Abstract

Hematite holds promise for photoelectrochemical (PEC) water splitting due to its stability, low-cost, abundance and appropriate bandgap. However, it suffers from a mismatch between the hole diffusion length and light penetration length. We have theoretically designed and characterized an ultrathin planar hematite/silver nanohole array/silver substrate photoanode. Due to the supported destructive interference and surface plasmon resonance, photons are efficiently absorbed in an ultrathin hematite film. Compared with ultrathin hematite photoanodes with nanophotonic structures, this photoanode has comparable photon absorption but with intrinsically lower recombination losses due to its planar structure and promises to exceed the state-of-the-art photocurrent of hematite photoanodes.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Immersed finger-type indium tin oxide ohmic contacts on p-GaN photoelectrodes for photoelectrochemical hydrogen generation

Shu-Yen Liu, J. K. Sheu, M. L. Lee, Yu-Chuan Lin, S. J. Tu, F. W. Huang, and W. C. Lai
Opt. Express 20(S2) A190-A196 (2012)

Photoelectrolysis of water: Solar hydrogen–achievements and perspectives

Kȩstutis Juodkazis, Jurga Juodkazytė, Edgaras Jelmakas, Putinas Kalinauskas, Ignas Valsiūnas, Povilas Miečinskas, and Saulius Juodkazis
Opt. Express 18(S2) A147-A160 (2010)

References

  • View by:
  • |
  • |
  • |

  1. K. Sivula, F. Le Formal, and M. Grätzel, “Solar water splitting: progress using hematite (α-Fe2 O3) photoelectrodes,” ChemSusChem 4(4), 432–449 (2011).
    [Crossref] [PubMed]
  2. Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
    [Crossref]
  3. K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Grätzel, “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach,” J. Am. Chem. Soc. 132(21), 7436–7444 (2010).
    [Crossref] [PubMed]
  4. J. Brillet, M. Grätzel, and K. Sivula, “Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting,” Nano Lett. 10(10), 4155–4160 (2010).
    [Crossref] [PubMed]
  5. S. D. Tilley, M. Cornuz, K. Sivula, and M. Grätzel, “Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis,” Angew. Chem. Int. Ed. Engl. 49(36), 6405–6408 (2010).
    [Crossref] [PubMed]
  6. J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, “Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting,” Sci. Rep. 3, 2681 (2013).
    [PubMed]
  7. Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li, “Sn-doped hematite nanostructures for photoelectrochemical water splitting,” Nano Lett. 11(5), 2119–2125 (2011).
    [Crossref] [PubMed]
  8. S. H. Shen, J. G. Jiang, P. H. Guo, C. X. Kronawitter, S. S. Mao, and L. J. Guo, “Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes,” Nano Energy 1(5), 732–741 (2012).
    [Crossref]
  9. M. Li, J. J. Deng, A. W. Pu, P. P. Zhang, H. Zhang, J. Gao, Y. Y. Hao, J. Zhong, and X. H. Sun, “Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6727–6733 (2014).
    [Crossref]
  10. Y. Qiu, S. F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K. H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures,” Nano Lett. 14(4), 2123–2129 (2014).
    [Crossref] [PubMed]
  11. H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2012).
    [Crossref] [PubMed]
  12. K. X. Wang, Z. F. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. H. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
    [Crossref] [PubMed]
  13. S. J. Kim, I. Thomann, J. Park, J. H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
    [Crossref] [PubMed]
  14. J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core-shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
    [Crossref] [PubMed]
  15. R. Yu, Q. F. Lin, S. F. Leung, and Z. Y. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1(1), 57–72 (2012).
    [Crossref]
  16. F. Xiu, H. Lin, M. Fang, G. F. Dong, S. P. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86(5), 557–573 (2014).
    [Crossref]
  17. I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
    [Crossref] [PubMed]
  18. B. Iandolo, T. J. Antosiewicz, A. Hellman, and I. Zorić, “On the mechanism for nanoplasmonic enhancement of photon to electron conversion in nanoparticle sensitized hematite films,” Phys. Chem. Chem. Phys. 15(14), 4947–4954 (2013).
    [Crossref] [PubMed]
  19. M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
    [Crossref] [PubMed]
  20. A. Taflove and S. C. Hagness, Computational Eletrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).
  21. J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
    [Crossref]
  22. N. Beermann, L. Vayssieres, S. Lindquist, and A. Hagfeldt, “Photoelectrochemical studies of oriented nanorod thin films of hematite,” J. Electrochem. Soc. 147(7), 2456–2461 (2000).
    [Crossref]
  23. S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
    [Crossref] [PubMed]

2014 (5)

M. Li, J. J. Deng, A. W. Pu, P. P. Zhang, H. Zhang, J. Gao, Y. Y. Hao, J. Zhong, and X. H. Sun, “Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6727–6733 (2014).
[Crossref]

Y. Qiu, S. F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K. H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

K. X. Wang, Z. F. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. H. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref] [PubMed]

S. J. Kim, I. Thomann, J. Park, J. H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

F. Xiu, H. Lin, M. Fang, G. F. Dong, S. P. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86(5), 557–573 (2014).
[Crossref]

2013 (3)

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

B. Iandolo, T. J. Antosiewicz, A. Hellman, and I. Zorić, “On the mechanism for nanoplasmonic enhancement of photon to electron conversion in nanoparticle sensitized hematite films,” Phys. Chem. Chem. Phys. 15(14), 4947–4954 (2013).
[Crossref] [PubMed]

J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, “Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting,” Sci. Rep. 3, 2681 (2013).
[PubMed]

2012 (4)

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2012).
[Crossref] [PubMed]

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

S. H. Shen, J. G. Jiang, P. H. Guo, C. X. Kronawitter, S. S. Mao, and L. J. Guo, “Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes,” Nano Energy 1(5), 732–741 (2012).
[Crossref]

R. Yu, Q. F. Lin, S. F. Leung, and Z. Y. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1(1), 57–72 (2012).
[Crossref]

2011 (4)

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core-shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
[Crossref] [PubMed]

Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li, “Sn-doped hematite nanostructures for photoelectrochemical water splitting,” Nano Lett. 11(5), 2119–2125 (2011).
[Crossref] [PubMed]

K. Sivula, F. Le Formal, and M. Grätzel, “Solar water splitting: progress using hematite (α-Fe2 O3) photoelectrodes,” ChemSusChem 4(4), 432–449 (2011).
[Crossref] [PubMed]

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref] [PubMed]

2010 (4)

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Grätzel, “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach,” J. Am. Chem. Soc. 132(21), 7436–7444 (2010).
[Crossref] [PubMed]

J. Brillet, M. Grätzel, and K. Sivula, “Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting,” Nano Lett. 10(10), 4155–4160 (2010).
[Crossref] [PubMed]

S. D. Tilley, M. Cornuz, K. Sivula, and M. Grätzel, “Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis,” Angew. Chem. Int. Ed. Engl. 49(36), 6405–6408 (2010).
[Crossref] [PubMed]

2004 (1)

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

2000 (1)

N. Beermann, L. Vayssieres, S. Lindquist, and A. Hagfeldt, “Photoelectrochemical studies of oriented nanorod thin films of hematite,” J. Electrochem. Soc. 147(7), 2456–2461 (2000).
[Crossref]

Ankonina, G.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2012).
[Crossref] [PubMed]

Antosiewicz, T. J.

B. Iandolo, T. J. Antosiewicz, A. Hellman, and I. Zorić, “On the mechanism for nanoplasmonic enhancement of photon to electron conversion in nanoparticle sensitized hematite films,” Phys. Chem. Chem. Phys. 15(14), 4947–4954 (2013).
[Crossref] [PubMed]

Beermann, N.

N. Beermann, L. Vayssieres, S. Lindquist, and A. Hagfeldt, “Photoelectrochemical studies of oriented nanorod thin films of hematite,” J. Electrochem. Soc. 147(7), 2456–2461 (2000).
[Crossref]

Blanchard, R.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Blank, O.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2012).
[Crossref] [PubMed]

Brillet, J.

J. Brillet, M. Grätzel, and K. Sivula, “Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting,” Nano Lett. 10(10), 4155–4160 (2010).
[Crossref] [PubMed]

Brittman, S.

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core-shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
[Crossref] [PubMed]

Brongersma, M. L.

K. X. Wang, Z. F. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. H. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref] [PubMed]

S. J. Kim, I. Thomann, J. Park, J. H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref] [PubMed]

Capasso, F.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Chen, Z.

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref] [PubMed]

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Clemens, B. M.

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref] [PubMed]

Cornuz, M.

S. D. Tilley, M. Cornuz, K. Sivula, and M. Grätzel, “Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis,” Angew. Chem. Int. Ed. Engl. 49(36), 6405–6408 (2010).
[Crossref] [PubMed]

Cui, Y.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

Deng, J. J.

M. Li, J. J. Deng, A. W. Pu, P. P. Zhang, H. Zhang, J. Gao, Y. Y. Hao, J. Zhong, and X. H. Sun, “Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6727–6733 (2014).
[Crossref]

Deutsch, T. G.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Dinh, H. N.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Domen, K.

J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, “Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting,” Sci. Rep. 3, 2681 (2013).
[PubMed]

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Dong, G. F.

F. Xiu, H. Lin, M. Fang, G. F. Dong, S. P. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86(5), 557–573 (2014).
[Crossref]

Dotan, H.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2012).
[Crossref] [PubMed]

Dumchin, I.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2012).
[Crossref] [PubMed]

Fan, S. H.

K. X. Wang, Z. F. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. H. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref] [PubMed]

Fan, Z.

Y. Qiu, S. F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K. H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Fan, Z. Y.

R. Yu, Q. F. Lin, S. F. Leung, and Z. Y. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1(1), 57–72 (2012).
[Crossref]

Fang, M.

F. Xiu, H. Lin, M. Fang, G. F. Dong, S. P. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86(5), 557–573 (2014).
[Crossref]

Forman, A. J.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Frydrych, J.

K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Grätzel, “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach,” J. Am. Chem. Soc. 132(21), 7436–7444 (2010).
[Crossref] [PubMed]

Gaillard, N.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Gao, H.

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core-shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
[Crossref] [PubMed]

Gao, J.

M. Li, J. J. Deng, A. W. Pu, P. P. Zhang, H. Zhang, J. Gao, Y. Y. Hao, J. Zhong, and X. H. Sun, “Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6727–6733 (2014).
[Crossref]

Garland, R.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Genevet, P.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Grätzel, M.

K. Sivula, F. Le Formal, and M. Grätzel, “Solar water splitting: progress using hematite (α-Fe2 O3) photoelectrodes,” ChemSusChem 4(4), 432–449 (2011).
[Crossref] [PubMed]

K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Grätzel, “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach,” J. Am. Chem. Soc. 132(21), 7436–7444 (2010).
[Crossref] [PubMed]

S. D. Tilley, M. Cornuz, K. Sivula, and M. Grätzel, “Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis,” Angew. Chem. Int. Ed. Engl. 49(36), 6405–6408 (2010).
[Crossref] [PubMed]

J. Brillet, M. Grätzel, and K. Sivula, “Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting,” Nano Lett. 10(10), 4155–4160 (2010).
[Crossref] [PubMed]

Gross, M.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2012).
[Crossref] [PubMed]

Guo, L. J.

S. H. Shen, J. G. Jiang, P. H. Guo, C. X. Kronawitter, S. S. Mao, and L. J. Guo, “Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes,” Nano Energy 1(5), 732–741 (2012).
[Crossref]

Guo, P. H.

S. H. Shen, J. G. Jiang, P. H. Guo, C. X. Kronawitter, S. S. Mao, and L. J. Guo, “Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes,” Nano Energy 1(5), 732–741 (2012).
[Crossref]

Hagfeldt, A.

N. Beermann, L. Vayssieres, S. Lindquist, and A. Hagfeldt, “Photoelectrochemical studies of oriented nanorod thin films of hematite,” J. Electrochem. Soc. 147(7), 2456–2461 (2000).
[Crossref]

Hao, Y. Y.

M. Li, J. J. Deng, A. W. Pu, P. P. Zhang, H. Zhang, J. Gao, Y. Y. Hao, J. Zhong, and X. H. Sun, “Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6727–6733 (2014).
[Crossref]

Hellman, A.

B. Iandolo, T. J. Antosiewicz, A. Hellman, and I. Zorić, “On the mechanism for nanoplasmonic enhancement of photon to electron conversion in nanoparticle sensitized hematite films,” Phys. Chem. Chem. Phys. 15(14), 4947–4954 (2013).
[Crossref] [PubMed]

Heske, C.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Ho, J. C.

F. Xiu, H. Lin, M. Fang, G. F. Dong, S. P. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86(5), 557–573 (2014).
[Crossref]

Hua, B.

Y. Qiu, S. F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K. H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Huo, Z.

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core-shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
[Crossref] [PubMed]

Iandolo, B.

B. Iandolo, T. J. Antosiewicz, A. Hellman, and I. Zorić, “On the mechanism for nanoplasmonic enhancement of photon to electron conversion in nanoparticle sensitized hematite films,” Phys. Chem. Chem. Phys. 15(14), 4947–4954 (2013).
[Crossref] [PubMed]

Jang, J. W.

J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, “Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting,” Sci. Rep. 3, 2681 (2013).
[PubMed]

Jaramillo, T. F.

K. X. Wang, Z. F. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. H. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref] [PubMed]

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref] [PubMed]

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Jeong, S.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

Jiang, J. G.

S. H. Shen, J. G. Jiang, P. H. Guo, C. X. Kronawitter, S. S. Mao, and L. J. Guo, “Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes,” Nano Energy 1(5), 732–741 (2012).
[Crossref]

Kang, J. H.

S. J. Kim, I. Thomann, J. Park, J. H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

Kats, M. A.

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

Kfir, O.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2012).
[Crossref] [PubMed]

Kim, J. Y.

J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, “Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting,” Sci. Rep. 3, 2681 (2013).
[PubMed]

Kim, S. J.

S. J. Kim, I. Thomann, J. Park, J. H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

Kleiman-Shwarsctein, A.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Kronawitter, C. X.

S. H. Shen, J. G. Jiang, P. H. Guo, C. X. Kronawitter, S. S. Mao, and L. J. Guo, “Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes,” Nano Energy 1(5), 732–741 (2012).
[Crossref]

Kubota, J.

J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, “Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting,” Sci. Rep. 3, 2681 (2013).
[PubMed]

Le Formal, F.

K. Sivula, F. Le Formal, and M. Grätzel, “Solar water splitting: progress using hematite (α-Fe2 O3) photoelectrodes,” ChemSusChem 4(4), 432–449 (2011).
[Crossref] [PubMed]

K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Grätzel, “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach,” J. Am. Chem. Soc. 132(21), 7436–7444 (2010).
[Crossref] [PubMed]

Lee, J. S.

J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, “Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting,” Sci. Rep. 3, 2681 (2013).
[PubMed]

Leung, S. F.

Y. Qiu, S. F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K. H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

R. Yu, Q. F. Lin, S. F. Leung, and Z. Y. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1(1), 57–72 (2012).
[Crossref]

Li, M.

M. Li, J. J. Deng, A. W. Pu, P. P. Zhang, H. Zhang, J. Gao, Y. Y. Hao, J. Zhong, and X. H. Sun, “Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6727–6733 (2014).
[Crossref]

Li, Y.

Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li, “Sn-doped hematite nanostructures for photoelectrochemical water splitting,” Nano Lett. 11(5), 2119–2125 (2011).
[Crossref] [PubMed]

Lin, H.

F. Xiu, H. Lin, M. Fang, G. F. Dong, S. P. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86(5), 557–573 (2014).
[Crossref]

Lin, Q.

Y. Qiu, S. F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K. H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Lin, Q. F.

R. Yu, Q. F. Lin, S. F. Leung, and Z. Y. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1(1), 57–72 (2012).
[Crossref]

Lindquist, S.

N. Beermann, L. Vayssieres, S. Lindquist, and A. Hagfeldt, “Photoelectrochemical studies of oriented nanorod thin films of hematite,” J. Electrochem. Soc. 147(7), 2456–2461 (2000).
[Crossref]

Ling, Y.

Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li, “Sn-doped hematite nanostructures for photoelectrochemical water splitting,” Nano Lett. 11(5), 2119–2125 (2011).
[Crossref] [PubMed]

Liu, V.

K. X. Wang, Z. F. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. H. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref] [PubMed]

Magesh, G.

J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, “Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting,” Sci. Rep. 3, 2681 (2013).
[PubMed]

Mao, S. S.

S. H. Shen, J. G. Jiang, P. H. Guo, C. X. Kronawitter, S. S. Mao, and L. J. Guo, “Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes,” Nano Energy 1(5), 732–741 (2012).
[Crossref]

McFarland, E. W.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

McGehee, M. D.

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

Miller, E. L.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Park, J.

S. J. Kim, I. Thomann, J. Park, J. H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

Pinaud, B. A.

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref] [PubMed]

Pu, A. W.

M. Li, J. J. Deng, A. W. Pu, P. P. Zhang, H. Zhang, J. Gao, Y. Y. Hao, J. Zhong, and X. H. Sun, “Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6727–6733 (2014).
[Crossref]

Qiu, Y.

Y. Qiu, S. F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K. H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Rahmat-Samii, Y.

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

Robert, R.

K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Grätzel, “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach,” J. Am. Chem. Soc. 132(21), 7436–7444 (2010).
[Crossref] [PubMed]

Robinson, J.

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

Rothschild, A.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2012).
[Crossref] [PubMed]

Sharlin, E.

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2012).
[Crossref] [PubMed]

Shen, S. H.

S. H. Shen, J. G. Jiang, P. H. Guo, C. X. Kronawitter, S. S. Mao, and L. J. Guo, “Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes,” Nano Energy 1(5), 732–741 (2012).
[Crossref]

Sivula, K.

K. Sivula, F. Le Formal, and M. Grätzel, “Solar water splitting: progress using hematite (α-Fe2 O3) photoelectrodes,” ChemSusChem 4(4), 432–449 (2011).
[Crossref] [PubMed]

K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Grätzel, “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach,” J. Am. Chem. Soc. 132(21), 7436–7444 (2010).
[Crossref] [PubMed]

J. Brillet, M. Grätzel, and K. Sivula, “Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting,” Nano Lett. 10(10), 4155–4160 (2010).
[Crossref] [PubMed]

S. D. Tilley, M. Cornuz, K. Sivula, and M. Grätzel, “Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis,” Angew. Chem. Int. Ed. Engl. 49(36), 6405–6408 (2010).
[Crossref] [PubMed]

Sun, X. H.

M. Li, J. J. Deng, A. W. Pu, P. P. Zhang, H. Zhang, J. Gao, Y. Y. Hao, J. Zhong, and X. H. Sun, “Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6727–6733 (2014).
[Crossref]

Sunkara, M.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Takanabe, K.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Tang, J.

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core-shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
[Crossref] [PubMed]

Thomann, I.

S. J. Kim, I. Thomann, J. Park, J. H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref] [PubMed]

Tilley, S. D.

S. D. Tilley, M. Cornuz, K. Sivula, and M. Grätzel, “Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis,” Angew. Chem. Int. Ed. Engl. 49(36), 6405–6408 (2010).
[Crossref] [PubMed]

Tsui, K. H.

Y. Qiu, S. F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K. H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Tucek, J.

K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Grätzel, “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach,” J. Am. Chem. Soc. 132(21), 7436–7444 (2010).
[Crossref] [PubMed]

Turner, J. A.

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Vasudev, A. P.

S. J. Kim, I. Thomann, J. Park, J. H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

Vayssieres, L.

N. Beermann, L. Vayssieres, S. Lindquist, and A. Hagfeldt, “Photoelectrochemical studies of oriented nanorod thin films of hematite,” J. Electrochem. Soc. 147(7), 2456–2461 (2000).
[Crossref]

Wang, G.

Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li, “Sn-doped hematite nanostructures for photoelectrochemical water splitting,” Nano Lett. 11(5), 2119–2125 (2011).
[Crossref] [PubMed]

Wang, K. X.

K. X. Wang, Z. F. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. H. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref] [PubMed]

Wei, Z.

Y. Qiu, S. F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K. H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Weidenkaff, A.

K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Grätzel, “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach,” J. Am. Chem. Soc. 132(21), 7436–7444 (2010).
[Crossref] [PubMed]

Wheeler, D. A.

Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li, “Sn-doped hematite nanostructures for photoelectrochemical water splitting,” Nano Lett. 11(5), 2119–2125 (2011).
[Crossref] [PubMed]

Xiu, F.

F. Xiu, H. Lin, M. Fang, G. F. Dong, S. P. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86(5), 557–573 (2014).
[Crossref]

Yang, P.

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core-shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
[Crossref] [PubMed]

Yang, S.

Y. Qiu, S. F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K. H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Yip, S. P.

F. Xiu, H. Lin, M. Fang, G. F. Dong, S. P. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86(5), 557–573 (2014).
[Crossref]

Youn, D. H.

J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, “Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting,” Sci. Rep. 3, 2681 (2013).
[PubMed]

Yu, R.

R. Yu, Q. F. Lin, S. F. Leung, and Z. Y. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1(1), 57–72 (2012).
[Crossref]

Yu, Z. F.

K. X. Wang, Z. F. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. H. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref] [PubMed]

Zboril, R.

K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Grätzel, “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach,” J. Am. Chem. Soc. 132(21), 7436–7444 (2010).
[Crossref] [PubMed]

Zhang, H.

M. Li, J. J. Deng, A. W. Pu, P. P. Zhang, H. Zhang, J. Gao, Y. Y. Hao, J. Zhong, and X. H. Sun, “Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6727–6733 (2014).
[Crossref]

Zhang, J. Z.

Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li, “Sn-doped hematite nanostructures for photoelectrochemical water splitting,” Nano Lett. 11(5), 2119–2125 (2011).
[Crossref] [PubMed]

Zhang, P. P.

M. Li, J. J. Deng, A. W. Pu, P. P. Zhang, H. Zhang, J. Gao, Y. Y. Hao, J. Zhong, and X. H. Sun, “Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6727–6733 (2014).
[Crossref]

Zhang, Q.

Y. Qiu, S. F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K. H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Zhang, Y.

Y. Qiu, S. F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K. H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

Zhong, J.

M. Li, J. J. Deng, A. W. Pu, P. P. Zhang, H. Zhang, J. Gao, Y. Y. Hao, J. Zhong, and X. H. Sun, “Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6727–6733 (2014).
[Crossref]

Zoric, I.

B. Iandolo, T. J. Antosiewicz, A. Hellman, and I. Zorić, “On the mechanism for nanoplasmonic enhancement of photon to electron conversion in nanoparticle sensitized hematite films,” Phys. Chem. Chem. Phys. 15(14), 4947–4954 (2013).
[Crossref] [PubMed]

ACS Photonics (1)

K. X. Wang, Z. F. Yu, V. Liu, M. L. Brongersma, T. F. Jaramillo, and S. H. Fan, “Nearly total solar absorption in ultrathin nanostructured iron oxide for efficient photoelectrochemical water splitting,” ACS Photonics 1(3), 235–240 (2014).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

S. D. Tilley, M. Cornuz, K. Sivula, and M. Grätzel, “Light-induced water splitting with hematite: improved nanostructure and iridium oxide catalysis,” Angew. Chem. Int. Ed. Engl. 49(36), 6405–6408 (2010).
[Crossref] [PubMed]

ChemSusChem (1)

K. Sivula, F. Le Formal, and M. Grätzel, “Solar water splitting: progress using hematite (α-Fe2 O3) photoelectrodes,” ChemSusChem 4(4), 432–449 (2011).
[Crossref] [PubMed]

IEEE Trans. Antenn. Propag. (1)

J. Robinson and Y. Rahmat-Samii, “Particle swarm optimization in electromagnetics,” IEEE Trans. Antenn. Propag. 52(2), 397–407 (2004).
[Crossref]

J. Am. Chem. Soc. (1)

K. Sivula, R. Zboril, F. Le Formal, R. Robert, A. Weidenkaff, J. Tucek, J. Frydrych, and M. Grätzel, “Photoelectrochemical water splitting with mesoporous hematite prepared by a solution-based colloidal approach,” J. Am. Chem. Soc. 132(21), 7436–7444 (2010).
[Crossref] [PubMed]

J. Electrochem. Soc. (1)

N. Beermann, L. Vayssieres, S. Lindquist, and A. Hagfeldt, “Photoelectrochemical studies of oriented nanorod thin films of hematite,” J. Electrochem. Soc. 147(7), 2456–2461 (2000).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

M. Li, J. J. Deng, A. W. Pu, P. P. Zhang, H. Zhang, J. Gao, Y. Y. Hao, J. Zhong, and X. H. Sun, “Hydrogen-treated hematite nanostructures with low onset potential for highly efficient solar water oxidation,” J. Mater. Chem. A Mater. Energy Sustain. 2(19), 6727–6733 (2014).
[Crossref]

J. Mater. Res. (1)

Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, E. W. McFarland, K. Domen, E. L. Miller, J. A. Turner, and H. N. Dinh, “Accelerating materials development for photoelectrochemical hydrogen production: standards for methods, definitions, and reporting protocols,” J. Mater. Res. 25(1), 3–16 (2010).
[Crossref]

Nano Energy (2)

S. H. Shen, J. G. Jiang, P. H. Guo, C. X. Kronawitter, S. S. Mao, and L. J. Guo, “Effect of Cr doping on the photoelectrochemical performance of hematite nanorod photoanodes,” Nano Energy 1(5), 732–741 (2012).
[Crossref]

R. Yu, Q. F. Lin, S. F. Leung, and Z. Y. Fan, “Nanomaterials and nanostructures for efficient light absorption and photovoltaics,” Nano Energy 1(1), 57–72 (2012).
[Crossref]

Nano Lett. (5)

I. Thomann, B. A. Pinaud, Z. Chen, B. M. Clemens, T. F. Jaramillo, and M. L. Brongersma, “Plasmon enhanced solar-to-fuel energy conversion,” Nano Lett. 11(8), 3440–3446 (2011).
[Crossref] [PubMed]

Y. Qiu, S. F. Leung, Q. Zhang, B. Hua, Q. Lin, Z. Wei, K. H. Tsui, Y. Zhang, S. Yang, and Z. Fan, “Efficient photoelectrochemical water splitting with ultrathin films of hematite on three-dimensional nanophotonic structures,” Nano Lett. 14(4), 2123–2129 (2014).
[Crossref] [PubMed]

S. J. Kim, I. Thomann, J. Park, J. H. Kang, A. P. Vasudev, and M. L. Brongersma, “Light trapping for solar fuel generation with Mie resonances,” Nano Lett. 14(3), 1446–1452 (2014).
[Crossref] [PubMed]

Y. Ling, G. Wang, D. A. Wheeler, J. Z. Zhang, and Y. Li, “Sn-doped hematite nanostructures for photoelectrochemical water splitting,” Nano Lett. 11(5), 2119–2125 (2011).
[Crossref] [PubMed]

J. Brillet, M. Grätzel, and K. Sivula, “Decoupling feature size and functionality in solution-processed, porous hematite electrodes for solar water splitting,” Nano Lett. 10(10), 4155–4160 (2010).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Jeong, M. D. McGehee, and Y. Cui, “All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency,” Nat. Commun. 4, 2950 (2013).
[Crossref] [PubMed]

Nat. Mater. (2)

M. A. Kats, R. Blanchard, P. Genevet, and F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012).
[Crossref] [PubMed]

H. Dotan, O. Kfir, E. Sharlin, O. Blank, M. Gross, I. Dumchin, G. Ankonina, and A. Rothschild, “Resonant light trapping in ultrathin films for water splitting,” Nat. Mater. 12(2), 158–164 (2012).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. Tang, Z. Huo, S. Brittman, H. Gao, and P. Yang, “Solution-processed core-shell nanowires for efficient photovoltaic cells,” Nat. Nanotechnol. 6(9), 568–572 (2011).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

B. Iandolo, T. J. Antosiewicz, A. Hellman, and I. Zorić, “On the mechanism for nanoplasmonic enhancement of photon to electron conversion in nanoparticle sensitized hematite films,” Phys. Chem. Chem. Phys. 15(14), 4947–4954 (2013).
[Crossref] [PubMed]

Pure Appl. Chem. (1)

F. Xiu, H. Lin, M. Fang, G. F. Dong, S. P. Yip, and J. C. Ho, “Fabrication and enhanced light-trapping properties of three-dimensional silicon nanostructures for photovoltaic applications,” Pure Appl. Chem. 86(5), 557–573 (2014).
[Crossref]

Sci. Rep. (1)

J. Y. Kim, G. Magesh, D. H. Youn, J. W. Jang, J. Kubota, K. Domen, and J. S. Lee, “Single-crystalline, wormlike hematite photoanodes for efficient solar water splitting,” Sci. Rep. 3, 2681 (2013).
[PubMed]

Other (1)

A. Taflove and S. C. Hagness, Computational Eletrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Ultrathin planar hematite/metal nanohole array/metal substrate structure for solar PEC water splitting. (a) Layer 1 is water, layer 2 is hematite, layer 3 is dielectric (refractive index n = 1.4) filled metal nanohole array with hexagonal lattice and layer 4 is metal substrate. (b) Optical constants ( m = n + i κ ) of hematite.

Fig. 2
Fig. 2

Photocurrent and photon absorption of hematite films on Au, Al and Ag substrates. (a) Photocurrent and (b) solar-averaged absorption variations with hematite film thicknesses. Spectral total absorption, αtot, and the spectral absorption within 20 nm of the SCLJ, α, for hematite films on (c) Au, (d) Al and (e) Ag substrates. (f) Phasor diagrams of the reflected partial waves at 400 and 550 nm for 20 nm hematite/Ag structure.

Fig. 3
Fig. 3

Photon absorption in the hematite/dielectric-filled Ag nanohole/Ag substrate structure. (a) Absorption in hematite within 20 nm of the SCLJ for bare 20 nm hematite film, 20 nm hematite/Ag substrate and 20 nm hematite/dielectric-filled Ag nanohole/Ag substrate. The optimal height, radius and lattice constant of Ag nanohole are 30 nm, 90 nm and 260 nm. The electric field magnitude distributions at 550 nm in y = 0 plane for (b) 20 nm hematite/dielectric-filled Ag nanohole/Ag substrate and (c) 20 nm hematite/Ag substrate.

Fig. 4
Fig. 4

Experimental and theoretical photocurrents (left axis) and solar-averaged absorption (right axis) comparing prior nanophotonic and planar structured hematite films reported in Qiu et al. [10] and Dotan et al. [11] with the ultrathin planar hematite film proposed and modeled in this work.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

J ph = e 300 nm 590 nm α ( λ ) I ( λ ) h c / λ d λ
α solar = 300 nm 590 nm α ( λ ) I ( λ ) d λ 300 nm 590 nm I ( λ ) d λ
r = l = 0 r l

Metrics