appl. Phys. Lett. 105(11), 111114 (2014).
[Crossref]

Xu, J.

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[Crossref] [PubMed]

Zheludev, N. I.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

R. C. Word, J. P. S. Fitzgerald, and R. Könenkamp, “Positional control of plasmonic fields and electron emission,” Appl. Phys. Lett. 105(11), 111114 (2014).
[Crossref]

J. Appl. Phys. (1)

H. B. Michaelson, “The work function of the elements and its periodicty,” J. Appl. Phys. 48(11), 4729–4733 (1977).
[Crossref]

Nano Lett. (5)

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, “Generation of traveling surface plasmon waves by free-electron impact,” Nano Lett. 6(6), 1113–1115 (2006).
[Crossref] [PubMed]

W. Cai, R. Sainidou, J. Xu, A. Polman, and F. J. García de Abajo, “Efficient generation of propagating plasmons by electron beams,” Nano Lett. 9(3), 1176–1181 (2009).
[Crossref] [PubMed]

E. J. R. Vesseur, R. de Waele, M. Kuttge, and A. Polman, “Direct observation of plasmonic modes in au nanowires using high-resolution cathodoluminescence spectroscopy,” Nano Lett. 7(9), 2843–2846 (2007).
[Crossref] [PubMed]

E. J. R. Vesseur, F. J. García de Abajo, and A. Polman, “Modal decomposition of surface-plasmon whispering gallery resonators,” Nano Lett. 9(9), 3147–3150 (2009).
[Crossref] [PubMed]

E. J. R. Vesseur and A. Polman, “Plasmonic whispering gallery cavities as optical nanoantennas,” Nano Lett. 11(12), 5524–5530 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Coenen, F. Bernal Arango, A. Femius Koenderink, and A. Polman, “Directional emission from a single plasmonic scatterer,” Nat. Commun. 5, 3250 (2014).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Phys. Rev. (1)

P. A. Anderson, “Work function of gold,” Phys. Rev. 115(3), 553–554 (1959).
[Crossref]

Phys. Rev. B (1)

E. J. R. Vesseur, F. J. Garcia de Abajo, and A. Polman, “Broadband Purcell enhancement in plasmonic ring cavities,” Phys. Rev. B 82(16), 165419 (2010).
[Crossref]

Phys. Rev. Lett. (2)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[Crossref] [PubMed]

Plasmonics (1)

P. Kahl, S. Wall, C. Witt, C. Schneider, D. Bayer, A. Fischer, P. Melchior, M. Horn-von Hoegen, M. Aeschlimann, and F.-J. Meyer zu Heringdorf, “Normal-incidence photoemission electron microscopy (NI-PEEM) for imaging surface plasmon polaritons,” Plasmonics 9(6), 1401–1407 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Scanning electron micrograph taken under an angle of 52° of a single ring resonator in Au made using template stripping. The ring is visible as a circular groove in the center with radius r = 300 nm. Scale bar: 200 nm. (b) FIB-milled cross section through a single ring resonator in Au. Scale bar: 200 nm. (c) Top-view SEM image of a 10 × 11 array of ring resonators with r = 100-350 nm and d = 60-140, 500 nm.
Fig. 2
Fig. 2 Laser excitation geometries of the photoemission electron microscope. (a) Standard illumination geometry with an angle of incidence of 65° to the sample surface normal. (b) Normal-incidence excitation geometry. The light is directed to an optical mirror inside the PEEM column and illuminates the sample under an angle of < 4° to the surface normal. In both cases the beam is focused by a lens to a spot diameter of approximately 100 µm.
Fig. 3
Fig. 3 (a) Optical extinction spectra of selected individual ring structures with d = 70 nm, w = 100 nm, and varying radius r, indicated in the figure. The laser spectrum used in PEEM experiments is also shown. (b) Cathodoluminescence spectra of the same rings as in (a). Calculated overlap integral Y d,r p (Eq. (1)) of optical extinction (c) and CL (d) spectra with the laser spectrum used in PEEM, assuming a nonlinear process of order p = 3. (e-g) Experimental photoemission electron intensity micrographs of the 10 × 11 array of ring resonators with varying radius and depth, indicated along the axes, for oblique incidence (65°, incident from the left) with (e) TE polarized light and (f) TM polarized light, and (g) normal-incident light. The electric field components projected onto the surface are indicated by the arrows.
Fig. 4
Fig. 4 High-resolution PEEM images for the dipolar resonance of a single ring resonator (r = 300 nm, d = 70 nm, w = 100 nm) under near normal-incidence excitation. Data are shown for four different incident polarizations (electric field direction indicated in the figure). Scale bar = 500 nm.
Fig. 5
Fig. 5 High-resolution PEEM images (b) for grazing incidence for rings with r = 275, 300 nm and d = 70, 80 nm for TM (top) and TEM (bottom) polarized light whose excitation geometry is sketched in (a). The schematic (c) shows the charge distributions of quadrupolar (left) and dipolar (right) modes for TE (bottom) and TM polarization (top) whose simultaneous excitation explains the asymmetric photoelectron distribution in the PEEM images.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Y d,r p = ( S d,r (λ)I(λ)) p dλ

Metrics