Abstract

This work demonstrates a new approach – Scheimpflug lidar – for atmospheric aerosol monitoring. The atmospheric backscattering echo of a high-power continuous-wave laser diode is received by a Newtonian telescope and recorded by a tilted imaging sensor satisfying the Scheimpflug condition. The principles as well as the lidar equation are discussed in details. A Scheimpflug lidar system operating at around 808 nm is developed and employed for continuous atmospheric aerosol monitoring at daytime. Localized emission, atmospheric variation, as well as the changes of cloud height are observed from the recorded lidar signals. The extinction coefficient is retrieved according to the slope method for a homogeneous atmosphere. This work opens up new possibilities of using a compact and robust Scheimpflug lidar system for atmospheric aerosol remote sensing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Implementation of a violet Scheimpflug lidar system for atmospheric aerosol studies

Liang Mei, Zheng Kong, and Peng Guan
Opt. Express 26(6) A260-A274 (2018)

Particle profiling and classification by a dual-band continuous-wave lidar system

Guangyu Zhao, Elin Malmqvist, Sandra Török, Per-Erik Bengtsson, Sune Svanberg, Joakim Bood, and Mikkel Brydegaard
Appl. Opt. 57(35) 10164-10171 (2018)

Atmospheric extinction coefficient retrieval and validation for the single-band Mie-scattering Scheimpflug lidar technique

Liang Mei, Peng Guan, Yang Yang, and Zheng Kong
Opt. Express 25(16) A628-A638 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. K. Pachauri and L. A. Meyer, “Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,” (IPCC, 2014), pp. 151.
  2. J. Lenoble, L. Remer, and D. Tanre, Aerosol Remote Sensing (Springer, 2013).
  3. A. J. McMichael, R. E. Woodruff, and S. Hales, “Climate change and human health: present and future risks,” Lancet 367(9513), 859–869 (2006).
    [Crossref] [PubMed]
  4. W. P. Arnott, H. Moosmuller, P. J. Sheridan, J. A. Ogren, R. Raspet, W. V. Slaton, J. L. Hand, S. M. Kreidenweis, and J. L. Collett, “Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity,” J. Geophys. Res. Atmos. 108(D1), 11–15 (2003).
    [Crossref]
  5. R. J. Allen and W. E. Evans, “Laser radar (Lidar) for mapping aerosol structure,” Rev. Sci. Instrum. 43(10), 1422–1432 (1972).
    [Crossref]
  6. V. Matthais, V. Freudenthaler, A. Amodeo, I. Balin, D. Balis, J. Bösenberg, A. Chaikovsky, G. Chourdakis, A. Comeron, A. Delaval, F. De Tomasi, R. Eixmann, A. Hågård, L. Komguem, S. Kreipl, R. Matthey, V. Rizi, J. A. Rodrigues, U. Wandinger, and X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments,” Appl. Opt. 43(4), 961–976 (2004).
    [Crossref] [PubMed]
  7. V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (John Wiley & Sons, 2004).
  8. M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
    [Crossref]
  9. G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
    [Crossref]
  10. A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, “Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmos. Chem. Phys. 5(8), 2065–2079 (2005).
    [Crossref]
  11. D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. Atmos. 112(D16), D16202 (2007).
    [Crossref]
  12. A. Papayannis, R. E. Mamouri, V. Amiridis, E. Remoundaki, G. Tsaknakis, P. Kokkalis, I. Veselovskii, A. Kolgotin, A. Nenes, and C. Fountoukis, “Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis,” Atmos. Chem. Phys. 12(9), 4011–4032 (2012).
    [Crossref]
  13. M. R. Perrone, F. De Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
    [Crossref]
  14. K. Meki, K. Yamaguchi, X. Li, Y. Saito, T. D. Kawahara, and A. Nomura, “Range-resolved bistatic imaging lidar for the measurement of the lower atmosphere,” Opt. Lett. 21(17), 1318–1320 (1996).
    [Crossref] [PubMed]
  15. N. C. P. Sharma, J. E. Barnes, T. B. Kaplan, and A. D. Clarke, “Coastal aerosol profiling with a camera lidar and nephelometer,” J. Atmos. Ocean. Technol. 28(3), 418–425 (2011).
    [Crossref]
  16. G. Bickel, G. Hausler, and M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24(6), 246975 (1985).
    [Crossref]
  17. F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–243 (2004).
    [Crossref]
  18. U. Cilingiroglu, S. C. Chen, and E. Cilingiroglu, “Range sensing with a Scheimpflug camera and a CMOS sensor/processor chip,” IEEE Sens. J. 4(1), 36–44 (2004).
    [Crossref]
  19. M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles - Application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
    [Crossref]
  20. L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev., DOI: (2015).
    [Crossref]
  21. J. Carpentier, “Improvements in enlarging or like cameras,” Great Britain Patent No. 1139 (17 January 1901).
  22. T. Scheimpflug, “Improved method and apparatus for the systematic alteration or distortion of plane pictures and images by means of lenses and mirrors for photography and for other purposes,” Great Britain Patent No. 1196 (16 January 1904).
  23. T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC, 2005).
  24. W. P. Hooper and G. M. Frick, “Lidar detected spike returns,” J. Appl. Remote Sens. 4(1), 043549 (2010).
    [Crossref]
  25. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20(2), 211–220 (1981).
    [Crossref] [PubMed]
  26. T. Y. He, S. Stanic, F. Gao, K. Bergant, D. Veberic, X. Q. Song, and A. Dolzan, “Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements,” Atmos. Meas. Tech. 5(5), 891–900 (2012).
    [Crossref]
  27. J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
    [Crossref] [PubMed]
  28. H. L. Xu and S. L. Chin, “Femtosecond laser filamentation for atmospheric sensing,” Sensors (Basel) 11(1), 32–53 (2010).
    [Crossref] [PubMed]
  29. F. G. Fernald, “Analysis of atmospheric lidar observations: some comments,” Appl. Opt. 23(5), 652–653 (1984).
    [Crossref] [PubMed]
  30. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24(11), 1638–1643 (1985).
    [Crossref] [PubMed]

2014 (3)

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

M. R. Perrone, F. De Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
[Crossref]

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles - Application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

2012 (2)

T. Y. He, S. Stanic, F. Gao, K. Bergant, D. Veberic, X. Q. Song, and A. Dolzan, “Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements,” Atmos. Meas. Tech. 5(5), 891–900 (2012).
[Crossref]

A. Papayannis, R. E. Mamouri, V. Amiridis, E. Remoundaki, G. Tsaknakis, P. Kokkalis, I. Veselovskii, A. Kolgotin, A. Nenes, and C. Fountoukis, “Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis,” Atmos. Chem. Phys. 12(9), 4011–4032 (2012).
[Crossref]

2011 (1)

N. C. P. Sharma, J. E. Barnes, T. B. Kaplan, and A. D. Clarke, “Coastal aerosol profiling with a camera lidar and nephelometer,” J. Atmos. Ocean. Technol. 28(3), 418–425 (2011).
[Crossref]

2010 (2)

H. L. Xu and S. L. Chin, “Femtosecond laser filamentation for atmospheric sensing,” Sensors (Basel) 11(1), 32–53 (2010).
[Crossref] [PubMed]

W. P. Hooper and G. M. Frick, “Lidar detected spike returns,” J. Appl. Remote Sens. 4(1), 043549 (2010).
[Crossref]

2009 (1)

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

2007 (1)

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. Atmos. 112(D16), D16202 (2007).
[Crossref]

2006 (1)

A. J. McMichael, R. E. Woodruff, and S. Hales, “Climate change and human health: present and future risks,” Lancet 367(9513), 859–869 (2006).
[Crossref] [PubMed]

2005 (1)

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, “Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmos. Chem. Phys. 5(8), 2065–2079 (2005).
[Crossref]

2004 (3)

2003 (2)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

W. P. Arnott, H. Moosmuller, P. J. Sheridan, J. A. Ogren, R. Raspet, W. V. Slaton, J. L. Hand, S. M. Kreidenweis, and J. L. Collett, “Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity,” J. Geophys. Res. Atmos. 108(D1), 11–15 (2003).
[Crossref]

1996 (1)

1985 (2)

J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24(11), 1638–1643 (1985).
[Crossref] [PubMed]

G. Bickel, G. Hausler, and M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24(6), 246975 (1985).
[Crossref]

1984 (1)

1981 (1)

1972 (1)

R. J. Allen and W. E. Evans, “Laser radar (Lidar) for mapping aerosol structure,” Rev. Sci. Instrum. 43(10), 1422–1432 (1972).
[Crossref]

Alados-Arboledas, L.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

Allen, R. J.

R. J. Allen and W. E. Evans, “Laser radar (Lidar) for mapping aerosol structure,” Rev. Sci. Instrum. 43(10), 1422–1432 (1972).
[Crossref]

Althausen, D.

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. Atmos. 112(D16), D16202 (2007).
[Crossref]

Amiridis, V.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

A. Papayannis, R. E. Mamouri, V. Amiridis, E. Remoundaki, G. Tsaknakis, P. Kokkalis, I. Veselovskii, A. Kolgotin, A. Nenes, and C. Fountoukis, “Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis,” Atmos. Chem. Phys. 12(9), 4011–4032 (2012).
[Crossref]

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, “Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmos. Chem. Phys. 5(8), 2065–2079 (2005).
[Crossref]

Amodeo, A.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

V. Matthais, V. Freudenthaler, A. Amodeo, I. Balin, D. Balis, J. Bösenberg, A. Chaikovsky, G. Chourdakis, A. Comeron, A. Delaval, F. De Tomasi, R. Eixmann, A. Hågård, L. Komguem, S. Kreipl, R. Matthey, V. Rizi, J. A. Rodrigues, U. Wandinger, and X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments,” Appl. Opt. 43(4), 961–976 (2004).
[Crossref] [PubMed]

Andre, Y. B.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Ansmann, A.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. Atmos. 112(D16), D16202 (2007).
[Crossref]

Apituley, A.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Arnott, W. P.

W. P. Arnott, H. Moosmuller, P. J. Sheridan, J. A. Ogren, R. Raspet, W. V. Slaton, J. L. Hand, S. M. Kreidenweis, and J. L. Collett, “Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity,” J. Geophys. Res. Atmos. 108(D1), 11–15 (2003).
[Crossref]

Balin, I.

Balis, D.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, “Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmos. Chem. Phys. 5(8), 2065–2079 (2005).
[Crossref]

V. Matthais, V. Freudenthaler, A. Amodeo, I. Balin, D. Balis, J. Bösenberg, A. Chaikovsky, G. Chourdakis, A. Comeron, A. Delaval, F. De Tomasi, R. Eixmann, A. Hågård, L. Komguem, S. Kreipl, R. Matthey, V. Rizi, J. A. Rodrigues, U. Wandinger, and X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments,” Appl. Opt. 43(4), 961–976 (2004).
[Crossref] [PubMed]

Barnes, J. E.

N. C. P. Sharma, J. E. Barnes, T. B. Kaplan, and A. D. Clarke, “Coastal aerosol profiling with a camera lidar and nephelometer,” J. Atmos. Ocean. Technol. 28(3), 418–425 (2011).
[Crossref]

Bergant, K.

T. Y. He, S. Stanic, F. Gao, K. Bergant, D. Veberic, X. Q. Song, and A. Dolzan, “Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements,” Atmos. Meas. Tech. 5(5), 891–900 (2012).
[Crossref]

Bickel, G.

G. Bickel, G. Hausler, and M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24(6), 246975 (1985).
[Crossref]

Blais, F.

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–243 (2004).
[Crossref]

Bolarin, J. M.

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

Bosenberg, J.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Bösenberg, J.

Bourayou, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Brydegaard, M.

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles - Application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev., DOI: (2015).
[Crossref]

Castanho, A. D. A.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, “Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmos. Chem. Phys. 5(8), 2065–2079 (2005).
[Crossref]

Chaikovsky, A.

Chen, S. C.

U. Cilingiroglu, S. C. Chen, and E. Cilingiroglu, “Range sensing with a Scheimpflug camera and a CMOS sensor/processor chip,” IEEE Sens. J. 4(1), 36–44 (2004).
[Crossref]

Chin, S. L.

H. L. Xu and S. L. Chin, “Femtosecond laser filamentation for atmospheric sensing,” Sensors (Basel) 11(1), 32–53 (2010).
[Crossref] [PubMed]

Chourdakis, G.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, “Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmos. Chem. Phys. 5(8), 2065–2079 (2005).
[Crossref]

V. Matthais, V. Freudenthaler, A. Amodeo, I. Balin, D. Balis, J. Bösenberg, A. Chaikovsky, G. Chourdakis, A. Comeron, A. Delaval, F. De Tomasi, R. Eixmann, A. Hågård, L. Komguem, S. Kreipl, R. Matthey, V. Rizi, J. A. Rodrigues, U. Wandinger, and X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments,” Appl. Opt. 43(4), 961–976 (2004).
[Crossref] [PubMed]

Cilingiroglu, E.

U. Cilingiroglu, S. C. Chen, and E. Cilingiroglu, “Range sensing with a Scheimpflug camera and a CMOS sensor/processor chip,” IEEE Sens. J. 4(1), 36–44 (2004).
[Crossref]

Cilingiroglu, U.

U. Cilingiroglu, S. C. Chen, and E. Cilingiroglu, “Range sensing with a Scheimpflug camera and a CMOS sensor/processor chip,” IEEE Sens. J. 4(1), 36–44 (2004).
[Crossref]

Clarke, A. D.

N. C. P. Sharma, J. E. Barnes, T. B. Kaplan, and A. D. Clarke, “Coastal aerosol profiling with a camera lidar and nephelometer,” J. Atmos. Ocean. Technol. 28(3), 418–425 (2011).
[Crossref]

Collett, J. L.

W. P. Arnott, H. Moosmuller, P. J. Sheridan, J. A. Ogren, R. Raspet, W. V. Slaton, J. L. Hand, S. M. Kreidenweis, and J. L. Collett, “Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity,” J. Geophys. Res. Atmos. 108(D1), 11–15 (2003).
[Crossref]

Comeron, A.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

V. Matthais, V. Freudenthaler, A. Amodeo, I. Balin, D. Balis, J. Bösenberg, A. Chaikovsky, G. Chourdakis, A. Comeron, A. Delaval, F. De Tomasi, R. Eixmann, A. Hågård, L. Komguem, S. Kreipl, R. Matthey, V. Rizi, J. A. Rodrigues, U. Wandinger, and X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments,” Appl. Opt. 43(4), 961–976 (2004).
[Crossref] [PubMed]

Cordoba-Jabonero, C.

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

D’Amico, G.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

De Tomasi, F.

Delaval, A.

Diaz, J. P.

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

Dolzan, A.

T. Y. He, S. Stanic, F. Gao, K. Bergant, D. Veberic, X. Q. Song, and A. Dolzan, “Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements,” Atmos. Meas. Tech. 5(5), 891–900 (2012).
[Crossref]

Eixmann, R.

Evans, W. E.

R. J. Allen and W. E. Evans, “Laser radar (Lidar) for mapping aerosol structure,” Rev. Sci. Instrum. 43(10), 1422–1432 (1972).
[Crossref]

Exposito, F. J.

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

Fernald, F. G.

Fountoukis, C.

A. Papayannis, R. E. Mamouri, V. Amiridis, E. Remoundaki, G. Tsaknakis, P. Kokkalis, I. Veselovskii, A. Kolgotin, A. Nenes, and C. Fountoukis, “Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis,” Atmos. Chem. Phys. 12(9), 4011–4032 (2012).
[Crossref]

Freudenthaler, V.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

V. Matthais, V. Freudenthaler, A. Amodeo, I. Balin, D. Balis, J. Bösenberg, A. Chaikovsky, G. Chourdakis, A. Comeron, A. Delaval, F. De Tomasi, R. Eixmann, A. Hågård, L. Komguem, S. Kreipl, R. Matthey, V. Rizi, J. A. Rodrigues, U. Wandinger, and X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments,” Appl. Opt. 43(4), 961–976 (2004).
[Crossref] [PubMed]

Frey, S.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Frick, G. M.

W. P. Hooper and G. M. Frick, “Lidar detected spike returns,” J. Appl. Remote Sens. 4(1), 043549 (2010).
[Crossref]

Gao, F.

T. Y. He, S. Stanic, F. Gao, K. Bergant, D. Veberic, X. Q. Song, and A. Dolzan, “Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements,” Atmos. Meas. Tech. 5(5), 891–900 (2012).
[Crossref]

Gebru, A.

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles - Application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

Gil, M.

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

Gobbi, G. P.

M. R. Perrone, F. De Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
[Crossref]

Grabowski, J.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, “Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmos. Chem. Phys. 5(8), 2065–2079 (2005).
[Crossref]

Guerrero-Rascado, J. L.

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

Hågård, A.

Hales, S.

A. J. McMichael, R. E. Woodruff, and S. Hales, “Climate change and human health: present and future risks,” Lancet 367(9513), 859–869 (2006).
[Crossref] [PubMed]

Hand, J. L.

W. P. Arnott, H. Moosmuller, P. J. Sheridan, J. A. Ogren, R. Raspet, W. V. Slaton, J. L. Hand, S. M. Kreidenweis, and J. L. Collett, “Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity,” J. Geophys. Res. Atmos. 108(D1), 11–15 (2003).
[Crossref]

Hausler, G.

G. Bickel, G. Hausler, and M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24(6), 246975 (1985).
[Crossref]

He, T. Y.

T. Y. He, S. Stanic, F. Gao, K. Bergant, D. Veberic, X. Q. Song, and A. Dolzan, “Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements,” Atmos. Meas. Tech. 5(5), 891–900 (2012).
[Crossref]

Hooper, W. P.

W. P. Hooper and G. M. Frick, “Lidar detected spike returns,” J. Appl. Remote Sens. 4(1), 043549 (2010).
[Crossref]

Kaplan, T. B.

N. C. P. Sharma, J. E. Barnes, T. B. Kaplan, and A. D. Clarke, “Coastal aerosol profiling with a camera lidar and nephelometer,” J. Atmos. Ocean. Technol. 28(3), 418–425 (2011).
[Crossref]

Kasparian, J.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Kawahara, T. D.

Kazadzis, S.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, “Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmos. Chem. Phys. 5(8), 2065–2079 (2005).
[Crossref]

Klett, J. D.

Kokkalis, P.

A. Papayannis, R. E. Mamouri, V. Amiridis, E. Remoundaki, G. Tsaknakis, P. Kokkalis, I. Veselovskii, A. Kolgotin, A. Nenes, and C. Fountoukis, “Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis,” Atmos. Chem. Phys. 12(9), 4011–4032 (2012).
[Crossref]

Kolgotin, A.

A. Papayannis, R. E. Mamouri, V. Amiridis, E. Remoundaki, G. Tsaknakis, P. Kokkalis, I. Veselovskii, A. Kolgotin, A. Nenes, and C. Fountoukis, “Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis,” Atmos. Chem. Phys. 12(9), 4011–4032 (2012).
[Crossref]

Komguem, L.

Kreidenweis, S. M.

W. P. Arnott, H. Moosmuller, P. J. Sheridan, J. A. Ogren, R. Raspet, W. V. Slaton, J. L. Hand, S. M. Kreidenweis, and J. L. Collett, “Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity,” J. Geophys. Res. Atmos. 108(D1), 11–15 (2003).
[Crossref]

Kreipl, S.

Li, X.

Linne, H.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Mamouri, R. E.

A. Papayannis, R. E. Mamouri, V. Amiridis, E. Remoundaki, G. Tsaknakis, P. Kokkalis, I. Veselovskii, A. Kolgotin, A. Nenes, and C. Fountoukis, “Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis,” Atmos. Chem. Phys. 12(9), 4011–4032 (2012).
[Crossref]

Martinez-Lozano, J. A.

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

Matthais, V.

Matthey, R.

Mattis, I.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. Atmos. 112(D16), D16202 (2007).
[Crossref]

Maul, M.

G. Bickel, G. Hausler, and M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24(6), 246975 (1985).
[Crossref]

McMichael, A. J.

A. J. McMichael, R. E. Woodruff, and S. Hales, “Climate change and human health: present and future risks,” Lancet 367(9513), 859–869 (2006).
[Crossref] [PubMed]

Mei, L.

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev., DOI: (2015).
[Crossref]

Méjean, G.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Meki, K.

Molero, F.

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

Mona, L.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Moosmuller, H.

W. P. Arnott, H. Moosmuller, P. J. Sheridan, J. A. Ogren, R. Raspet, W. V. Slaton, J. L. Hand, S. M. Kreidenweis, and J. L. Collett, “Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity,” J. Geophys. Res. Atmos. 108(D1), 11–15 (2003).
[Crossref]

Moreno, J. M.

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

Müller, D.

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. Atmos. 112(D16), D16202 (2007).
[Crossref]

Mysyrowicz, A.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Navas-Guzman, F.

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

Nenes, A.

A. Papayannis, R. E. Mamouri, V. Amiridis, E. Remoundaki, G. Tsaknakis, P. Kokkalis, I. Veselovskii, A. Kolgotin, A. Nenes, and C. Fountoukis, “Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis,” Atmos. Chem. Phys. 12(9), 4011–4032 (2012).
[Crossref]

Nickovic, S.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, “Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmos. Chem. Phys. 5(8), 2065–2079 (2005).
[Crossref]

Nicolae, D.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Nomura, A.

Ogren, J. A.

W. P. Arnott, H. Moosmuller, P. J. Sheridan, J. A. Ogren, R. Raspet, W. V. Slaton, J. L. Hand, S. M. Kreidenweis, and J. L. Collett, “Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity,” J. Geophys. Res. Atmos. 108(D1), 11–15 (2003).
[Crossref]

Papayannis, A.

A. Papayannis, R. E. Mamouri, V. Amiridis, E. Remoundaki, G. Tsaknakis, P. Kokkalis, I. Veselovskii, A. Kolgotin, A. Nenes, and C. Fountoukis, “Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis,” Atmos. Chem. Phys. 12(9), 4011–4032 (2012).
[Crossref]

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, “Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmos. Chem. Phys. 5(8), 2065–2079 (2005).
[Crossref]

Pappalardo, G.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Pedros, R.

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

Perrone, M. R.

M. R. Perrone, F. De Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
[Crossref]

Pisani, G.

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. Atmos. 112(D16), D16202 (2007).
[Crossref]

Pujadas, M.

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

Raspet, R.

W. P. Arnott, H. Moosmuller, P. J. Sheridan, J. A. Ogren, R. Raspet, W. V. Slaton, J. L. Hand, S. M. Kreidenweis, and J. L. Collett, “Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity,” J. Geophys. Res. Atmos. 108(D1), 11–15 (2003).
[Crossref]

Remoundaki, E.

A. Papayannis, R. E. Mamouri, V. Amiridis, E. Remoundaki, G. Tsaknakis, P. Kokkalis, I. Veselovskii, A. Kolgotin, A. Nenes, and C. Fountoukis, “Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis,” Atmos. Chem. Phys. 12(9), 4011–4032 (2012).
[Crossref]

Requena, A.

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

Rizi, V.

Rocadenbosch, F.

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

Rodrigues, J. A.

Rodriguez, M.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Saito, Y.

Salmon, E.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Sauerbrey, R.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Sharma, N. C. P.

N. C. P. Sharma, J. E. Barnes, T. B. Kaplan, and A. D. Clarke, “Coastal aerosol profiling with a camera lidar and nephelometer,” J. Atmos. Ocean. Technol. 28(3), 418–425 (2011).
[Crossref]

Sheridan, P. J.

W. P. Arnott, H. Moosmuller, P. J. Sheridan, J. A. Ogren, R. Raspet, W. V. Slaton, J. L. Hand, S. M. Kreidenweis, and J. L. Collett, “Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity,” J. Geophys. Res. Atmos. 108(D1), 11–15 (2003).
[Crossref]

Sicard, M.

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

Slaton, W. V.

W. P. Arnott, H. Moosmuller, P. J. Sheridan, J. A. Ogren, R. Raspet, W. V. Slaton, J. L. Hand, S. M. Kreidenweis, and J. L. Collett, “Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity,” J. Geophys. Res. Atmos. 108(D1), 11–15 (2003).
[Crossref]

Song, X. Q.

T. Y. He, S. Stanic, F. Gao, K. Bergant, D. Veberic, X. Q. Song, and A. Dolzan, “Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements,” Atmos. Meas. Tech. 5(5), 891–900 (2012).
[Crossref]

Stanic, S.

T. Y. He, S. Stanic, F. Gao, K. Bergant, D. Veberic, X. Q. Song, and A. Dolzan, “Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements,” Atmos. Meas. Tech. 5(5), 891–900 (2012).
[Crossref]

Svanberg, S.

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles - Application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

Tesche, M.

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. Atmos. 112(D16), D16202 (2007).
[Crossref]

Tsaknakis, G.

A. Papayannis, R. E. Mamouri, V. Amiridis, E. Remoundaki, G. Tsaknakis, P. Kokkalis, I. Veselovskii, A. Kolgotin, A. Nenes, and C. Fountoukis, “Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis,” Atmos. Chem. Phys. 12(9), 4011–4032 (2012).
[Crossref]

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, “Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmos. Chem. Phys. 5(8), 2065–2079 (2005).
[Crossref]

Veberic, D.

T. Y. He, S. Stanic, F. Gao, K. Bergant, D. Veberic, X. Q. Song, and A. Dolzan, “Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements,” Atmos. Meas. Tech. 5(5), 891–900 (2012).
[Crossref]

Veselovskii, I.

A. Papayannis, R. E. Mamouri, V. Amiridis, E. Remoundaki, G. Tsaknakis, P. Kokkalis, I. Veselovskii, A. Kolgotin, A. Nenes, and C. Fountoukis, “Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis,” Atmos. Chem. Phys. 12(9), 4011–4032 (2012).
[Crossref]

Wandinger, U.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. Atmos. 112(D16), D16202 (2007).
[Crossref]

V. Matthais, V. Freudenthaler, A. Amodeo, I. Balin, D. Balis, J. Bösenberg, A. Chaikovsky, G. Chourdakis, A. Comeron, A. Delaval, F. De Tomasi, R. Eixmann, A. Hågård, L. Komguem, S. Kreipl, R. Matthey, V. Rizi, J. A. Rodrigues, U. Wandinger, and X. Wang, “Aerosol lidar intercomparison in the framework of the EARLINET project. 1. Instruments,” Appl. Opt. 43(4), 961–976 (2004).
[Crossref] [PubMed]

Wang, X.

Wiegner, M.

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

Wille, H.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Wolf, J. P.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Woodruff, R. E.

A. J. McMichael, R. E. Woodruff, and S. Hales, “Climate change and human health: present and future risks,” Lancet 367(9513), 859–869 (2006).
[Crossref] [PubMed]

Wöste, L.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Xu, H. L.

H. L. Xu and S. L. Chin, “Femtosecond laser filamentation for atmospheric sensing,” Sensors (Basel) 11(1), 32–53 (2010).
[Crossref] [PubMed]

Yamaguchi, K.

Yu, J.

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Zerefos, C.

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, “Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmos. Chem. Phys. 5(8), 2065–2079 (2005).
[Crossref]

Appl. Opt. (4)

Atmos. Chem. Phys. (3)

A. Papayannis, D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. D. A. Castanho, S. Nickovic, S. Kazadzis, and J. Grabowski, “Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,” Atmos. Chem. Phys. 5(8), 2065–2079 (2005).
[Crossref]

A. Papayannis, R. E. Mamouri, V. Amiridis, E. Remoundaki, G. Tsaknakis, P. Kokkalis, I. Veselovskii, A. Kolgotin, A. Nenes, and C. Fountoukis, “Optical-microphysical properties of Saharan dust aerosols and composition relationship using a multi-wavelength Raman lidar, in situ sensors and modelling: a case study analysis,” Atmos. Chem. Phys. 12(9), 4011–4032 (2012).
[Crossref]

M. R. Perrone, F. De Tomasi, and G. P. Gobbi, “Vertically resolved aerosol properties by multi-wavelength lidar measurements,” Atmos. Chem. Phys. 14(3), 1185–1204 (2014).
[Crossref]

Atmos. Meas. Tech. (2)

G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linne, A. Ansmann, J. Bosenberg, G. D’Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner, “EARLINET: towards an advanced sustainable European aerosol lidar network,” Atmos. Meas. Tech. 7(8), 2389–2409 (2014).
[Crossref]

T. Y. He, S. Stanic, F. Gao, K. Bergant, D. Veberic, X. Q. Song, and A. Dolzan, “Tracking of urban aerosols using combined LIDAR-based remote sensing and ground-based measurements,” Atmos. Meas. Tech. 5(5), 891–900 (2012).
[Crossref]

IEEE Sens. J. (1)

U. Cilingiroglu, S. C. Chen, and E. Cilingiroglu, “Range sensing with a Scheimpflug camera and a CMOS sensor/processor chip,” IEEE Sens. J. 4(1), 36–44 (2004).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (1)

M. Sicard, F. Molero, J. L. Guerrero-Rascado, R. Pedros, F. J. Exposito, C. Cordoba-Jabonero, J. M. Bolarin, A. Comeron, F. Rocadenbosch, M. Pujadas, L. Alados-Arboledas, J. A. Martinez-Lozano, J. P. Diaz, M. Gil, A. Requena, F. Navas-Guzman, and J. M. Moreno, “Aerosol lidar intercomparison in the framework of SPALINET-The Spanish lidar network:methodology and results,” IEEE Trans. Geosci. Rem. Sens. 47(10), 3547–3559 (2009).
[Crossref]

J. Appl. Remote Sens. (1)

W. P. Hooper and G. M. Frick, “Lidar detected spike returns,” J. Appl. Remote Sens. 4(1), 043549 (2010).
[Crossref]

J. Atmos. Ocean. Technol. (1)

N. C. P. Sharma, J. E. Barnes, T. B. Kaplan, and A. D. Clarke, “Coastal aerosol profiling with a camera lidar and nephelometer,” J. Atmos. Ocean. Technol. 28(3), 418–425 (2011).
[Crossref]

J. Electron. Imaging (1)

F. Blais, “Review of 20 years of range sensor development,” J. Electron. Imaging 13(1), 231–243 (2004).
[Crossref]

J. Geophys. Res. Atmos. (2)

D. Müller, A. Ansmann, I. Mattis, M. Tesche, U. Wandinger, D. Althausen, and G. Pisani, “Aerosol-type-dependent lidar ratios observed with Raman lidar,” J. Geophys. Res. Atmos. 112(D16), D16202 (2007).
[Crossref]

W. P. Arnott, H. Moosmuller, P. J. Sheridan, J. A. Ogren, R. Raspet, W. V. Slaton, J. L. Hand, S. M. Kreidenweis, and J. L. Collett, “Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity,” J. Geophys. Res. Atmos. 108(D1), 11–15 (2003).
[Crossref]

Lancet (1)

A. J. McMichael, R. E. Woodruff, and S. Hales, “Climate change and human health: present and future risks,” Lancet 367(9513), 859–869 (2006).
[Crossref] [PubMed]

Opt. Eng. (1)

G. Bickel, G. Hausler, and M. Maul, “Triangulation with expanded range of depth,” Opt. Eng. 24(6), 246975 (1985).
[Crossref]

Opt. Lett. (1)

Prog. Electromagnetics Res. (1)

M. Brydegaard, A. Gebru, and S. Svanberg, “Super resolution laser radar with blinking atmospheric particles - Application to interacting flying insects,” Prog. Electromagnetics Res. 147, 141–151 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

R. J. Allen and W. E. Evans, “Laser radar (Lidar) for mapping aerosol structure,” Rev. Sci. Instrum. 43(10), 1422–1432 (1972).
[Crossref]

Science (1)

J. Kasparian, M. Rodriguez, G. Méjean, J. Yu, E. Salmon, H. Wille, R. Bourayou, S. Frey, Y. B. Andre, A. Mysyrowicz, R. Sauerbrey, J. P. Wolf, and L. Wöste, “White-light filaments for atmospheric analysis,” Science 301(5629), 61–64 (2003).
[Crossref] [PubMed]

Sensors (Basel) (1)

H. L. Xu and S. L. Chin, “Femtosecond laser filamentation for atmospheric sensing,” Sensors (Basel) 11(1), 32–53 (2010).
[Crossref] [PubMed]

Other (7)

L. Mei and M. Brydegaard, “Continuous-wave differential absorption lidar,” Laser Photonics Rev., DOI: (2015).
[Crossref]

J. Carpentier, “Improvements in enlarging or like cameras,” Great Britain Patent No. 1139 (17 January 1901).

T. Scheimpflug, “Improved method and apparatus for the systematic alteration or distortion of plane pictures and images by means of lenses and mirrors for photography and for other purposes,” Great Britain Patent No. 1196 (16 January 1904).

T. Fujii and T. Fukuchi, Laser Remote Sensing (CRC, 2005).

R. K. Pachauri and L. A. Meyer, “Climate Change 2014: Synthesis Report, Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,” (IPCC, 2014), pp. 151.

J. Lenoble, L. Remer, and D. Tanre, Aerosol Remote Sensing (Springer, 2013).

V. A. Kovalev and W. E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (John Wiley & Sons, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 System schematic of SLidar, the PoF is collectively determined by the Scheimpflug intersect and hinge intersect. f – the focal length of the receiving telescope, L – the distance of the lens from the object plane, L IL – the distance between lens and image planes, p I – the pixel position of the image sensor on the image plane, z – the distance of the object along the object plane, Φ – the swing angle of lens, Θ – the tilt angle of the image plane to the lens plane, γ – the sampling angle for each pixel, θ and θ || are the divergence angle of the laser diode in y-axis/fast axis and x-axis/slow axis directions. The pixel number 1 corresponds to the closest measurement distance ( z 0 ) p I . The laser diode is predominately TE polarized, i.e., the polarization is along the slow axis.
Fig. 2
Fig. 2 Pixel-distance relationship with different swing angles Φ and L IL , which can be calibrated by a reference target with known distance. The center of the fictive image sensor (6000 pixel, 5.5 μm pixel pitch, sensor length 33 mm) is placed coinciding with the optical axis of the lens. f=0.8 m, Θ= 45 . The theoretical range resolution under the circumstance of infinite narrow laser beam for the close distance is astonishingly high, e.g., 0.02 m @ 50 m, while it deteriorates as the increase of the measurement distance, e.g., 38 m @ 2.5 km. Considering that the distance of the calibration target is 1000 m ( ± 10m uncertainty) and the corresponding pixel position is 3826( ± 2 pixel uncertainty), the calibrated swing angle is then 0.276 ± 0.001°. The distance uncertainty due to the measurement errors of z ref and p I,ref increases linearly with the distance, e.g., ± 0.1% at around 100 m, and ± 1% at around 1 km under the given circumstance.
Fig. 3
Fig. 3 (a) A concept sketch of the transverse pixel footprint and laser beam in atmosphere, the stripe area is the overlap between the pixel footprint and the laser beam. (b) Range spread functions (RSFs) for infinite-narrow laser beam and laser beam with finite width. z 1 ( n p ) and z 2 ( n p ) are the intersection distances of the pixel sampling footprint and the laser beam.
Fig. 4
Fig. 4 System schematic of a typical SLidar system.
Fig. 5
Fig. 5 Schematic of linear interpolation of lidar signals for a three-wavelength time-multiplexing SLidar system, Bg – background.
Fig. 6
Fig. 6 Experimental site (Lund, southern Sweden), the elevation angle is about 4.2°.
Fig. 7
Fig. 7 (a) and (b) Laser beam images at the slow axis (x-axis) and fast axis (y-axis), (c) Laser beam widths at the slow and fast axis, (d) Effective range resolution when orienting the fast axis of the laser diode along y-axis direction. It should be emphasized here that the beam shape for the slow axis is rectangular while it is near Gaussian in the fast axis. The divergences of the transmitted laser beam are 0.1 mrad and 0.3 mrad for the fast axis and slow axis, respectively.
Fig. 8
Fig. 8 Backscattering intensity recorded by the CMOS camera, 18-s measurement time.
Fig. 9
Fig. 9 (a) Range-time map of atmospheric backscattering echoes recorded by the SLidar system on April 9th, 2015 (local time), the exposure time is 15 ms and each lidar curve is a statistic median value over 18 s (600 recordings), (b) Relative humidity and temperature variation, (c) wind speed, the wind direction is mostly from south. The backscattering intensities are plotted in log-scale.
Fig. 10
Fig. 10 Backscattering lidar curves at three different recording times on April 9th, 2015 (local time). Exposure time is 15 ms, 600-time average for a single lidar curve. The dot-curve with the text label SNR = 3 gives the intensity where the SNR is equal to 3.
Fig. 11
Fig. 11 Cloud height detection using the SLidar system, the exposure time is 20 ms and each lidar curve is a statistic median value over 20 s (500 recordings). (a) range-time map of atmospheric backscattering signal (local time), (b) temperature and relative humidity variation, (c) wind speed, the wind direction is mostly from south west. The backscattering intensities are plotted in log-scale.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

z= L[ p I (sinΘcosΘtanΦ)+ L IL ] p I (cosΘ+sinΘtanΦ)+ L IL tanΦ ,
Φ=arctan L z ref arctan p I,ref cosΘ( z ref f) z ref f ,
L IL = z ref f z ref f p I,ref sinΘ.
P S (λ,z)= P 0 (λ)C O x (z)dz z 2 β(λ,z)exp[ 2 0 z α(λ,z')dz' ].
dz= z 2 sinΘ( 1 tan 2 Φ ) [ p I (sinΘcosΘtanΦ)+ L IL ] 2 d p I .
P S (λ,z)=Kβ(λ,z)exp[ 2 0 z α(λ,z')dz' ].
RSF( n p ,z)= O y ( n p ,z) w(z) .
d z eq = RSF( n p ,z')dz' .
d z eff = z 2 ( n p ) z 1 ( n p +1).
d z eff w[z( n p )] / γ( n p ) z( n p )w[z( n p )]/L.
ln( P s (z))=K+lnβ2αz

Metrics