Abstract

We use a coupled thermal-optical approach to model the operating temperature rise in GaAs nanowire solar cells. We find that despite more highly concentrated light absorption and lower thermal conductivity, the overall temperature rise in a nanowire structure is no higher than in a planar structure. Moreover, coating the nanowires with a transparent polymer can increase the radiative cooling power by 2.2 times, lowering the operating temperature by nearly 7 K.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light absorption and emission in nanowire array solar cells

Jan Kupec, Ralph L. Stoop, and Bernd Witzigmann
Opt. Express 18(26) 27589-27605 (2010)

Optical analysis of a III-V-nanowire-array-on-Si dual junction solar cell

Yang Chen, Oliver Höhn, Nico Tucher, Mats-Erik Pistol, and Nicklas Anttu
Opt. Express 25(16) A665-A679 (2017)

Performance-limiting factors for GaAs-based single nanowire photovoltaics

Xufeng Wang, Mohammad Ryyan Khan, Mark Lundstrom, and Peter Bermel
Opt. Express 22(S2) A344-A358 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1050–1061 (2011).
    [Crossref]
  2. E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire solar cells,” Annu. Rev. Mater. Res. 41(1), 269–295 (2011).
    [Crossref]
  3. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
    [Crossref] [PubMed]
  4. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
    [Crossref]
  5. R. R. LaPierre, A. C. E. Chia, S. J. Gibson, C. M. Haapamaki, J. Boulanger, R. Yee, P. Kuyanov, J. Zhang, N. Tajik, N. Jewell, and K. M. A. Rahman, “III-V nanowire photovoltaics: Review of design for high efficiency,” Phys. Status Solidi A, pp. 815–830 (2013).
  6. L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
    [Crossref]
  7. N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
    [Crossref]
  8. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
    [PubMed]
  9. C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(1), A125–A132 (2012).
    [Crossref] [PubMed]
  10. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
    [Crossref] [PubMed]
  11. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
    [Crossref] [PubMed]
  12. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
    [Crossref] [PubMed]
  13. Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
    [Crossref] [PubMed]
  14. N. Huang and M. L. Povinelli, “Design of passivation layers on axial junction GaAs nanowire solar cells,” IEEE J. Photovolt. 4(6), 1511–1517 (2014).
    [Crossref]
  15. C. Lin, L. J. Martínez, and M. L. Povinelli, “Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells,” Opt. Express 21(S5Suppl 5), A872–A882 (2013).
    [Crossref] [PubMed]
  16. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5Suppl 5), A1148–A1154 (2011).
    [Crossref] [PubMed]
  17. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
    [Crossref] [PubMed]
  18. K.-Q. Peng and S.-T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23(2), 198–215 (2011).
    [Crossref] [PubMed]
  19. X. Wang, M. R. Khan, M. Lundstrom, and P. Bermel, “Performance-limiting factors for GaAs-based single nanowire photovoltaics,” Opt. Express 22(S2), A344–A358 (2014).
    [Crossref]
  20. L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
    [Crossref] [PubMed]
  21. D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
    [Crossref]
  22. D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
    [Crossref]
  23. L. H. Liang and B. W. Li, “Size-dependent thermal conductivity of nanoscale semiconducting systems,” Phys. Rev. B 73(15), 153303 (2006).
    [Crossref]
  24. G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
    [Crossref] [PubMed]
  25. G. Mariani, P.-S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
    [Crossref] [PubMed]
  26. G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Lett. 13(4), 1632–1637 (2013).
    [PubMed]
  27. M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
    [Crossref] [PubMed]
  28. R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
    [Crossref]
  29. A. Modafe, N. Ghalichechian, M. Powers, M. Khbeis, and R. Ghodssi, “Embedded benzocyclobutene in silicon: An integrated fabrication process for electrical and thermal isolation in MEMS,” Microelectron. Eng. 82(2), 154–167 (2005).
    [Crossref]
  30. Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. T. Vu, R. P. J. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
    [Crossref] [PubMed]
  31. S. J. Gibson and R. R. LaPierre, “Model of patterned self-assisted nanowire growth,” Nanotechnology 25(41), 415304 (2014).
    [Crossref] [PubMed]
  32. A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. McIntyre, Y. Cui, and J. Harri, “Design and growth of III-V nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC),201035th IEEE(IEEE, 2010), pp. 002034–002037.
    [Crossref]
  33. A. R. Madaria, M. Yao, C. Chi, N. Huang, C. Lin, R. Li, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth,” Nano Lett. 12(6), 2839–2845 (2012).
    [Crossref] [PubMed]
  34. C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
    [Crossref]
  35. L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
    [Crossref]
  36. S. Sharples and P. S. Charlesworth, “Full-scale measurements of wind-induced convective heat transfer from a roof-mounted flat plate solar collector,” Sol. Energy 62(2), 69–77 (1998).
    [Crossref]
  37. M. Li, Z. Y. Li, K.-M. Ho, J. R. Cao, and M. Miyawaki, “High-efficiency calculations for three-dimensional photonic crystal cavities,” Opt. Lett. 31(2), 262–264 (2006).
    [Crossref] [PubMed]
  38. M. Li, X. Hu, Z. Ye, K.-M. Ho, J. Cao, and M. Miyawaki, “Higher-order incidence transfer matrix method used in three-dimensional photonic crystal coupled-resonator array simulation,” Opt. Lett. 31(23), 3498–3500 (2006).
    [Crossref] [PubMed]
  39. Gemini Observatory, “IR transmission spectra, ” http://www.gemini.edu/?q=node/10789 .
  40. P. N. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, “Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires,” Nano Lett. 10(4), 1120–1124 (2010).
    [Crossref] [PubMed]
  41. H. G. Lipson, B. Bendow, and S. P. Yukon, “Residual lattice absorption in gallium arsenide,” Solid State Commun. 23(1), 13–15 (1977).
    [Crossref]
  42. E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).
  43. W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102 (1961).
    [Crossref]
  44. Western Regional Climate Center, “Average wind speeds by state, ” http://www.wrcc.dri.edu/ CLIMATEDATA.html .
  45. P. Singh and N. M. Ravindra, “Temperature dependence of solar cell performance: an analysis,” Sol. Energy Mater. Sol. Cells 101, 36–45 (2012).
    [Crossref]

2014 (6)

N. Huang and M. L. Povinelli, “Design of passivation layers on axial junction GaAs nanowire solar cells,” IEEE J. Photovolt. 4(6), 1511–1517 (2014).
[Crossref]

X. Wang, M. R. Khan, M. Lundstrom, and P. Bermel, “Performance-limiting factors for GaAs-based single nanowire photovoltaics,” Opt. Express 22(S2), A344–A358 (2014).
[Crossref]

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

S. J. Gibson and R. R. LaPierre, “Model of patterned self-assisted nanowire growth,” Nanotechnology 25(41), 415304 (2014).
[Crossref] [PubMed]

L. Zhu, A. Raman, K. X. Wang, M. A. Anoma, and S. Fan, “Radiative cooling of solar cells,” Optica 1(1), 32–38 (2014).
[Crossref]

2013 (5)

G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Lett. 13(4), 1632–1637 (2013).
[PubMed]

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. T. Vu, R. P. J. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

C. Lin, L. J. Martínez, and M. L. Povinelli, “Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells,” Opt. Express 21(S5Suppl 5), A872–A882 (2013).
[Crossref] [PubMed]

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

2012 (5)

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
[Crossref]

C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(1), A125–A132 (2012).
[Crossref] [PubMed]

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

A. R. Madaria, M. Yao, C. Chi, N. Huang, C. Lin, R. Li, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth,” Nano Lett. 12(6), 2839–2845 (2012).
[Crossref] [PubMed]

P. Singh and N. M. Ravindra, “Temperature dependence of solar cell performance: an analysis,” Sol. Energy Mater. Sol. Cells 101, 36–45 (2012).
[Crossref]

2011 (6)

R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
[Crossref]

G. Mariani, P.-S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

K.-Q. Peng and S.-T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23(2), 198–215 (2011).
[Crossref] [PubMed]

M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1050–1061 (2011).
[Crossref]

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire solar cells,” Annu. Rev. Mater. Res. 41(1), 269–295 (2011).
[Crossref]

C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5Suppl 5), A1148–A1154 (2011).
[Crossref] [PubMed]

2010 (3)

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

P. N. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, “Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires,” Nano Lett. 10(4), 1120–1124 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[Crossref] [PubMed]

2007 (3)

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[Crossref]

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (2)

A. Modafe, N. Ghalichechian, M. Powers, M. Khbeis, and R. Ghodssi, “Embedded benzocyclobutene in silicon: An integrated fabrication process for electrical and thermal isolation in MEMS,” Microelectron. Eng. 82(2), 154–167 (2005).
[Crossref]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

2003 (1)

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

1998 (1)

S. Sharples and P. S. Charlesworth, “Full-scale measurements of wind-induced convective heat transfer from a roof-mounted flat plate solar collector,” Sol. Energy 62(2), 69–77 (1998).
[Crossref]

1981 (1)

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

1977 (1)

H. G. Lipson, B. Bendow, and S. P. Yukon, “Residual lattice absorption in gallium arsenide,” Solid State Commun. 23(1), 13–15 (1977).
[Crossref]

1961 (1)

W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102 (1961).
[Crossref]

Åberg, I.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Aksamija, Z.

P. N. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, “Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires,” Nano Lett. 10(4), 1120–1124 (2010).
[Crossref] [PubMed]

Anoma, M. A.

Anttu, N.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Asoli, D.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Atwater, H. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

Bakkers, E. P. A. M.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. T. Vu, R. P. J. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Balch, J.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[Crossref]

Bendow, B.

H. G. Lipson, B. Bendow, and S. P. Yukon, “Residual lattice absorption in gallium arsenide,” Solid State Commun. 23(1), 13–15 (1977).
[Crossref]

Bermel, P.

Boettcher, S. W.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Borgström, M. T.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1050–1061 (2011).
[Crossref]

Braun, P. V.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Briggs, R. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Brongersma, M. L.

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire solar cells,” Annu. Rev. Mater. Res. 41(1), 269–295 (2011).
[Crossref]

Bu, S.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Cahill, D. G.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Cao, J.

Cao, J. R.

Cao, Y.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Cavalli, A.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. T. Vu, R. P. J. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Charlesworth, P. S.

S. Sharples and P. S. Charlesworth, “Full-scale measurements of wind-induced convective heat transfer from a roof-mounted flat plate solar collector,” Sol. Energy 62(2), 69–77 (1998).
[Crossref]

Chen, G.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Chi, C.

A. R. Madaria, M. Yao, C. Chi, N. Huang, C. Lin, R. Li, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth,” Nano Lett. 12(6), 2839–2845 (2012).
[Crossref] [PubMed]

Chi, C.-Y.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Chueh, Y.-L.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Clarke, D. R.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Cochran, W.

W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102 (1961).
[Crossref]

Codella, P. J.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[Crossref]

Cong, S.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. T. Vu, R. P. J. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire solar cells,” Annu. Rev. Mater. Res. 41(1), 269–295 (2011).
[Crossref]

Dapkus, P. D.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

A. R. Madaria, M. Yao, C. Chi, N. Huang, C. Lin, R. Li, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth,” Nano Lett. 12(6), 2839–2845 (2012).
[Crossref] [PubMed]

Davuluru, A.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[Crossref]

Deppert, K.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1050–1061 (2011).
[Crossref]

Dimroth, F.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Fält, S.

M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1050–1061 (2011).
[Crossref]

Fan, S.

Fan, S. H.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Fan, Z.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Ford, W. K.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Fray, S. J.

W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102 (1961).
[Crossref]

Fronheiser, J.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[Crossref]

Fuss-Kailuweit, P.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Gao, L.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. T. Vu, R. P. J. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Garnett, E. C.

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire solar cells,” Annu. Rev. Mater. Res. 41(1), 269–295 (2011).
[Crossref]

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[Crossref] [PubMed]

Ghalichechian, N.

A. Modafe, N. Ghalichechian, M. Powers, M. Khbeis, and R. Ghodssi, “Embedded benzocyclobutene in silicon: An integrated fabrication process for electrical and thermal isolation in MEMS,” Microelectron. Eng. 82(2), 154–167 (2005).
[Crossref]

Ghodssi, R.

A. Modafe, N. Ghalichechian, M. Powers, M. Khbeis, and R. Ghodssi, “Embedded benzocyclobutene in silicon: An integrated fabrication process for electrical and thermal isolation in MEMS,” Microelectron. Eng. 82(2), 154–167 (2005).
[Crossref]

Gibson, S. J.

S. J. Gibson and R. R. LaPierre, “Model of patterned self-assisted nanowire growth,” Nanotechnology 25(41), 415304 (2014).
[Crossref] [PubMed]

Goodson, K. E.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Granqvist, C. G.

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Haverkort, J. E. M.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. T. Vu, R. P. J. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Heurlin, M.

M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1050–1061 (2011).
[Crossref]

Hjortsberg, A.

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

Ho, K.-M.

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Hu, X.

Huang, J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Huang, J. H.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Huang, N.

N. Huang and M. L. Povinelli, “Design of passivation layers on axial junction GaAs nanowire solar cells,” IEEE J. Photovolt. 4(6), 1511–1517 (2014).
[Crossref]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
[Crossref]

C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(1), A125–A132 (2012).
[Crossref] [PubMed]

A. R. Madaria, M. Yao, C. Chi, N. Huang, C. Lin, R. Li, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth,” Nano Lett. 12(6), 2839–2845 (2012).
[Crossref] [PubMed]

Huffaker, D. L.

G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Lett. 13(4), 1632–1637 (2013).
[PubMed]

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

G. Mariani, P.-S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Huffman, M.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Hung, C.-H.

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Jamshidi, A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Javey, A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Johnson, F. A.

W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102 (1961).
[Crossref]

Kapadia, R.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Katzenmeyer, A. M.

G. Mariani, P.-S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Kayes, B. M.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

Keblinski, P.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Kelzenberg, M. D.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Kempa, T. J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Khan, M. R.

Khbeis, M.

A. Modafe, N. Ghalichechian, M. Powers, M. Khbeis, and R. Ghodssi, “Embedded benzocyclobutene in silicon: An integrated fabrication process for electrical and thermal isolation in MEMS,” Microelectron. Eng. 82(2), 154–167 (2005).
[Crossref]

King, W. P.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Korevaar, B. A.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[Crossref]

LaPierre, R.

R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
[Crossref]

LaPierre, R. R.

S. J. Gibson and R. R. LaPierre, “Model of patterned self-assisted nanowire growth,” Nanotechnology 25(41), 415304 (2014).
[Crossref] [PubMed]

LeBoeuf, S. F.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[Crossref]

Lee, S.-T.

K.-Q. Peng and S.-T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23(2), 198–215 (2011).
[Crossref] [PubMed]

Leene, J.

M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1050–1061 (2011).
[Crossref]

Léonard, F.

G. Mariani, P.-S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Leu, P. W.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Lewis, N. S.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

Li, B. W.

L. H. Liang and B. W. Li, “Size-dependent thermal conductivity of nanoscale semiconducting systems,” Phys. Rev. B 73(15), 153303 (2006).
[Crossref]

Li, M.

Li, R.

A. R. Madaria, M. Yao, C. Chi, N. Huang, C. Lin, R. Li, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth,” Nano Lett. 12(6), 2839–2845 (2012).
[Crossref] [PubMed]

Li, X.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Li, Z. Y.

Liang, L. H.

L. H. Liang and B. W. Li, “Size-dependent thermal conductivity of nanoscale semiconducting systems,” Phys. Rev. B 73(15), 153303 (2006).
[Crossref]

Lieber, C. M.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Lin, C.

Lin, Y.-T.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Lipson, H. G.

H. G. Lipson, B. Bendow, and S. P. Yukon, “Residual lattice absorption in gallium arsenide,” Solid State Commun. 23(1), 13–15 (1977).
[Crossref]

Lundstrom, M.

Madaria, A. R.

A. R. Madaria, M. Yao, C. Chi, N. Huang, C. Lin, R. Li, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth,” Nano Lett. 12(6), 2839–2845 (2012).
[Crossref] [PubMed]

Magnusson, M. H.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1050–1061 (2011).
[Crossref]

Mahan, G. D.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Majumdar, A.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Mariani, G.

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Lett. 13(4), 1632–1637 (2013).
[PubMed]

G. Mariani, P.-S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Maris, H. J.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Martin, P. N.

P. N. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, “Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires,” Nano Lett. 10(4), 1120–1124 (2010).
[Crossref] [PubMed]

Martínez, L. J.

McGehee, M. D.

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire solar cells,” Annu. Rev. Mater. Res. 41(1), 269–295 (2011).
[Crossref]

Merlin, R.

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Miyawaki, M.

Modafe, A.

A. Modafe, N. Ghalichechian, M. Powers, M. Khbeis, and R. Ghodssi, “Embedded benzocyclobutene in silicon: An integrated fabrication process for electrical and thermal isolation in MEMS,” Microelectron. Eng. 82(2), 154–167 (2005).
[Crossref]

Peng, K.-Q.

K.-Q. Peng and S.-T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23(2), 198–215 (2011).
[Crossref] [PubMed]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Phillpot, S. R.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

Pietrzykowski, M.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[Crossref]

Plissard, S. R.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. T. Vu, R. P. J. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Pop, E.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

P. N. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, “Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires,” Nano Lett. 10(4), 1120–1124 (2010).
[Crossref] [PubMed]

Povinelli, M. L.

N. Huang and M. L. Povinelli, “Design of passivation layers on axial junction GaAs nanowire solar cells,” IEEE J. Photovolt. 4(6), 1511–1517 (2014).
[Crossref]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

C. Lin, L. J. Martínez, and M. L. Povinelli, “Experimental broadband absorption enhancement in silicon nanohole structures with optimized complex unit cells,” Opt. Express 21(S5Suppl 5), A872–A882 (2013).
[Crossref] [PubMed]

C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express 20(1), A125–A132 (2012).
[Crossref] [PubMed]

A. R. Madaria, M. Yao, C. Chi, N. Huang, C. Lin, R. Li, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth,” Nano Lett. 12(6), 2839–2845 (2012).
[Crossref] [PubMed]

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
[Crossref]

C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express 19(S5Suppl 5), A1148–A1154 (2011).
[Crossref] [PubMed]

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009).
[Crossref] [PubMed]

Powers, M.

A. Modafe, N. Ghalichechian, M. Powers, M. Khbeis, and R. Ghodssi, “Embedded benzocyclobutene in silicon: An integrated fabrication process for electrical and thermal isolation in MEMS,” Microelectron. Eng. 82(2), 154–167 (2005).
[Crossref]

Putnam, M. C.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Quarrington, J. E.

W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102 (1961).
[Crossref]

Raman, A.

Rand, J.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[Crossref]

Rapol, U.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[Crossref]

Rathore, A. A.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Ravaioli, U.

P. N. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, “Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires,” Nano Lett. 10(4), 1120–1124 (2010).
[Crossref] [PubMed]

Ravindra, N. M.

P. Singh and N. M. Ravindra, “Temperature dependence of solar cell performance: an analysis,” Sol. Energy Mater. Sol. Cells 101, 36–45 (2012).
[Crossref]

Ruebusch, D. J.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Samuelson, L.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1050–1061 (2011).
[Crossref]

Scofield, A.

G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Lett. 13(4), 1632–1637 (2013).
[PubMed]

Scofield, A. C.

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Seyedi, M. A.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

Shapiro, J.

G. Mariani, P.-S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Sharples, S.

S. Sharples and P. S. Charlesworth, “Full-scale measurements of wind-induced convective heat transfer from a roof-mounted flat plate solar collector,” Sol. Energy 62(2), 69–77 (1998).
[Crossref]

Shi, L.

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

Shih, M.-Y.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[Crossref]

Siefer, G.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Singh, P.

P. Singh and N. M. Ravindra, “Temperature dependence of solar cell performance: an analysis,” Sol. Energy Mater. Sol. Cells 101, 36–45 (2012).
[Crossref]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Sulima, O. V.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[Crossref]

Takei, K.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Tian, B.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Trainor, M.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. T. Vu, R. P. J. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Tsakalakos, L.

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[Crossref]

Turner-Evans, D. B.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

van Veldhoven, R. P. J.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. T. Vu, R. P. J. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Verheijen, M. A.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. T. Vu, R. P. J. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Vu, T. T. T.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. T. Vu, R. P. J. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Wallentin, J.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1050–1061 (2011).
[Crossref]

Wang, J.

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. T. Vu, R. P. J. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

Wang, K. X.

Wang, X.

Wang, Y.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Wen, L.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Wickert, P.

M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1050–1061 (2011).
[Crossref]

Williams, N.

W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102 (1961).
[Crossref]

Witzigmann, B.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Wong, P.-S.

G. Mariani, P.-S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

Wu, M.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Xu, H. Q.

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Yang, P.

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[Crossref] [PubMed]

Yao, M.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

A. R. Madaria, M. Yao, C. Chi, N. Huang, C. Lin, R. Li, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth,” Nano Lett. 12(6), 2839–2845 (2012).
[Crossref] [PubMed]

Ye, Z.

Yu, G.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Yu, K.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Yukon, S. P.

H. G. Lipson, B. Bendow, and S. P. Yukon, “Residual lattice absorption in gallium arsenide,” Solid State Commun. 23(1), 13–15 (1977).
[Crossref]

Zeng, X.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Zhang, X.

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

Zhao, Z.

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Zheng, X.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Zhou, C.

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

A. R. Madaria, M. Yao, C. Chi, N. Huang, C. Lin, R. Li, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth,” Nano Lett. 12(6), 2839–2845 (2012).
[Crossref] [PubMed]

Zhou, Z.

G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Lett. 13(4), 1632–1637 (2013).
[PubMed]

Zhu, L.

Adv. Mater. (1)

K.-Q. Peng and S.-T. Lee, “Silicon nanowires for photovoltaic solar energy conversion,” Adv. Mater. 23(2), 198–215 (2011).
[Crossref] [PubMed]

Annu. Rev. Mater. Res. (1)

E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire solar cells,” Annu. Rev. Mater. Res. 41(1), 269–295 (2011).
[Crossref]

Appl. Phys. Rev. (1)

D. G. Cahill, P. V. Braun, G. Chen, D. R. Clarke, S. H. Fan, K. E. Goodson, P. Keblinski, W. P. King, G. D. Mahan, A. Majumdar, H. J. Maris, S. R. Phillpot, E. Pop, and L. Shi, “Nanoscale thermal transport. II. 2003-2012,” Appl. Phys. Rev. 1(1), 011305 (2014).
[Crossref]

IEEE J. Photovolt. (1)

N. Huang and M. L. Povinelli, “Design of passivation layers on axial junction GaAs nanowire solar cells,” IEEE J. Photovolt. 4(6), 1511–1517 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. T. Borgström, J. Wallentin, M. Heurlin, S. Fält, P. Wickert, J. Leene, M. H. Magnusson, K. Deppert, and L. Samuelson, “Nanowires with promise for photovoltaics,” IEEE J. Sel. Top. Quantum Electron. 17(4), 1050–1061 (2011).
[Crossref]

J. Am. Chem. Soc. (1)

E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc. 130(29), 9224–9225 (2008).
[Crossref] [PubMed]

J. Appl. Phys. (5)

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

D. G. Cahill, W. K. Ford, K. E. Goodson, G. D. Mahan, A. Majumdar, H. J. Maris, R. Merlin, and S. R. Phillpot, “Nanoscale thermal transport,” J. Appl. Phys. 93(2), 793–818 (2003).
[Crossref]

R. LaPierre, “Theoretical conversion efficiency of a two-junction III-V nanowire on Si solar cell,” J. Appl. Phys. 110(1), 014310 (2011).
[Crossref]

C. G. Granqvist and A. Hjortsberg, “Radiative cooling to low temperatures: General considerations and application to selectively emitting SiO films,” J. Appl. Phys. 52(6), 4205–4220 (1981).
[Crossref]

W. Cochran, S. J. Fray, F. A. Johnson, J. E. Quarrington, and N. Williams, “Lattice absorption in Gallium Arsenide,” J. Appl. Phys. 32(10), 2102 (1961).
[Crossref]

J. Nanophotonics (1)

L. Tsakalakos, J. Balch, J. Fronheiser, M.-Y. Shih, S. F. LeBoeuf, M. Pietrzykowski, P. J. Codella, B. A. Korevaar, O. V. Sulima, J. Rand, A. Davuluru, and U. Rapol, “Strong broadband optical absorption in silicon nanowire films,” J. Nanophotonics 1(1), 013552 (2007).
[Crossref]

J. Opt. (1)

N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14(2), 024004 (2012).
[Crossref]

Microelectron. Eng. (1)

A. Modafe, N. Ghalichechian, M. Powers, M. Khbeis, and R. Ghodssi, “Embedded benzocyclobutene in silicon: An integrated fabrication process for electrical and thermal isolation in MEMS,” Microelectron. Eng. 82(2), 154–167 (2005).
[Crossref]

Nano Lett. (8)

Y. Cui, J. Wang, S. R. Plissard, A. Cavalli, T. T. T. Vu, R. P. J. van Veldhoven, L. Gao, M. Trainor, M. A. Verheijen, J. E. M. Haverkort, and E. P. A. M. Bakkers, “Efficiency enhancement of InP nanowire solar cells by surface cleaning,” Nano Lett. 13(9), 4113–4117 (2013).
[Crossref] [PubMed]

G. Mariani, P.-S. Wong, A. M. Katzenmeyer, F. Léonard, J. Shapiro, and D. L. Huffaker, “Patterned radial GaAs nanopillar solar cells,” Nano Lett. 11(6), 2490–2494 (2011).
[Crossref] [PubMed]

G. Mariani, Z. Zhou, A. Scofield, and D. L. Huffaker, “Direct-bandgap epitaxial core-multishell nanopillar photovoltaics featuring subwavelength optical concentrators,” Nano Lett. 13(4), 1632–1637 (2013).
[PubMed]

M. Yao, N. Huang, S. Cong, C.-Y. Chi, M. A. Seyedi, Y.-T. Lin, Y. Cao, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “GaAs nanowire array solar cells with axial p-i-n junctions,” Nano Lett. 14(6), 3293–3303 (2014).
[Crossref] [PubMed]

P. N. Martin, Z. Aksamija, E. Pop, and U. Ravaioli, “Reduced thermal conductivity in nanoengineered rough Ge and GaAs nanowires,” Nano Lett. 10(4), 1120–1124 (2010).
[Crossref] [PubMed]

Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, and A. Javey, “Ordered arrays of dual-diameter nanopillars for maximized optical absorption,” Nano Lett. 10(10), 3823–3827 (2010).
[Crossref] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

A. R. Madaria, M. Yao, C. Chi, N. Huang, C. Lin, R. Li, M. L. Povinelli, P. D. Dapkus, and C. Zhou, “Toward optimized light utilization in nanowire arrays using scalable nanosphere lithography and selected area growth,” Nano Lett. 12(6), 2839–2845 (2012).
[Crossref] [PubMed]

Nanotechnology (2)

S. J. Gibson and R. R. LaPierre, “Model of patterned self-assisted nanowire growth,” Nanotechnology 25(41), 415304 (2014).
[Crossref] [PubMed]

L. Wen, X. Li, Z. Zhao, S. Bu, X. Zeng, J. H. Huang, and Y. Wang, “Theoretical consideration of III-V nanowire/Si triple-junction solar cells,” Nanotechnology 23(50), 505202 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

G. Mariani, A. C. Scofield, C.-H. Hung, and D. L. Huffaker, “GaAs nanopillar-array solar cells employing in situ surface passivation,” Nat. Commun. 4, 1497 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9(3), 239–244 (2010).
[PubMed]

Nature (1)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nanowires as solar cells and nanoelectronic power sources,” Nature 449(7164), 885–889 (2007).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Optica (1)

Phys. Rev. B (1)

L. H. Liang and B. W. Li, “Size-dependent thermal conductivity of nanoscale semiconducting systems,” Phys. Rev. B 73(15), 153303 (2006).
[Crossref]

Science (1)

J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Åberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science 339(6123), 1057–1060 (2013).
[Crossref] [PubMed]

Sol. Energy (1)

S. Sharples and P. S. Charlesworth, “Full-scale measurements of wind-induced convective heat transfer from a roof-mounted flat plate solar collector,” Sol. Energy 62(2), 69–77 (1998).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

P. Singh and N. M. Ravindra, “Temperature dependence of solar cell performance: an analysis,” Sol. Energy Mater. Sol. Cells 101, 36–45 (2012).
[Crossref]

Solid State Commun. (1)

H. G. Lipson, B. Bendow, and S. P. Yukon, “Residual lattice absorption in gallium arsenide,” Solid State Commun. 23(1), 13–15 (1977).
[Crossref]

Other (5)

E. D. Palik and G. Ghosh, Handbook of Optical Constants of Solids (Academic, 1998).

Gemini Observatory, “IR transmission spectra, ” http://www.gemini.edu/?q=node/10789 .

A. Gu, Y. Huo, S. Hu, T. Sarmiento, E. Pickett, D. Liang, S. Li, A. Lin, S. Thombare, Z. Yu, S. Fan, P. McIntyre, Y. Cui, and J. Harri, “Design and growth of III-V nanowire solar cell arrays on low cost substrates,” in Photovoltaic Specialists Conference (PVSC),201035th IEEE(IEEE, 2010), pp. 002034–002037.
[Crossref]

R. R. LaPierre, A. C. E. Chia, S. J. Gibson, C. M. Haapamaki, J. Boulanger, R. Yee, P. Kuyanov, J. Zhang, N. Tajik, N. Jewell, and K. M. A. Rahman, “III-V nanowire photovoltaics: Review of design for high efficiency,” Phys. Status Solidi A, pp. 815–830 (2013).

Western Regional Climate Center, “Average wind speeds by state, ” http://www.wrcc.dri.edu/ CLIMATEDATA.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustrations of the structures of interest. (a) Square array of GaAs nanowires, embedded in optional BCB. The inset is the magnified top view of one unit cell; a is the lattice constant for the nanowire array, and d is the nanowire diameter. Note that the layer thicknesses are not drawn to scale. (b) Planar GaAs structure. (c) Boundary conditions used to solve the 3D heat diffusion equation.

Fig. 2
Fig. 2

(a) The temperature rise in a nanowire for the structure of Fig. 1(a), for a = 600 nm and d = 300 nm. The solid black line indicates the outline of the GaAs nanowire. (b) The temperature rise in the top 3 μm of the planar structure in Fig. 1(b). The heat input for both (a) and (b) is set to be 900 W/m2. (c) Calculated temperature rise for different structures as functions of heat input, Pin . Black, blue, and red curves represent the results for planar, GaAs nanowires, and BCB-coated GaAs nanowires, respectively.

Fig. 3
Fig. 3

(a) Emissivity (or absorptivity) spectra of different solar cell designs. Results are for normal incidence, averaged over polarization. For the nanowire structures, a = 600 nm and d = 300 nm. (b) The spectral blackbody radiance at different temperatures.

Fig. 4
Fig. 4

F.O.M. for BCB-coated NW array as a function of the structural parameters; Ttop = 330 K.

Fig. 5
Fig. 5

Effect of nanowire thermal conductivity upon the temperature rise in a BCB-coated NW structure at fixed heat input = 900 W/m2. The structural parameters are a = 600 nm and d = 300 nm. The reference bulk thermal conductivity is 54 W/m-K at 300 K.

Fig. 6
Fig. 6

Effect of convection upon the temperature rise at fixed heat input = 900 W/m2. (a) Temperature rise as a function of h1 for fixed h2 = 6 W/m2K. (b) Temperature rise as a function of h2 for fixed h1 = 12 W/m2K.

Fig. 7
Fig. 7

(a) Effect of substrate thickness on temperature rise at fixed heat input = 900 W/m2. (b) Emissivity spectra for a 3-μm-tall nanowire with different radii: 150 nm (blue curve), 200 nm (blue dashed curve), and 250 nm (blue dotted curve). In all cases, a = 600nm. The black curve represents emissivity for the 3-μm thick planar GaAs solar cell.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

[ κ ( x , y , z ; T ) T ( x , y , z ) ] + Q ( x , y , z ) = 0 ,
κ T | t o p = P r a d ( T t o p ) + h 1 ( T t o p T a m b ) ,
κ T | b o t = h 2 ( T b o t T a m b ) .
P r a d ( T t o p ) = P c e l l ( T t o p ) P a m b ( T a m b ) .
P c e l l ( T t o p ) = d Ω cos θ d λ I B B ( T t o p , λ ) ε ( Ω , λ ) ,
P a m b ( T a m b ) = d Ω cos θ d λ I B B ( T a m b , λ ) ε ( Ω , λ ) ε a t m ( θ , λ ) ,
F . O . M . = 3 μ m 30 μ m I B B ( T t o p , λ ) ε ( λ ) d λ 3 μ m 30 μ m I B B ( T t o p , λ ) d λ ,

Metrics