Abstract

The present work proposes the use of a TiO2 electrode coupled to a one-dimensional photonic crystal (1DPC), all formed by the sequential deposition of nanocolumnar thin films by physical vapor oblique angle deposition (PV-OAD), to enhance the optical and electrical performance of DSCs while transparency is preserved. We demonstrate that this approach allows building an architecture combining a non-dispersive 3 µm of TiO2 electrode and 1 µm TiO2-SiO2 1DPC, both columnar, in a single-step process. The incorporation of the photonic structure is responsible for a rise of 30% in photovoltaic efficiency, as compared with a transparent cell with a single TiO2 electrode. Detailed analysis of the spectral dependence of the photocurrent demonstrates that the 1DPC improves light harvesting efficiency by both back reflection and optical cavity modes confinement within the TiO2 films, thus increasing the overall performance of the cell.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced power conversion efficiency of quantum dot sensitized solar cells with near single-crystalline TiO2 nanohelixes used as photoanodes

Seung Hee Lee, Ho Jin, Dong-Yeong Kim, Kyung Song, Sang Ho Oh, Sungjee Kim, E. Fred Schubert, and Jong Kyu Kim
Opt. Express 22(S3) A867-A879 (2014)

Method to Protect Charge Recombination in the Back-Contact Dye-Sensitized Solar Cell

Beomjin Yoo, Kang-Jin Kim, Doh-Kwon Lee, Kyungkon Kim, Min Jae Ko, Yong Hyun Kim, Won Mok Kim, and Nam-Gyu Park
Opt. Express 18(S3) A395-A402 (2010)

Optical absorption in a finite three-dimensional photonic crystal thin film solar cell

Chan Hoe Yip, Yet-Ming Chiang, and Chee Cheong Wong
J. Opt. Soc. Am. B 27(5) 920-926 (2010)

References

  • View by:
  • |
  • |
  • |

  1. B. O’Regan and M. Gratzel, “A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 Films,” Nature 353(6346), 737–740 (1991).
    [Crossref]
  2. D. Colonna, S. Colodrero, H. Lindstrom, A. Di Carlo, and H. Miguez, “Introducing structural colour in DSCs by using photonic crystals: interplay between conversion efficiency and optical properties,” Energy Environ. Sci. 5(8), 8238–8243 (2012).
    [Crossref]
  3. M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
    [Crossref] [PubMed]
  4. E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
    [Crossref] [PubMed]
  5. A. B. F. Martinson, J. E. McGarrah, M. O. K. Parpia, and J. T. Hupp, “Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 8(40), 4655–4659 (2006).
    [Crossref] [PubMed]
  6. I. Gonzalez-Valls and M. Lira-Cantu, “Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review,” Energy Environ. Sci. 2(1), 19–34 (2009).
    [Crossref]
  7. B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131(11), 3985–3990 (2009).
    [Crossref] [PubMed]
  8. L. Gonzalez-Garcia, I. Gonzalez-Valls, M. Lira-Cantu, A. Barranco, and A. R. Gonzalez-Elipe, “Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells,” Energy Environ. Sci. 4(9), 3426–3435 (2011).
    [Crossref]
  9. L. M. Peter, “Characterization and modeling of dye-sensitized solar cells,” J. Phys. Chem. C 111(18), 6601–6612 (2007).
    [Crossref]
  10. G. K. Kiema, M. J. Colgan, and M. J. Brett, “Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers,” Sol. Energy Mater. Sol. Cells 85(3), 321–331 (2005).
    [Crossref]
  11. H.-Y. Yang, M.-F. Lee, C.-H. Huang, Y.-S. Lo, Y.-J. Chen, and M.-S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
    [Crossref]
  12. L. Gonzalez-Garcia, J. Idigoras, A. R. Gonzalez-Elipe, A. Barranco, and J. A. Anta, “Charge collection properties of dye-sensitized solar cells based on 1-dimensional TiO2 porous nanostructures and ionic-liquid electrolytes,” J. Photochem. Photobio. A-Chemistry 241, 58–66 (2012).
  13. Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 47(13), 2402–2406 (2008).
    [Crossref] [PubMed]
  14. C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
    [Crossref]
  15. A. Usami, “Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell,” Chem. Phys. Lett. 277(1-3), 105–108 (1997).
    [Crossref]
  16. A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-Based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
    [Crossref] [PubMed]
  17. F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
    [Crossref]
  18. Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
    [Crossref] [PubMed]
  19. S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125(20), 6306–6310 (2003).
    [Crossref] [PubMed]
  20. A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005).
    [Crossref] [PubMed]
  21. A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C 112(1), 13–17 (2008).
    [Crossref]
  22. S. Colodrero, A. Mihi, L. Haggman, M. Ocana, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous One-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
    [Crossref]
  23. S. Colodrero, A. Mihi, J. A. Anta, M. Ocana, and H. Miguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113(4), 1150–1154 (2009).
    [Crossref]
  24. M. Guo, K. Xie, J. Lin, Z. Yong, C. T. Yip, L. Zhou, Y. Wang, and H. Huang, “Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell,” Energy Environ. Sci. 5(12), 9881 (2012).
    [Crossref]
  25. M. E. Calvo, S. Colodrero, N. Hidalgo, G. Lozano, C. López-López, O. Sánchez-Sobrado, and H. Míguez, “Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications,” Energy Environ. Sci. 4(12), 4800 (2011).
    [Crossref]
  26. A. Mihi, C. Zhang, and P. V. Braun, “Transfer of preformed three-dimensional photonic crystals onto dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 50(25), 5712–5715 (2011).
    [Crossref] [PubMed]
  27. S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
    [Crossref]
  28. M. Guo, Z. Yong, K. Xie, J. Lin, Y. Wang, and H. Huang, “Enhanced light harvesting in dye-sensitized solar cells coupled with titania nanotube photonic crystals: a theoretical study,” ACS Appl. Mater. Interfaces 5(24), 13022–13028 (2013).
    [Crossref] [PubMed]
  29. C. T. Yip, H. Huang, L. Zhou, K. Xie, Y. Wang, T. Feng, J. Li, and W. Y. Tam, “Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach,” Adv. Mater. 23(47), 5624–5628 (2011).
    [Crossref] [PubMed]
  30. L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO₂ thin films prepared by glancing angle deposition,” Nanotechnology 23(20), 205701 (2012).
    [Crossref] [PubMed]
  31. L. Gonzalez-Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. Gonzalez-Elipe, “TiO2-SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
    [Crossref]
  32. M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
    [Crossref] [PubMed]
  33. M. E. Calvo, L. González-García, J. Parra-Barranco, A. Barranco, A. Jiménez-Solano, A. R. González-Elipe, and H. Míguez, “Flexible distributed Bragg reflectors from nanocolumnar templates,” Adv. Opt. Mater. 3(2), 171–175 (2015).
    [Crossref] [PubMed]
  34. A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, “Perspectives on oblique angle deposition for thin films: From fundamentasl to devices,” Prog. Mater. Sci. (2015), doi:.
    [Crossref]
  35. K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
    [Crossref]
  36. M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
    [Crossref]
  37. M. J. Brett and M. M. Hawkeye, “Materials science. New materials at a glance,” Science 319(5867), 1192–1193 (2008).
    [Crossref] [PubMed]
  38. L. González-García, A. Barranco, A. M. Páez, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, T. A. Ezquerra, and D. Babonneau, “Structure of glancing incidence deposited TiO(2) thin films as revealed by grazing incidence small-angle X-ray scattering,” Chem. Phys. Chem. 11(10), 2205–2208 (2010).
    [Crossref] [PubMed]
  39. K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26(6), 4368–4376 (2010).
    [Crossref] [PubMed]
  40. K. Kaminska, M. Suzuki, K. Kimura, Y. Taga, and K. Robbie, “Simulating structure and optical response of vacuum evaporated porous rugate filters,” J. Appl. Phys. 95(6), 3055–3062 (2004).
    [Crossref]
  41. K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Tech. 138(2-3), 185–191 (2001).
    [Crossref]
  42. S. Colodrero, A. Forneli, C. Lopez-Lopez, L. Pelleja, H. Miguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater. 22(6), 1303–1310 (2012).
    [Crossref]
  43. C. Lopez-Lopez, S. Colodrero, S. R. Raga, H. Lindstrom, F. Fabregat-Santiago, J. Bisquert, and H. Miguez, “Enhanced diffusion through porous nanoparticle optical multilayers,” J. Mater. Chem. 22(5), 1751–1757 (2012).
    [Crossref]
  44. G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
    [Crossref]
  45. L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cim. 20(10), 1–76 (1997).
    [Crossref]

2015 (1)

M. E. Calvo, L. González-García, J. Parra-Barranco, A. Barranco, A. Jiménez-Solano, A. R. González-Elipe, and H. Míguez, “Flexible distributed Bragg reflectors from nanocolumnar templates,” Adv. Opt. Mater. 3(2), 171–175 (2015).
[Crossref] [PubMed]

2013 (2)

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref] [PubMed]

M. Guo, Z. Yong, K. Xie, J. Lin, Y. Wang, and H. Huang, “Enhanced light harvesting in dye-sensitized solar cells coupled with titania nanotube photonic crystals: a theoretical study,” ACS Appl. Mater. Interfaces 5(24), 13022–13028 (2013).
[Crossref] [PubMed]

2012 (9)

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO₂ thin films prepared by glancing angle deposition,” Nanotechnology 23(20), 205701 (2012).
[Crossref] [PubMed]

M. Guo, K. Xie, J. Lin, Z. Yong, C. T. Yip, L. Zhou, Y. Wang, and H. Huang, “Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell,” Energy Environ. Sci. 5(12), 9881 (2012).
[Crossref]

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

D. Colonna, S. Colodrero, H. Lindstrom, A. Di Carlo, and H. Miguez, “Introducing structural colour in DSCs by using photonic crystals: interplay between conversion efficiency and optical properties,” Energy Environ. Sci. 5(8), 8238–8243 (2012).
[Crossref]

L. Gonzalez-Garcia, J. Idigoras, A. R. Gonzalez-Elipe, A. Barranco, and J. A. Anta, “Charge collection properties of dye-sensitized solar cells based on 1-dimensional TiO2 porous nanostructures and ionic-liquid electrolytes,” J. Photochem. Photobio. A-Chemistry 241, 58–66 (2012).

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
[Crossref] [PubMed]

S. Colodrero, A. Forneli, C. Lopez-Lopez, L. Pelleja, H. Miguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater. 22(6), 1303–1310 (2012).
[Crossref]

C. Lopez-Lopez, S. Colodrero, S. R. Raga, H. Lindstrom, F. Fabregat-Santiago, J. Bisquert, and H. Miguez, “Enhanced diffusion through porous nanoparticle optical multilayers,” J. Mater. Chem. 22(5), 1751–1757 (2012).
[Crossref]

2011 (5)

L. Gonzalez-Garcia, I. Gonzalez-Valls, M. Lira-Cantu, A. Barranco, and A. R. Gonzalez-Elipe, “Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells,” Energy Environ. Sci. 4(9), 3426–3435 (2011).
[Crossref]

M. E. Calvo, S. Colodrero, N. Hidalgo, G. Lozano, C. López-López, O. Sánchez-Sobrado, and H. Míguez, “Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications,” Energy Environ. Sci. 4(12), 4800 (2011).
[Crossref]

A. Mihi, C. Zhang, and P. V. Braun, “Transfer of preformed three-dimensional photonic crystals onto dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 50(25), 5712–5715 (2011).
[Crossref] [PubMed]

A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-Based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

C. T. Yip, H. Huang, L. Zhou, K. Xie, Y. Wang, T. Feng, J. Li, and W. Y. Tam, “Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach,” Adv. Mater. 23(47), 5624–5628 (2011).
[Crossref] [PubMed]

2010 (4)

L. Gonzalez-Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. Gonzalez-Elipe, “TiO2-SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
[Crossref]

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[Crossref]

L. González-García, A. Barranco, A. M. Páez, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, T. A. Ezquerra, and D. Babonneau, “Structure of glancing incidence deposited TiO(2) thin films as revealed by grazing incidence small-angle X-ray scattering,” Chem. Phys. Chem. 11(10), 2205–2208 (2010).
[Crossref] [PubMed]

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26(6), 4368–4376 (2010).
[Crossref] [PubMed]

2009 (5)

S. Colodrero, A. Mihi, L. Haggman, M. Ocana, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous One-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

S. Colodrero, A. Mihi, J. A. Anta, M. Ocana, and H. Miguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113(4), 1150–1154 (2009).
[Crossref]

I. Gonzalez-Valls and M. Lira-Cantu, “Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review,” Energy Environ. Sci. 2(1), 19–34 (2009).
[Crossref]

B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131(11), 3985–3990 (2009).
[Crossref] [PubMed]

H.-Y. Yang, M.-F. Lee, C.-H. Huang, Y.-S. Lo, Y.-J. Chen, and M.-S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

2008 (3)

Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 47(13), 2402–2406 (2008).
[Crossref] [PubMed]

A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C 112(1), 13–17 (2008).
[Crossref]

M. J. Brett and M. M. Hawkeye, “Materials science. New materials at a glance,” Science 319(5867), 1192–1193 (2008).
[Crossref] [PubMed]

2007 (3)

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[Crossref]

C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
[Crossref]

L. M. Peter, “Characterization and modeling of dye-sensitized solar cells,” J. Phys. Chem. C 111(18), 6601–6612 (2007).
[Crossref]

2006 (2)

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[Crossref] [PubMed]

A. B. F. Martinson, J. E. McGarrah, M. O. K. Parpia, and J. T. Hupp, “Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 8(40), 4655–4659 (2006).
[Crossref] [PubMed]

2005 (3)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

G. K. Kiema, M. J. Colgan, and M. J. Brett, “Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers,” Sol. Energy Mater. Sol. Cells 85(3), 321–331 (2005).
[Crossref]

A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005).
[Crossref] [PubMed]

2004 (1)

K. Kaminska, M. Suzuki, K. Kimura, Y. Taga, and K. Robbie, “Simulating structure and optical response of vacuum evaporated porous rugate filters,” J. Appl. Phys. 95(6), 3055–3062 (2004).
[Crossref]

2003 (1)

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125(20), 6306–6310 (2003).
[Crossref] [PubMed]

2001 (1)

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Tech. 138(2-3), 185–191 (2001).
[Crossref]

1997 (2)

L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cim. 20(10), 1–76 (1997).
[Crossref]

A. Usami, “Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell,” Chem. Phys. Lett. 277(1-3), 105–108 (1997).
[Crossref]

1996 (1)

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
[Crossref]

1991 (1)

B. O’Regan and M. Gratzel, “A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 Films,” Nature 353(6346), 737–740 (1991).
[Crossref]

Abrams, N.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125(20), 6306–6310 (2003).
[Crossref] [PubMed]

Anta, J. A.

L. Gonzalez-Garcia, J. Idigoras, A. R. Gonzalez-Elipe, A. Barranco, and J. A. Anta, “Charge collection properties of dye-sensitized solar cells based on 1-dimensional TiO2 porous nanostructures and ionic-liquid electrolytes,” J. Photochem. Photobio. A-Chemistry 241, 58–66 (2012).

S. Colodrero, A. Mihi, J. A. Anta, M. Ocana, and H. Miguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113(4), 1150–1154 (2009).
[Crossref]

A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C 112(1), 13–17 (2008).
[Crossref]

Aydil, E. S.

B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131(11), 3985–3990 (2009).
[Crossref] [PubMed]

Babonneau, D.

L. González-García, A. Barranco, A. M. Páez, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, T. A. Ezquerra, and D. Babonneau, “Structure of glancing incidence deposited TiO(2) thin films as revealed by grazing incidence small-angle X-ray scattering,” Chem. Phys. Chem. 11(10), 2205–2208 (2010).
[Crossref] [PubMed]

Barranco, A.

M. E. Calvo, L. González-García, J. Parra-Barranco, A. Barranco, A. Jiménez-Solano, A. R. González-Elipe, and H. Míguez, “Flexible distributed Bragg reflectors from nanocolumnar templates,” Adv. Opt. Mater. 3(2), 171–175 (2015).
[Crossref] [PubMed]

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref] [PubMed]

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO₂ thin films prepared by glancing angle deposition,” Nanotechnology 23(20), 205701 (2012).
[Crossref] [PubMed]

L. Gonzalez-Garcia, J. Idigoras, A. R. Gonzalez-Elipe, A. Barranco, and J. A. Anta, “Charge collection properties of dye-sensitized solar cells based on 1-dimensional TiO2 porous nanostructures and ionic-liquid electrolytes,” J. Photochem. Photobio. A-Chemistry 241, 58–66 (2012).

L. Gonzalez-Garcia, I. Gonzalez-Valls, M. Lira-Cantu, A. Barranco, and A. R. Gonzalez-Elipe, “Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells,” Energy Environ. Sci. 4(9), 3426–3435 (2011).
[Crossref]

L. Gonzalez-Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. Gonzalez-Elipe, “TiO2-SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
[Crossref]

L. González-García, A. Barranco, A. M. Páez, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, T. A. Ezquerra, and D. Babonneau, “Structure of glancing incidence deposited TiO(2) thin films as revealed by grazing incidence small-angle X-ray scattering,” Chem. Phys. Chem. 11(10), 2205–2208 (2010).
[Crossref] [PubMed]

A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, “Perspectives on oblique angle deposition for thin films: From fundamentasl to devices,” Prog. Mater. Sci. (2015), doi:.
[Crossref]

Benkstein, K. D.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125(20), 6306–6310 (2003).
[Crossref] [PubMed]

Bisquert, J.

C. Lopez-Lopez, S. Colodrero, S. R. Raga, H. Lindstrom, F. Fabregat-Santiago, J. Bisquert, and H. Miguez, “Enhanced diffusion through porous nanoparticle optical multilayers,” J. Mater. Chem. 22(5), 1751–1757 (2012).
[Crossref]

Borras, A.

A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, “Perspectives on oblique angle deposition for thin films: From fundamentasl to devices,” Prog. Mater. Sci. (2015), doi:.
[Crossref]

Borrás, A.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO₂ thin films prepared by glancing angle deposition,” Nanotechnology 23(20), 205701 (2012).
[Crossref] [PubMed]

Boschloo, G.

S. Colodrero, A. Mihi, L. Haggman, M. Ocana, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous One-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[Crossref] [PubMed]

Braun, P. V.

A. Mihi, C. Zhang, and P. V. Braun, “Transfer of preformed three-dimensional photonic crystals onto dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 50(25), 5712–5715 (2011).
[Crossref] [PubMed]

Brett, M. J.

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26(6), 4368–4376 (2010).
[Crossref] [PubMed]

M. J. Brett and M. M. Hawkeye, “Materials science. New materials at a glance,” Science 319(5867), 1192–1193 (2008).
[Crossref] [PubMed]

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[Crossref]

G. K. Kiema, M. J. Colgan, and M. J. Brett, “Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers,” Sol. Energy Mater. Sol. Cells 85(3), 321–331 (2005).
[Crossref]

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Tech. 138(2-3), 185–191 (2001).
[Crossref]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
[Crossref]

Buriak, J. M.

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26(6), 4368–4376 (2010).
[Crossref] [PubMed]

Calvo, M. E.

M. E. Calvo, L. González-García, J. Parra-Barranco, A. Barranco, A. Jiménez-Solano, A. R. González-Elipe, and H. Míguez, “Flexible distributed Bragg reflectors from nanocolumnar templates,” Adv. Opt. Mater. 3(2), 171–175 (2015).
[Crossref] [PubMed]

M. E. Calvo, S. Colodrero, N. Hidalgo, G. Lozano, C. López-López, O. Sánchez-Sobrado, and H. Míguez, “Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications,” Energy Environ. Sci. 4(12), 4800 (2011).
[Crossref]

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[Crossref]

A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C 112(1), 13–17 (2008).
[Crossref]

Cao, G.

Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
[Crossref] [PubMed]

Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 47(13), 2402–2406 (2008).
[Crossref] [PubMed]

Caulier, O.

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[Crossref]

Chandiran, A. K.

A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-Based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Chen, H.

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[Crossref] [PubMed]

Chen, Y.-J.

H.-Y. Yang, M.-F. Lee, C.-H. Huang, Y.-S. Lo, Y.-J. Chen, and M.-S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

Cheng, C.

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

Chou, T. P.

Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 47(13), 2402–2406 (2008).
[Crossref] [PubMed]

Colgan, M. J.

G. K. Kiema, M. J. Colgan, and M. J. Brett, “Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers,” Sol. Energy Mater. Sol. Cells 85(3), 321–331 (2005).
[Crossref]

Colodrero, S.

D. Colonna, S. Colodrero, H. Lindstrom, A. Di Carlo, and H. Miguez, “Introducing structural colour in DSCs by using photonic crystals: interplay between conversion efficiency and optical properties,” Energy Environ. Sci. 5(8), 8238–8243 (2012).
[Crossref]

C. Lopez-Lopez, S. Colodrero, S. R. Raga, H. Lindstrom, F. Fabregat-Santiago, J. Bisquert, and H. Miguez, “Enhanced diffusion through porous nanoparticle optical multilayers,” J. Mater. Chem. 22(5), 1751–1757 (2012).
[Crossref]

S. Colodrero, A. Forneli, C. Lopez-Lopez, L. Pelleja, H. Miguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater. 22(6), 1303–1310 (2012).
[Crossref]

M. E. Calvo, S. Colodrero, N. Hidalgo, G. Lozano, C. López-López, O. Sánchez-Sobrado, and H. Míguez, “Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications,” Energy Environ. Sci. 4(12), 4800 (2011).
[Crossref]

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[Crossref]

S. Colodrero, A. Mihi, J. A. Anta, M. Ocana, and H. Miguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113(4), 1150–1154 (2009).
[Crossref]

S. Colodrero, A. Mihi, L. Haggman, M. Ocana, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous One-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

Colonna, D.

D. Colonna, S. Colodrero, H. Lindstrom, A. Di Carlo, and H. Miguez, “Introducing structural colour in DSCs by using photonic crystals: interplay between conversion efficiency and optical properties,” Energy Environ. Sci. 5(8), 8238–8243 (2012).
[Crossref]

Di Carlo, A.

D. Colonna, S. Colodrero, H. Lindstrom, A. Di Carlo, and H. Miguez, “Introducing structural colour in DSCs by using photonic crystals: interplay between conversion efficiency and optical properties,” Energy Environ. Sci. 5(8), 8238–8243 (2012).
[Crossref]

Diau, E. W.-G.

A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-Based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Ezquerra, T. A.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO₂ thin films prepared by glancing angle deposition,” Nanotechnology 23(20), 205701 (2012).
[Crossref] [PubMed]

L. González-García, A. Barranco, A. M. Páez, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, T. A. Ezquerra, and D. Babonneau, “Structure of glancing incidence deposited TiO(2) thin films as revealed by grazing incidence small-angle X-ray scattering,” Chem. Phys. Chem. 11(10), 2205–2208 (2010).
[Crossref] [PubMed]

Fabregat-Santiago, F.

C. Lopez-Lopez, S. Colodrero, S. R. Raga, H. Lindstrom, F. Fabregat-Santiago, J. Bisquert, and H. Miguez, “Enhanced diffusion through porous nanoparticle optical multilayers,” J. Mater. Chem. 22(5), 1751–1757 (2012).
[Crossref]

Fan, H. J.

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

Feng, T.

C. T. Yip, H. Huang, L. Zhou, K. Xie, Y. Wang, T. Feng, J. Li, and W. Y. Tam, “Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach,” Adv. Mater. 23(47), 5624–5628 (2011).
[Crossref] [PubMed]

Forneli, A.

S. Colodrero, A. Forneli, C. Lopez-Lopez, L. Pelleja, H. Miguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater. 22(6), 1303–1310 (2012).
[Crossref]

Frank, A. J.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125(20), 6306–6310 (2003).
[Crossref] [PubMed]

Galoppini, E.

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[Crossref] [PubMed]

Gálvez, F. E.

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

García-Gutiérrez, M. C.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO₂ thin films prepared by glancing angle deposition,” Nanotechnology 23(20), 205701 (2012).
[Crossref] [PubMed]

L. González-García, A. Barranco, A. M. Páez, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, T. A. Ezquerra, and D. Babonneau, “Structure of glancing incidence deposited TiO(2) thin films as revealed by grazing incidence small-angle X-ray scattering,” Chem. Phys. Chem. 11(10), 2205–2208 (2010).
[Crossref] [PubMed]

Gonzalez, E. J.

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Tech. 138(2-3), 185–191 (2001).
[Crossref]

Gonzalez-Elipe, A. R.

L. Gonzalez-Garcia, J. Idigoras, A. R. Gonzalez-Elipe, A. Barranco, and J. A. Anta, “Charge collection properties of dye-sensitized solar cells based on 1-dimensional TiO2 porous nanostructures and ionic-liquid electrolytes,” J. Photochem. Photobio. A-Chemistry 241, 58–66 (2012).

L. Gonzalez-Garcia, I. Gonzalez-Valls, M. Lira-Cantu, A. Barranco, and A. R. Gonzalez-Elipe, “Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells,” Energy Environ. Sci. 4(9), 3426–3435 (2011).
[Crossref]

L. Gonzalez-Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. Gonzalez-Elipe, “TiO2-SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
[Crossref]

A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, “Perspectives on oblique angle deposition for thin films: From fundamentasl to devices,” Prog. Mater. Sci. (2015), doi:.
[Crossref]

González-Elipe, A. R.

M. E. Calvo, L. González-García, J. Parra-Barranco, A. Barranco, A. Jiménez-Solano, A. R. González-Elipe, and H. Míguez, “Flexible distributed Bragg reflectors from nanocolumnar templates,” Adv. Opt. Mater. 3(2), 171–175 (2015).
[Crossref] [PubMed]

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref] [PubMed]

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO₂ thin films prepared by glancing angle deposition,” Nanotechnology 23(20), 205701 (2012).
[Crossref] [PubMed]

L. González-García, A. Barranco, A. M. Páez, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, T. A. Ezquerra, and D. Babonneau, “Structure of glancing incidence deposited TiO(2) thin films as revealed by grazing incidence small-angle X-ray scattering,” Chem. Phys. Chem. 11(10), 2205–2208 (2010).
[Crossref] [PubMed]

Gonzalez-Garcia, L.

L. Gonzalez-Garcia, J. Idigoras, A. R. Gonzalez-Elipe, A. Barranco, and J. A. Anta, “Charge collection properties of dye-sensitized solar cells based on 1-dimensional TiO2 porous nanostructures and ionic-liquid electrolytes,” J. Photochem. Photobio. A-Chemistry 241, 58–66 (2012).

L. Gonzalez-Garcia, I. Gonzalez-Valls, M. Lira-Cantu, A. Barranco, and A. R. Gonzalez-Elipe, “Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells,” Energy Environ. Sci. 4(9), 3426–3435 (2011).
[Crossref]

L. Gonzalez-Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. Gonzalez-Elipe, “TiO2-SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
[Crossref]

González-García, L.

M. E. Calvo, L. González-García, J. Parra-Barranco, A. Barranco, A. Jiménez-Solano, A. R. González-Elipe, and H. Míguez, “Flexible distributed Bragg reflectors from nanocolumnar templates,” Adv. Opt. Mater. 3(2), 171–175 (2015).
[Crossref] [PubMed]

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref] [PubMed]

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO₂ thin films prepared by glancing angle deposition,” Nanotechnology 23(20), 205701 (2012).
[Crossref] [PubMed]

L. González-García, A. Barranco, A. M. Páez, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, T. A. Ezquerra, and D. Babonneau, “Structure of glancing incidence deposited TiO(2) thin films as revealed by grazing incidence small-angle X-ray scattering,” Chem. Phys. Chem. 11(10), 2205–2208 (2010).
[Crossref] [PubMed]

Gonzalez-Valls, I.

L. Gonzalez-Garcia, I. Gonzalez-Valls, M. Lira-Cantu, A. Barranco, and A. R. Gonzalez-Elipe, “Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells,” Energy Environ. Sci. 4(9), 3426–3435 (2011).
[Crossref]

I. Gonzalez-Valls and M. Lira-Cantu, “Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review,” Energy Environ. Sci. 2(1), 19–34 (2009).
[Crossref]

Gratzel, M.

B. O’Regan and M. Gratzel, “A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 Films,” Nature 353(6346), 737–740 (1991).
[Crossref]

Grätzel, M.

A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-Based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Greene, L. E.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Guo, M.

M. Guo, Z. Yong, K. Xie, J. Lin, Y. Wang, and H. Huang, “Enhanced light harvesting in dye-sensitized solar cells coupled with titania nanotube photonic crystals: a theoretical study,” ACS Appl. Mater. Interfaces 5(24), 13022–13028 (2013).
[Crossref] [PubMed]

M. Guo, K. Xie, J. Lin, Z. Yong, C. T. Yip, L. Zhou, Y. Wang, and H. Huang, “Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell,” Energy Environ. Sci. 5(12), 9881 (2012).
[Crossref]

Hagfeldt, A.

S. Colodrero, A. Mihi, L. Haggman, M. Ocana, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous One-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[Crossref] [PubMed]

Haggman, L.

S. Colodrero, A. Mihi, L. Haggman, M. Ocana, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous One-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

Halaoui, L. I.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125(20), 6306–6310 (2003).
[Crossref] [PubMed]

Halme, J.

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

Harris, K. D.

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26(6), 4368–4376 (2010).
[Crossref] [PubMed]

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Tech. 138(2-3), 185–191 (2001).
[Crossref]

Hawkeye, M. M.

M. J. Brett and M. M. Hawkeye, “Materials science. New materials at a glance,” Science 319(5867), 1192–1193 (2008).
[Crossref] [PubMed]

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[Crossref]

Hernández, J. J.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO₂ thin films prepared by glancing angle deposition,” Nanotechnology 23(20), 205701 (2012).
[Crossref] [PubMed]

L. González-García, A. Barranco, A. M. Páez, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, T. A. Ezquerra, and D. Babonneau, “Structure of glancing incidence deposited TiO(2) thin films as revealed by grazing incidence small-angle X-ray scattering,” Chem. Phys. Chem. 11(10), 2205–2208 (2010).
[Crossref] [PubMed]

Hidalgo, N.

M. E. Calvo, S. Colodrero, N. Hidalgo, G. Lozano, C. López-López, O. Sánchez-Sobrado, and H. Míguez, “Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications,” Energy Environ. Sci. 4(12), 4800 (2011).
[Crossref]

Huang, C.-H.

H.-Y. Yang, M.-F. Lee, C.-H. Huang, Y.-S. Lo, Y.-J. Chen, and M.-S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

Huang, H.

M. Guo, Z. Yong, K. Xie, J. Lin, Y. Wang, and H. Huang, “Enhanced light harvesting in dye-sensitized solar cells coupled with titania nanotube photonic crystals: a theoretical study,” ACS Appl. Mater. Interfaces 5(24), 13022–13028 (2013).
[Crossref] [PubMed]

M. Guo, K. Xie, J. Lin, Z. Yong, C. T. Yip, L. Zhou, Y. Wang, and H. Huang, “Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell,” Energy Environ. Sci. 5(12), 9881 (2012).
[Crossref]

C. T. Yip, H. Huang, L. Zhou, K. Xie, Y. Wang, T. Feng, J. Li, and W. Y. Tam, “Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach,” Adv. Mater. 23(47), 5624–5628 (2011).
[Crossref] [PubMed]

Hupp, J. T.

A. B. F. Martinson, J. E. McGarrah, M. O. K. Parpia, and J. T. Hupp, “Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 8(40), 4655–4659 (2006).
[Crossref] [PubMed]

Idigoras, J.

L. Gonzalez-Garcia, J. Idigoras, A. R. Gonzalez-Elipe, A. Barranco, and J. A. Anta, “Charge collection properties of dye-sensitized solar cells based on 1-dimensional TiO2 porous nanostructures and ionic-liquid electrolytes,” J. Photochem. Photobio. A-Chemistry 241, 58–66 (2012).

Jenekhe, S. A.

Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
[Crossref] [PubMed]

Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 47(13), 2402–2406 (2008).
[Crossref] [PubMed]

Jiang, C. Y.

C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
[Crossref]

Jiménez-Solano, A.

M. E. Calvo, L. González-García, J. Parra-Barranco, A. Barranco, A. Jiménez-Solano, A. R. González-Elipe, and H. Míguez, “Flexible distributed Bragg reflectors from nanocolumnar templates,” Adv. Opt. Mater. 3(2), 171–175 (2015).
[Crossref] [PubMed]

Johnson, J. C.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Kaminska, K.

K. Kaminska, M. Suzuki, K. Kimura, Y. Taga, and K. Robbie, “Simulating structure and optical response of vacuum evaporated porous rugate filters,” J. Appl. Phys. 95(6), 3055–3062 (2004).
[Crossref]

Karuturi, S. K.

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

Kemppainen, E.

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

Kiema, G. K.

G. K. Kiema, M. J. Colgan, and M. J. Brett, “Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers,” Sol. Energy Mater. Sol. Cells 85(3), 321–331 (2005).
[Crossref]

Kimura, K.

K. Kaminska, M. Suzuki, K. Kimura, Y. Taga, and K. Robbie, “Simulating structure and optical response of vacuum evaporated porous rugate filters,” J. Appl. Phys. 95(6), 3055–3062 (2004).
[Crossref]

Krause, K. M.

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26(6), 4368–4376 (2010).
[Crossref] [PubMed]

Kwong, D. L.

C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
[Crossref]

Lakhtakia, A.

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
[Crossref]

Lan, J.

Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
[Crossref] [PubMed]

Law, M.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Lee, H.-W.

A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-Based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Lee, M.-F.

H.-Y. Yang, M.-F. Lee, C.-H. Huang, Y.-S. Lo, Y.-J. Chen, and M.-S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

Lewis, B. A.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125(20), 6306–6310 (2003).
[Crossref] [PubMed]

Li, J.

C. T. Yip, H. Huang, L. Zhou, K. Xie, Y. Wang, T. Feng, J. Li, and W. Y. Tam, “Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach,” Adv. Mater. 23(47), 5624–5628 (2011).
[Crossref] [PubMed]

Lin, J.

M. Guo, Z. Yong, K. Xie, J. Lin, Y. Wang, and H. Huang, “Enhanced light harvesting in dye-sensitized solar cells coupled with titania nanotube photonic crystals: a theoretical study,” ACS Appl. Mater. Interfaces 5(24), 13022–13028 (2013).
[Crossref] [PubMed]

M. Guo, K. Xie, J. Lin, Z. Yong, C. T. Yip, L. Zhou, Y. Wang, and H. Huang, “Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell,” Energy Environ. Sci. 5(12), 9881 (2012).
[Crossref]

Lindstrom, H.

D. Colonna, S. Colodrero, H. Lindstrom, A. Di Carlo, and H. Miguez, “Introducing structural colour in DSCs by using photonic crystals: interplay between conversion efficiency and optical properties,” Energy Environ. Sci. 5(8), 8238–8243 (2012).
[Crossref]

C. Lopez-Lopez, S. Colodrero, S. R. Raga, H. Lindstrom, F. Fabregat-Santiago, J. Bisquert, and H. Miguez, “Enhanced diffusion through porous nanoparticle optical multilayers,” J. Mater. Chem. 22(5), 1751–1757 (2012).
[Crossref]

Lira-Cantu, M.

L. Gonzalez-Garcia, I. Gonzalez-Valls, M. Lira-Cantu, A. Barranco, and A. R. Gonzalez-Elipe, “Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells,” Energy Environ. Sci. 4(9), 3426–3435 (2011).
[Crossref]

I. Gonzalez-Valls and M. Lira-Cantu, “Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review,” Energy Environ. Sci. 2(1), 19–34 (2009).
[Crossref]

Liu, B.

B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131(11), 3985–3990 (2009).
[Crossref] [PubMed]

Liu, L.

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

Lo, G. Q.

C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
[Crossref]

Lo, Y.-S.

H.-Y. Yang, M.-F. Lee, C.-H. Huang, Y.-S. Lo, Y.-J. Chen, and M.-S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

Lopez-Lopez, C.

C. Lopez-Lopez, S. Colodrero, S. R. Raga, H. Lindstrom, F. Fabregat-Santiago, J. Bisquert, and H. Miguez, “Enhanced diffusion through porous nanoparticle optical multilayers,” J. Mater. Chem. 22(5), 1751–1757 (2012).
[Crossref]

S. Colodrero, A. Forneli, C. Lopez-Lopez, L. Pelleja, H. Miguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater. 22(6), 1303–1310 (2012).
[Crossref]

López-López, C.

M. E. Calvo, S. Colodrero, N. Hidalgo, G. Lozano, C. López-López, O. Sánchez-Sobrado, and H. Míguez, “Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications,” Energy Environ. Sci. 4(12), 4800 (2011).
[Crossref]

Lozano, G.

M. E. Calvo, S. Colodrero, N. Hidalgo, G. Lozano, C. López-López, O. Sánchez-Sobrado, and H. Míguez, “Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications,” Energy Environ. Sci. 4(12), 4800 (2011).
[Crossref]

L. Gonzalez-Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. Gonzalez-Elipe, “TiO2-SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
[Crossref]

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[Crossref]

Lu, Y.

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[Crossref] [PubMed]

Mallouk, T. E.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125(20), 6306–6310 (2003).
[Crossref] [PubMed]

Martinson, A. B. F.

A. B. F. Martinson, J. E. McGarrah, M. O. K. Parpia, and J. T. Hupp, “Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 8(40), 4655–4659 (2006).
[Crossref] [PubMed]

McGarrah, J. E.

A. B. F. Martinson, J. E. McGarrah, M. O. K. Parpia, and J. T. Hupp, “Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 8(40), 4655–4659 (2006).
[Crossref] [PubMed]

Miguez, H.

D. Colonna, S. Colodrero, H. Lindstrom, A. Di Carlo, and H. Miguez, “Introducing structural colour in DSCs by using photonic crystals: interplay between conversion efficiency and optical properties,” Energy Environ. Sci. 5(8), 8238–8243 (2012).
[Crossref]

C. Lopez-Lopez, S. Colodrero, S. R. Raga, H. Lindstrom, F. Fabregat-Santiago, J. Bisquert, and H. Miguez, “Enhanced diffusion through porous nanoparticle optical multilayers,” J. Mater. Chem. 22(5), 1751–1757 (2012).
[Crossref]

S. Colodrero, A. Forneli, C. Lopez-Lopez, L. Pelleja, H. Miguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater. 22(6), 1303–1310 (2012).
[Crossref]

L. Gonzalez-Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. Gonzalez-Elipe, “TiO2-SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
[Crossref]

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[Crossref]

S. Colodrero, A. Mihi, L. Haggman, M. Ocana, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous One-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

S. Colodrero, A. Mihi, J. A. Anta, M. Ocana, and H. Miguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113(4), 1150–1154 (2009).
[Crossref]

A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C 112(1), 13–17 (2008).
[Crossref]

Míguez, H.

M. E. Calvo, L. González-García, J. Parra-Barranco, A. Barranco, A. Jiménez-Solano, A. R. González-Elipe, and H. Míguez, “Flexible distributed Bragg reflectors from nanocolumnar templates,” Adv. Opt. Mater. 3(2), 171–175 (2015).
[Crossref] [PubMed]

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

M. E. Calvo, S. Colodrero, N. Hidalgo, G. Lozano, C. López-López, O. Sánchez-Sobrado, and H. Míguez, “Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications,” Energy Environ. Sci. 4(12), 4800 (2011).
[Crossref]

A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005).
[Crossref] [PubMed]

Mihi, A.

A. Mihi, C. Zhang, and P. V. Braun, “Transfer of preformed three-dimensional photonic crystals onto dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 50(25), 5712–5715 (2011).
[Crossref] [PubMed]

S. Colodrero, A. Mihi, L. Haggman, M. Ocana, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous One-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

S. Colodrero, A. Mihi, J. A. Anta, M. Ocana, and H. Miguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113(4), 1150–1154 (2009).
[Crossref]

A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C 112(1), 13–17 (2008).
[Crossref]

A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005).
[Crossref] [PubMed]

Myers, D.

Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
[Crossref] [PubMed]

Nazeeruddin, M. K.

A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-Based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Nishimura, S.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125(20), 6306–6310 (2003).
[Crossref] [PubMed]

O’Regan, B.

B. O’Regan and M. Gratzel, “A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 Films,” Nature 353(6346), 737–740 (1991).
[Crossref]

Ocana, M.

S. Colodrero, A. Mihi, L. Haggman, M. Ocana, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous One-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

S. Colodrero, A. Mihi, J. A. Anta, M. Ocana, and H. Miguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113(4), 1150–1154 (2009).
[Crossref]

Oliva-Ramirez, M.

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref] [PubMed]

Páez, A. M.

L. González-García, A. Barranco, A. M. Páez, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, T. A. Ezquerra, and D. Babonneau, “Structure of glancing incidence deposited TiO(2) thin films as revealed by grazing incidence small-angle X-ray scattering,” Chem. Phys. Chem. 11(10), 2205–2208 (2010).
[Crossref] [PubMed]

Palmero, A.

A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, “Perspectives on oblique angle deposition for thin films: From fundamentasl to devices,” Prog. Mater. Sci. (2015), doi:.
[Crossref]

Palomares, E.

S. Colodrero, A. Forneli, C. Lopez-Lopez, L. Pelleja, H. Miguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater. 22(6), 1303–1310 (2012).
[Crossref]

Parpia, M. O. K.

A. B. F. Martinson, J. E. McGarrah, M. O. K. Parpia, and J. T. Hupp, “Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 8(40), 4655–4659 (2006).
[Crossref] [PubMed]

Parra-Barranco, J.

M. E. Calvo, L. González-García, J. Parra-Barranco, A. Barranco, A. Jiménez-Solano, A. R. González-Elipe, and H. Míguez, “Flexible distributed Bragg reflectors from nanocolumnar templates,” Adv. Opt. Mater. 3(2), 171–175 (2015).
[Crossref] [PubMed]

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref] [PubMed]

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO₂ thin films prepared by glancing angle deposition,” Nanotechnology 23(20), 205701 (2012).
[Crossref] [PubMed]

Pavesi, L.

L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cim. 20(10), 1–76 (1997).
[Crossref]

Pelleja, L.

S. Colodrero, A. Forneli, C. Lopez-Lopez, L. Pelleja, H. Miguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater. 22(6), 1303–1310 (2012).
[Crossref]

Peter, L. M.

L. M. Peter, “Characterization and modeling of dye-sensitized solar cells,” J. Phys. Chem. C 111(18), 6601–6612 (2007).
[Crossref]

Raga, S. R.

C. Lopez-Lopez, S. Colodrero, S. R. Raga, H. Lindstrom, F. Fabregat-Santiago, J. Bisquert, and H. Miguez, “Enhanced diffusion through porous nanoparticle optical multilayers,” J. Mater. Chem. 22(5), 1751–1757 (2012).
[Crossref]

Rider, D. A.

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26(6), 4368–4376 (2010).
[Crossref] [PubMed]

Robbie, K.

K. Kaminska, M. Suzuki, K. Kimura, Y. Taga, and K. Robbie, “Simulating structure and optical response of vacuum evaporated porous rugate filters,” J. Appl. Phys. 95(6), 3055–3062 (2004).
[Crossref]

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Tech. 138(2-3), 185–191 (2001).
[Crossref]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
[Crossref]

Rochford, J.

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[Crossref] [PubMed]

Rueda, D. R.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO₂ thin films prepared by glancing angle deposition,” Nanotechnology 23(20), 205701 (2012).
[Crossref] [PubMed]

L. González-García, A. Barranco, A. M. Páez, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, T. A. Ezquerra, and D. Babonneau, “Structure of glancing incidence deposited TiO(2) thin films as revealed by grazing incidence small-angle X-ray scattering,” Chem. Phys. Chem. 11(10), 2205–2208 (2010).
[Crossref] [PubMed]

Russo, B.

Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 47(13), 2402–2406 (2008).
[Crossref] [PubMed]

Sánchez-Sobrado, O.

M. E. Calvo, S. Colodrero, N. Hidalgo, G. Lozano, C. López-López, O. Sánchez-Sobrado, and H. Míguez, “Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications,” Energy Environ. Sci. 4(12), 4800 (2011).
[Crossref]

Sánchez-Valencia, J. R.

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO₂ thin films prepared by glancing angle deposition,” Nanotechnology 23(20), 205701 (2012).
[Crossref] [PubMed]

Saraf, G.

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[Crossref] [PubMed]

Saykally, R.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Sit, J. C.

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26(6), 4368–4376 (2010).
[Crossref] [PubMed]

Smy, T.

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Tech. 138(2-3), 185–191 (2001).
[Crossref]

Sun, X. W.

C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
[Crossref]

Suzuki, M.

K. Kaminska, M. Suzuki, K. Kimura, Y. Taga, and K. Robbie, “Simulating structure and optical response of vacuum evaporated porous rugate filters,” J. Appl. Phys. 95(6), 3055–3062 (2004).
[Crossref]

Taga, Y.

K. Kaminska, M. Suzuki, K. Kimura, Y. Taga, and K. Robbie, “Simulating structure and optical response of vacuum evaporated porous rugate filters,” J. Appl. Phys. 95(6), 3055–3062 (2004).
[Crossref]

Tam, W. Y.

C. T. Yip, H. Huang, L. Zhou, K. Xie, Y. Wang, T. Feng, J. Li, and W. Y. Tam, “Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach,” Adv. Mater. 23(47), 5624–5628 (2011).
[Crossref] [PubMed]

Taschuk, M. T.

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26(6), 4368–4376 (2010).
[Crossref] [PubMed]

Tat Su, L.

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

Thommes, M.

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26(6), 4368–4376 (2010).
[Crossref] [PubMed]

Tok, A. I. Y.

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

Tsao, H. N.

A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-Based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Usami, A.

A. Usami, “Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell,” Chem. Phys. Lett. 277(1-3), 105–108 (1997).
[Crossref]

van de Lagemaat, J.

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125(20), 6306–6310 (2003).
[Crossref] [PubMed]

Vick, D.

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Tech. 138(2-3), 185–191 (2001).
[Crossref]

Wakefield, N. G.

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26(6), 4368–4376 (2010).
[Crossref] [PubMed]

Wang, J. X.

C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
[Crossref]

Wang, Y.

M. Guo, Z. Yong, K. Xie, J. Lin, Y. Wang, and H. Huang, “Enhanced light harvesting in dye-sensitized solar cells coupled with titania nanotube photonic crystals: a theoretical study,” ACS Appl. Mater. Interfaces 5(24), 13022–13028 (2013).
[Crossref] [PubMed]

M. Guo, K. Xie, J. Lin, Z. Yong, C. T. Yip, L. Zhou, Y. Wang, and H. Huang, “Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell,” Energy Environ. Sci. 5(12), 9881 (2012).
[Crossref]

C. T. Yip, H. Huang, L. Zhou, K. Xie, Y. Wang, T. Feng, J. Li, and W. Y. Tam, “Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach,” Adv. Mater. 23(47), 5624–5628 (2011).
[Crossref] [PubMed]

Wong, M.-S.

H.-Y. Yang, M.-F. Lee, C.-H. Huang, Y.-S. Lo, Y.-J. Chen, and M.-S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

Xie, K.

M. Guo, Z. Yong, K. Xie, J. Lin, Y. Wang, and H. Huang, “Enhanced light harvesting in dye-sensitized solar cells coupled with titania nanotube photonic crystals: a theoretical study,” ACS Appl. Mater. Interfaces 5(24), 13022–13028 (2013).
[Crossref] [PubMed]

M. Guo, K. Xie, J. Lin, Z. Yong, C. T. Yip, L. Zhou, Y. Wang, and H. Huang, “Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell,” Energy Environ. Sci. 5(12), 9881 (2012).
[Crossref]

C. T. Yip, H. Huang, L. Zhou, K. Xie, Y. Wang, T. Feng, J. Li, and W. Y. Tam, “Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach,” Adv. Mater. 23(47), 5624–5628 (2011).
[Crossref] [PubMed]

Yang, H.-Y.

H.-Y. Yang, M.-F. Lee, C.-H. Huang, Y.-S. Lo, Y.-J. Chen, and M.-S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

Yang, P.

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Yeh, C.-Y.

A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-Based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Yella, A.

A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-Based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Yi, C.

A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-Based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Yip, C. T.

M. Guo, K. Xie, J. Lin, Z. Yong, C. T. Yip, L. Zhou, Y. Wang, and H. Huang, “Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell,” Energy Environ. Sci. 5(12), 9881 (2012).
[Crossref]

C. T. Yip, H. Huang, L. Zhou, K. Xie, Y. Wang, T. Feng, J. Li, and W. Y. Tam, “Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach,” Adv. Mater. 23(47), 5624–5628 (2011).
[Crossref] [PubMed]

Yong, Z.

M. Guo, Z. Yong, K. Xie, J. Lin, Y. Wang, and H. Huang, “Enhanced light harvesting in dye-sensitized solar cells coupled with titania nanotube photonic crystals: a theoretical study,” ACS Appl. Mater. Interfaces 5(24), 13022–13028 (2013).
[Crossref] [PubMed]

M. Guo, K. Xie, J. Lin, Z. Yong, C. T. Yip, L. Zhou, Y. Wang, and H. Huang, “Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell,” Energy Environ. Sci. 5(12), 9881 (2012).
[Crossref]

Yubero, F.

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref] [PubMed]

Zakeeruddin, S. M.

A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-Based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Zhang, C.

A. Mihi, C. Zhang, and P. V. Braun, “Transfer of preformed three-dimensional photonic crystals onto dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 50(25), 5712–5715 (2011).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
[Crossref] [PubMed]

Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 47(13), 2402–2406 (2008).
[Crossref] [PubMed]

Zhou, L.

M. Guo, K. Xie, J. Lin, Z. Yong, C. T. Yip, L. Zhou, Y. Wang, and H. Huang, “Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell,” Energy Environ. Sci. 5(12), 9881 (2012).
[Crossref]

C. T. Yip, H. Huang, L. Zhou, K. Xie, Y. Wang, T. Feng, J. Li, and W. Y. Tam, “Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach,” Adv. Mater. 23(47), 5624–5628 (2011).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

M. Guo, Z. Yong, K. Xie, J. Lin, Y. Wang, and H. Huang, “Enhanced light harvesting in dye-sensitized solar cells coupled with titania nanotube photonic crystals: a theoretical study,” ACS Appl. Mater. Interfaces 5(24), 13022–13028 (2013).
[Crossref] [PubMed]

M. Oliva-Ramirez, L. González-García, J. Parra-Barranco, F. Yubero, A. Barranco, and A. R. González-Elipe, “Liquids analysis with optofluidic bragg microcavities,” ACS Appl. Mater. Interfaces 5(14), 6743–6750 (2013).
[Crossref] [PubMed]

Adv. Funct. Mater. (1)

S. Colodrero, A. Forneli, C. Lopez-Lopez, L. Pelleja, H. Miguez, and E. Palomares, “Efficient transparent thin dye solar cells based on highly porous 1D photonic crystals,” Adv. Funct. Mater. 22(6), 1303–1310 (2012).
[Crossref]

Adv. Mater. (2)

C. T. Yip, H. Huang, L. Zhou, K. Xie, Y. Wang, T. Feng, J. Li, and W. Y. Tam, “Direct and seamless coupling of TiO2 nanotube photonic crystal to dye-sensitized solar cell: a single-step approach,” Adv. Mater. 23(47), 5624–5628 (2011).
[Crossref] [PubMed]

S. Colodrero, A. Mihi, L. Haggman, M. Ocana, G. Boschloo, A. Hagfeldt, and H. Miguez, “Porous One-dimensional photonic crystals improve the power-conversion efficiency of dye-sensitized solar cells,” Adv. Mater. 21(7), 764–770 (2009).
[Crossref]

Adv. Opt. Mater. (1)

M. E. Calvo, L. González-García, J. Parra-Barranco, A. Barranco, A. Jiménez-Solano, A. R. González-Elipe, and H. Míguez, “Flexible distributed Bragg reflectors from nanocolumnar templates,” Adv. Opt. Mater. 3(2), 171–175 (2015).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (2)

A. Mihi, C. Zhang, and P. V. Braun, “Transfer of preformed three-dimensional photonic crystals onto dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 50(25), 5712–5715 (2011).
[Crossref] [PubMed]

Q. Zhang, T. P. Chou, B. Russo, S. A. Jenekhe, and G. Cao, “Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells,” Angew. Chem. Int. Ed. Engl. 47(13), 2402–2406 (2008).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

C. Y. Jiang, X. W. Sun, G. Q. Lo, D. L. Kwong, and J. X. Wang, “Improved dye-sensitized solar cells with a ZnO-nanoflower photoanode,” Appl. Phys. Lett. 90(26), 263501 (2007).
[Crossref]

Chem. Phys. Chem. (1)

L. González-García, A. Barranco, A. M. Páez, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, T. A. Ezquerra, and D. Babonneau, “Structure of glancing incidence deposited TiO(2) thin films as revealed by grazing incidence small-angle X-ray scattering,” Chem. Phys. Chem. 11(10), 2205–2208 (2010).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

A. Usami, “Theoretical study of application of multiple scattering of light to a dye-sensitized nanocrystalline photoelectrochemical cell,” Chem. Phys. Lett. 277(1-3), 105–108 (1997).
[Crossref]

Energy Environ. Sci. (5)

I. Gonzalez-Valls and M. Lira-Cantu, “Vertically-aligned nanostructures of ZnO for excitonic solar cells: a review,” Energy Environ. Sci. 2(1), 19–34 (2009).
[Crossref]

D. Colonna, S. Colodrero, H. Lindstrom, A. Di Carlo, and H. Miguez, “Introducing structural colour in DSCs by using photonic crystals: interplay between conversion efficiency and optical properties,” Energy Environ. Sci. 5(8), 8238–8243 (2012).
[Crossref]

L. Gonzalez-Garcia, I. Gonzalez-Valls, M. Lira-Cantu, A. Barranco, and A. R. Gonzalez-Elipe, “Aligned TiO2 nanocolumnar layers prepared by PVD-GLAD for transparent dye sensitized solar cells,” Energy Environ. Sci. 4(9), 3426–3435 (2011).
[Crossref]

M. Guo, K. Xie, J. Lin, Z. Yong, C. T. Yip, L. Zhou, Y. Wang, and H. Huang, “Design and coupling of multifunctional TiO2 nanotube photonic crystal to nanocrystalline titania layer as semi-transparent photoanode for dye-sensitized solar cell,” Energy Environ. Sci. 5(12), 9881 (2012).
[Crossref]

M. E. Calvo, S. Colodrero, N. Hidalgo, G. Lozano, C. López-López, O. Sánchez-Sobrado, and H. Míguez, “Porous one dimensional photonic crystals: novel multifunctional materials for environmental and energy applications,” Energy Environ. Sci. 4(12), 4800 (2011).
[Crossref]

J. Am. Chem. Soc. (2)

S. Nishimura, N. Abrams, B. A. Lewis, L. I. Halaoui, T. E. Mallouk, K. D. Benkstein, J. van de Lagemaat, and A. J. Frank, “Standing wave enhancement of red absorbance and photocurrent in dye-sensitized titanium dioxide photoelectrodes coupled to photonic crystals,” J. Am. Chem. Soc. 125(20), 6306–6310 (2003).
[Crossref] [PubMed]

B. Liu and E. S. Aydil, “Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells,” J. Am. Chem. Soc. 131(11), 3985–3990 (2009).
[Crossref] [PubMed]

J. Appl. Phys. (1)

K. Kaminska, M. Suzuki, K. Kimura, Y. Taga, and K. Robbie, “Simulating structure and optical response of vacuum evaporated porous rugate filters,” J. Appl. Phys. 95(6), 3055–3062 (2004).
[Crossref]

J. Mater. Chem. (2)

C. Lopez-Lopez, S. Colodrero, S. R. Raga, H. Lindstrom, F. Fabregat-Santiago, J. Bisquert, and H. Miguez, “Enhanced diffusion through porous nanoparticle optical multilayers,” J. Mater. Chem. 22(5), 1751–1757 (2012).
[Crossref]

L. Gonzalez-Garcia, G. Lozano, A. Barranco, H. Miguez, and A. R. Gonzalez-Elipe, “TiO2-SiO2 one-dimensional photonic crystals of controlled porosity by glancing angle physical vapour deposition,” J. Mater. Chem. 20(31), 6408–6412 (2010).
[Crossref]

J. Photochem. Photobio. A-Chemistry (1)

L. Gonzalez-Garcia, J. Idigoras, A. R. Gonzalez-Elipe, A. Barranco, and J. A. Anta, “Charge collection properties of dye-sensitized solar cells based on 1-dimensional TiO2 porous nanostructures and ionic-liquid electrolytes,” J. Photochem. Photobio. A-Chemistry 241, 58–66 (2012).

J. Phys. Chem. B (2)

E. Galoppini, J. Rochford, H. Chen, G. Saraf, Y. Lu, A. Hagfeldt, and G. Boschloo, “Fast electron transport in metal organic vapor deposition grown dye-sensitized ZnO nanorod solar cells,” J. Phys. Chem. B 110(33), 16159–16161 (2006).
[Crossref] [PubMed]

A. Mihi and H. Míguez, “Origin of light-harvesting enhancement in colloidal-photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. B 109(33), 15968–15976 (2005).
[Crossref] [PubMed]

J. Phys. Chem. C (5)

A. Mihi, M. E. Calvo, J. A. Anta, and H. Miguez, “Spectral response of opal-based dye-sensitized solar cells,” J. Phys. Chem. C 112(1), 13–17 (2008).
[Crossref]

F. E. Gálvez, E. Kemppainen, H. Míguez, and J. Halme, “Effect of diffuse light scattering designs on the efficiency of dye solar cells: an integral optical and electrical description,” J. Phys. Chem. C 116(21), 11426–11433 (2012).
[Crossref]

S. Colodrero, A. Mihi, J. A. Anta, M. Ocana, and H. Miguez, “Experimental demonstration of the mechanism of light harvesting enhancement in photonic-crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 113(4), 1150–1154 (2009).
[Crossref]

L. M. Peter, “Characterization and modeling of dye-sensitized solar cells,” J. Phys. Chem. C 111(18), 6601–6612 (2007).
[Crossref]

G. Lozano, S. Colodrero, O. Caulier, M. E. Calvo, and H. Miguez, “Theoretical analysis of the performance of one-dimensional photonic crystal-based dye-sensitized solar cells,” J. Phys. Chem. C 114(8), 3681–3687 (2010).
[Crossref]

J. Vac. Sci. Technol. A (1)

M. M. Hawkeye and M. J. Brett, “Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films,” J. Vac. Sci. Technol. A 25(5), 1317–1335 (2007).
[Crossref]

Langmuir (1)

K. M. Krause, M. T. Taschuk, K. D. Harris, D. A. Rider, N. G. Wakefield, J. C. Sit, J. M. Buriak, M. Thommes, and M. J. Brett, “Surface area characterization of obliquely deposited metal oxide nanostructured thin films,” Langmuir 26(6), 4368–4376 (2010).
[Crossref] [PubMed]

Nano Energy (1)

S. K. Karuturi, C. Cheng, L. Liu, L. Tat Su, H. J. Fan, and A. I. Y. Tok, “Inverse opals coupled with nanowires as photoelectrochemical anode,” Nano Energy 1(2), 322–327 (2012).
[Crossref]

Nanotechnology (1)

L. González-García, J. Parra-Barranco, J. R. Sánchez-Valencia, A. Barranco, A. Borrás, A. R. González-Elipe, M. C. García-Gutiérrez, J. J. Hernández, D. R. Rueda, and T. A. Ezquerra, “Correlation lengths, porosity and water adsorption in TiO₂ thin films prepared by glancing angle deposition,” Nanotechnology 23(20), 205701 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, “Nanowire dye-sensitized solar cells,” Nat. Mater. 4(6), 455–459 (2005).
[Crossref] [PubMed]

Nature (2)

B. O’Regan and M. Gratzel, “A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 Films,” Nature 353(6346), 737–740 (1991).
[Crossref]

K. Robbie, M. J. Brett, and A. Lakhtakia, “Chiral sculptured thin films,” Nature 384(6610), 616 (1996).
[Crossref]

Phys. Chem. Chem. Phys. (2)

Q. Zhang, D. Myers, J. Lan, S. A. Jenekhe, and G. Cao, “Applications of light scattering in dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 14(43), 14982–14998 (2012).
[Crossref] [PubMed]

A. B. F. Martinson, J. E. McGarrah, M. O. K. Parpia, and J. T. Hupp, “Dynamics of charge transport and recombination in ZnO nanorod array dye-sensitized solar cells,” Phys. Chem. Chem. Phys. 8(40), 4655–4659 (2006).
[Crossref] [PubMed]

Riv. Nuovo Cim. (1)

L. Pavesi, “Porous silicon dielectric multilayers and microcavities,” Riv. Nuovo Cim. 20(10), 1–76 (1997).
[Crossref]

Science (2)

M. J. Brett and M. M. Hawkeye, “Materials science. New materials at a glance,” Science 319(5867), 1192–1193 (2008).
[Crossref] [PubMed]

A. Yella, H.-W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. K. Nazeeruddin, E. W.-G. Diau, C.-Y. Yeh, S. M. Zakeeruddin, and M. Grätzel, “Porphyrin-sensitized solar cells with cobalt (II/III)-Based redox electrolyte exceed 12 percent efficiency,” Science 334(6056), 629–634 (2011).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (1)

G. K. Kiema, M. J. Colgan, and M. J. Brett, “Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers,” Sol. Energy Mater. Sol. Cells 85(3), 321–331 (2005).
[Crossref]

Surf. Coat. Tech. (1)

K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie, and M. J. Brett, “Porous thin films for thermal barrier coatings,” Surf. Coat. Tech. 138(2-3), 185–191 (2001).
[Crossref]

Thin Solid Films (1)

H.-Y. Yang, M.-F. Lee, C.-H. Huang, Y.-S. Lo, Y.-J. Chen, and M.-S. Wong, “Glancing angle deposited titania films for dye-sensitized solar cells,” Thin Solid Films 518(5), 1590–1594 (2009).
[Crossref]

Other (1)

A. Barranco, A. Borras, A. R. Gonzalez-Elipe, and A. Palmero, “Perspectives on oblique angle deposition for thin films: From fundamentasl to devices,” Prog. Mater. Sci. (2015), doi:.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Cross section secondary electron microscopy image of a 3 µm TiO2 electrode with a 1DPC structure made of 12 alternated TiO2-SiO2 layers. In the left down corner, a micrograph detecting backscattering electrons is overlaid. (b) Backscattered (left) and secondary (right) electron microscopy images showing a detailed cross-section of the photonic structure.

Fig. 2
Fig. 2

(a) Specular reflectance spectra of the as-prepared electrodes combining 3 µm of TiO2 and 1DPC structures with different number of stacked layers. (b) The corresponding I-V curves under standard illumination conditions (100 mW cm−2, AM 1.5 G) of DSCs prepared with the previous structures. The IV curve measured for a DSC made of the same TiO2 electrode thickness but without photonic structure is also presented as a reference.

Fig. 3
Fig. 3

(a) Specular reflectance spectra of a DSC including a 10 layer PC and a 3 µm TiO2 nanocolumnar electrode measured from the front and rear sides as it is illustrated in the scheme (b). The dye absorption spectrum is included for comparison. (c) Pictures of a reference and a 10 layers PC DSCs, reporting both the transmittance (left) and the reflectance (right) views are reported.

Fig. 4
Fig. 4

Specular reflectance spectra of the 10 layer 1DPC DSCs (gray) and the photocurrent enhancement factors (red), defined as the ratio between the IPCE of the 1DPC based cells and that of the reference cell, for the electrode thicknesses indicated.

Tables (1)

Tables Icon

Table 1 Photovoltaic parameters extracted from the analysis of I-V curves presented in Fig. 2(b).

Metrics