Abstract

In this study, we demonstrate a solar cell design based on horizontally aligned microwires fabricated from 99.98% pure silicon via the molten core fiber drawing method. A similar structure consisting of 50 μm diameter close packed wires (≈ 0.97 packing density) on a Lambertian white back-reflector showed 86 % absorption for incident light of wavelengths up to 850 nm. An array with a packing fraction of 0.35 showed an absorption of 58 % over the same range, demonstrating the potential for effective light trapping. Prototype solar cells were fabricated to demonstrate the concept. Horizontal wire cells offer several advantages as they can be flexible, and partially transparent, and absorb light efficiently over a wide range of incident angles.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light trapping in ultrathin 25  μm exfoliated Si solar cells

Mohamed M. Hilali, Sayan Saha, Emmanuel Onyegam, Rajesh Rao, Leo Mathew, and Sanjay K. Banerjee
Appl. Opt. 53(27) 6140-6147 (2014)

Disordered nanostructures by hole-mask colloidal lithography for advanced light trapping in silicon solar cells

Christos Trompoukis, Inès Massiot, Valérie Depauw, Ounsi El Daif, Kidong Lee, Alexandre Dmitriev, Ivan Gordon, Robert Mertens, and Jef Poortmans
Opt. Express 24(2) A191-A201 (2016)

Light trapping regimes in thin-film silicon solar cells with a photonic pattern

Simone Zanotto, Marco Liscidini, and Lucio Claudio Andreani
Opt. Express 18(5) 4260-4272 (2010)

References

  • View by:
  • |
  • |
  • |

  1. N. Guo, J. Wei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, K. Wang, S. Song, Y. Xu, and D. Wu, “Fabrication of silicon microwire array for photovoltaic applications,” Appl. Phys. A 102, 109–114 (2011).
    [Crossref]
  2. F.A. Martinsen, B. K. Smeltzer, M. Nord, T. Hawkins, J. Ballato, and U. J. Gibson, “Silicon-core glass fibes as microwire radial-junction solar cells,” Sci. Rep. 4, 6283 (2014).
    [Crossref]
  3. M. Gharghi, E. Fathi, B. Kante, S. Sivoththaman, and X. Zhang, “Heterojunction Silicon Microwire Solar Cells,” Nano Lett. 12, 6278–6282 (2012).
    [Crossref] [PubMed]
  4. H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski, and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Appl. Phys. Lett. 96, 213503 (2010).
    [Crossref]
  5. M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, R.M. Briggs, J.Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4, 866–871 (2011).
    [Crossref]
  6. M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, and H.A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8, 710–714 (2008).
    [Crossref] [PubMed]
  7. M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J.M. Spurgeon, E. L Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3, 1037–1041 (2010).
    [Crossref]
  8. D. R. Kim, C. H. Lee, P. M. Rao, I. S. Cho, and X. Zheng, “Hybrid Si microwire and plannar solar cells: passivation and characterization,” Nano Lett. 11, 2704–2708 (2011).
    [Crossref] [PubMed]
  9. O. Gunawan and S. Guha, “Characteristics of vapor-liquid-solid grown silicon nanowire solar cells,” Sol. Energy Mater. Sol. Cells 93, 1388–1393 (2009).
    [Crossref]
  10. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nonowires as solar cells and nanoelectronic power sources,” Nature 449, 885–890 (2007).
    [Crossref] [PubMed]
  11. R. He, T.D. Day, M. Krishnamurthi, J.R. Sparks, P.J.A. Sazio, V. Gopalan, and J.V. Badding, “Silicon p-i-n Junction Fibers,” Adv. Mater. 25, 1461–1467 (2013).
    [Crossref]
  12. F.A. Martinsen, T. Hawkins, J. Ballato, and U.J. Gibson, “Bulk fabrication and properties of solar grade silicon microwires,” APL Mat. 2, 116108 (2014).
    [Crossref]
  13. B.M. Kayes, H.A. Atwater, and N.S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
    [Crossref]
  14. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire array for photovoltaic application,” Nat. Mater. 9, 239–244 (2010).
    [Crossref] [PubMed]
  15. J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
    [Crossref]
  16. M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Sci. Rep. 3, 1546 (2013).
    [Crossref] [PubMed]
  17. M.-H. Hsu, P. Yu, J.-H. Huang, C.-H. Chang, C.-W. Wu, Y.-C. Cheng, and C.-W. Chu, “Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes,” Appl. Phys. Lett. 98073308 (2011).
    [Crossref]
  18. B. Ray, M. R. Khan, C. Black, and M. A. Alam, “Nanostructured electrodes for organic solar cells: analysis and design fundamentals,” IEEE. J. Photovoltaics 3, 318 (2012).
    [Crossref]
  19. X. Zhang, C. W. Pinion, J. D. Christesen, C. J. Flynn, T. A. Celano, and J. F. Cahoon, “Horizontal silicon nanowires with radial p-n junctions: A platform for unconventional solar cells,” J. Phys. Chem. Lett. 4, 2002–2009 (2013).
    [Crossref] [PubMed]
  20. E.F. Nordstrand, A. N. Dibbs, A. J. Eraker, and U.J. Gibson, “Alkaline oxide interface modifiers for silicon fiber production,” Opt. Mater. Express 3, 651–657 (2013).
    [Crossref]
  21. J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokouz, M. Ellison, C. McMillen, J. Reppert, A.M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D.R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675 (2008).
    [Crossref]
  22. B. L. Scott, K. Wang, and G. Pickrell, “Fabrication of n-Type Silicon Optical Fibers,” IEEE Photonics Technol. Lett. 21, 1798–1800 (2009).
    [Crossref]
  23. C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6, 6248 (2015).
    [Crossref] [PubMed]
  24. J. Gee, “The effect of parasitic absorption losses on light trapping in thin silicon solar cells,” in 20th IEEE Photovoltaic Specialist Conference (PVSC) (IEEE, 1988), pp. 549–554.
  25. T.H. Wang, E. Iwaniczko, M.R. Page, D.H. Levi, Y. Yan, H.M. Branz, and Q. Wang, “Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells,” Thin Solid Films 501, 284–287 (2006).
    [Crossref]
  26. V.A. Dao, J. Heo, H. Choi, Y. Kim, S. Park, S. Jung, N. Lakshminarayan, and Junsin Yi, “Simulation and study of the influence of the buffer intrinsic layer back-surface field, densities and interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin layer (HIT) solar cell,” Sol. Energy 84, 777–783 (2010).
    [Crossref]
  27. M. Hilali, S. Saha, E. Onyegan, R. Rao, L. Mathew, and S. Banerjee, “Light trapping in ultrathin 25 micrometer exfoliated Si solar cells,” Appl. Opt. 53, 6140–6147 (2014).
    [Crossref] [PubMed]

2015 (1)

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6, 6248 (2015).
[Crossref] [PubMed]

2014 (3)

M. Hilali, S. Saha, E. Onyegan, R. Rao, L. Mathew, and S. Banerjee, “Light trapping in ultrathin 25 micrometer exfoliated Si solar cells,” Appl. Opt. 53, 6140–6147 (2014).
[Crossref] [PubMed]

F.A. Martinsen, B. K. Smeltzer, M. Nord, T. Hawkins, J. Ballato, and U. J. Gibson, “Silicon-core glass fibes as microwire radial-junction solar cells,” Sci. Rep. 4, 6283 (2014).
[Crossref]

F.A. Martinsen, T. Hawkins, J. Ballato, and U.J. Gibson, “Bulk fabrication and properties of solar grade silicon microwires,” APL Mat. 2, 116108 (2014).
[Crossref]

2013 (4)

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Sci. Rep. 3, 1546 (2013).
[Crossref] [PubMed]

R. He, T.D. Day, M. Krishnamurthi, J.R. Sparks, P.J.A. Sazio, V. Gopalan, and J.V. Badding, “Silicon p-i-n Junction Fibers,” Adv. Mater. 25, 1461–1467 (2013).
[Crossref]

E.F. Nordstrand, A. N. Dibbs, A. J. Eraker, and U.J. Gibson, “Alkaline oxide interface modifiers for silicon fiber production,” Opt. Mater. Express 3, 651–657 (2013).
[Crossref]

X. Zhang, C. W. Pinion, J. D. Christesen, C. J. Flynn, T. A. Celano, and J. F. Cahoon, “Horizontal silicon nanowires with radial p-n junctions: A platform for unconventional solar cells,” J. Phys. Chem. Lett. 4, 2002–2009 (2013).
[Crossref] [PubMed]

2012 (2)

B. Ray, M. R. Khan, C. Black, and M. A. Alam, “Nanostructured electrodes for organic solar cells: analysis and design fundamentals,” IEEE. J. Photovoltaics 3, 318 (2012).
[Crossref]

M. Gharghi, E. Fathi, B. Kante, S. Sivoththaman, and X. Zhang, “Heterojunction Silicon Microwire Solar Cells,” Nano Lett. 12, 6278–6282 (2012).
[Crossref] [PubMed]

2011 (4)

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, R.M. Briggs, J.Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4, 866–871 (2011).
[Crossref]

N. Guo, J. Wei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, K. Wang, S. Song, Y. Xu, and D. Wu, “Fabrication of silicon microwire array for photovoltaic applications,” Appl. Phys. A 102, 109–114 (2011).
[Crossref]

D. R. Kim, C. H. Lee, P. M. Rao, I. S. Cho, and X. Zheng, “Hybrid Si microwire and plannar solar cells: passivation and characterization,” Nano Lett. 11, 2704–2708 (2011).
[Crossref] [PubMed]

M.-H. Hsu, P. Yu, J.-H. Huang, C.-H. Chang, C.-W. Wu, Y.-C. Cheng, and C.-W. Chu, “Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes,” Appl. Phys. Lett. 98073308 (2011).
[Crossref]

2010 (4)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire array for photovoltaic application,” Nat. Mater. 9, 239–244 (2010).
[Crossref] [PubMed]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J.M. Spurgeon, E. L Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3, 1037–1041 (2010).
[Crossref]

H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski, and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Appl. Phys. Lett. 96, 213503 (2010).
[Crossref]

V.A. Dao, J. Heo, H. Choi, Y. Kim, S. Park, S. Jung, N. Lakshminarayan, and Junsin Yi, “Simulation and study of the influence of the buffer intrinsic layer back-surface field, densities and interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin layer (HIT) solar cell,” Sol. Energy 84, 777–783 (2010).
[Crossref]

2009 (2)

B. L. Scott, K. Wang, and G. Pickrell, “Fabrication of n-Type Silicon Optical Fibers,” IEEE Photonics Technol. Lett. 21, 1798–1800 (2009).
[Crossref]

O. Gunawan and S. Guha, “Characteristics of vapor-liquid-solid grown silicon nanowire solar cells,” Sol. Energy Mater. Sol. Cells 93, 1388–1393 (2009).
[Crossref]

2008 (3)

M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, and H.A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8, 710–714 (2008).
[Crossref] [PubMed]

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokouz, M. Ellison, C. McMillen, J. Reppert, A.M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D.R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675 (2008).
[Crossref]

2007 (1)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nonowires as solar cells and nanoelectronic power sources,” Nature 449, 885–890 (2007).
[Crossref] [PubMed]

2006 (1)

T.H. Wang, E. Iwaniczko, M.R. Page, D.H. Levi, Y. Yan, H.M. Branz, and Q. Wang, “Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells,” Thin Solid Films 501, 284–287 (2006).
[Crossref]

2005 (1)

B.M. Kayes, H.A. Atwater, and N.S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
[Crossref]

Adachi, M. M.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Sci. Rep. 3, 1546 (2013).
[Crossref] [PubMed]

Ahn, B. Y.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Alam, M. A.

B. Ray, M. R. Khan, C. Black, and M. A. Alam, “Nanostructured electrodes for organic solar cells: analysis and design fundamentals,” IEEE. J. Photovoltaics 3, 318 (2012).
[Crossref]

Anantram, M. P.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Sci. Rep. 3, 1546 (2013).
[Crossref] [PubMed]

Atwater, H. A.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, R.M. Briggs, J.Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4, 866–871 (2011).
[Crossref]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J.M. Spurgeon, E. L Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3, 1037–1041 (2010).
[Crossref]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire array for photovoltaic application,” Nat. Mater. 9, 239–244 (2010).
[Crossref] [PubMed]

Atwater, H.A.

M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, and H.A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8, 710–714 (2008).
[Crossref] [PubMed]

B.M. Kayes, H.A. Atwater, and N.S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
[Crossref]

Baca, A. J.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Badding, J.V.

R. He, T.D. Day, M. Krishnamurthi, J.R. Sparks, P.J.A. Sazio, V. Gopalan, and J.V. Badding, “Silicon p-i-n Junction Fibers,” Adv. Mater. 25, 1461–1467 (2013).
[Crossref]

Baek, J.Y.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, R.M. Briggs, J.Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4, 866–871 (2011).
[Crossref]

Ballato, J.

F.A. Martinsen, B. K. Smeltzer, M. Nord, T. Hawkins, J. Ballato, and U. J. Gibson, “Silicon-core glass fibes as microwire radial-junction solar cells,” Sci. Rep. 4, 6283 (2014).
[Crossref]

F.A. Martinsen, T. Hawkins, J. Ballato, and U.J. Gibson, “Bulk fabrication and properties of solar grade silicon microwires,” APL Mat. 2, 116108 (2014).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokouz, M. Ellison, C. McMillen, J. Reppert, A.M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D.R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675 (2008).
[Crossref]

Banerjee, S.

Barber, G.D.

H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski, and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Appl. Phys. Lett. 96, 213503 (2010).
[Crossref]

Black, C.

B. Ray, M. R. Khan, C. Black, and M. A. Alam, “Nanostructured electrodes for organic solar cells: analysis and design fundamentals,” IEEE. J. Photovoltaics 3, 318 (2012).
[Crossref]

Boettcher, S. W.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, R.M. Briggs, J.Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4, 866–871 (2011).
[Crossref]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J.M. Spurgeon, E. L Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3, 1037–1041 (2010).
[Crossref]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire array for photovoltaic application,” Nat. Mater. 9, 239–244 (2010).
[Crossref] [PubMed]

Branz, H.M.

T.H. Wang, E. Iwaniczko, M.R. Page, D.H. Levi, Y. Yan, H.M. Branz, and Q. Wang, “Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells,” Thin Solid Films 501, 284–287 (2006).
[Crossref]

Briggs, R. M.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, R.M. Briggs, J.Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4, 866–871 (2011).
[Crossref]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J.M. Spurgeon, E. L Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3, 1037–1041 (2010).
[Crossref]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire array for photovoltaic application,” Nat. Mater. 9, 239–244 (2010).
[Crossref] [PubMed]

Briggs, R.M.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, R.M. Briggs, J.Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4, 866–871 (2011).
[Crossref]

Cahoon, J. F.

X. Zhang, C. W. Pinion, J. D. Christesen, C. J. Flynn, T. A. Celano, and J. F. Cahoon, “Horizontal silicon nanowires with radial p-n junctions: A platform for unconventional solar cells,” J. Phys. Chem. Lett. 4, 2002–2009 (2013).
[Crossref] [PubMed]

Celano, T. A.

X. Zhang, C. W. Pinion, J. D. Christesen, C. J. Flynn, T. A. Celano, and J. F. Cahoon, “Horizontal silicon nanowires with radial p-n junctions: A platform for unconventional solar cells,” J. Phys. Chem. Lett. 4, 2002–2009 (2013).
[Crossref] [PubMed]

Chang, C.-H.

M.-H. Hsu, P. Yu, J.-H. Huang, C.-H. Chang, C.-W. Wu, Y.-C. Cheng, and C.-W. Chu, “Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes,” Appl. Phys. Lett. 98073308 (2011).
[Crossref]

Cheng, Y.-C.

M.-H. Hsu, P. Yu, J.-H. Huang, C.-H. Chang, C.-W. Wu, Y.-C. Cheng, and C.-W. Chu, “Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes,” Appl. Phys. Lett. 98073308 (2011).
[Crossref]

Cho, I. S.

D. R. Kim, C. H. Lee, P. M. Rao, I. S. Cho, and X. Zheng, “Hybrid Si microwire and plannar solar cells: passivation and characterization,” Nano Lett. 11, 2704–2708 (2011).
[Crossref] [PubMed]

Choi, H.

V.A. Dao, J. Heo, H. Choi, Y. Kim, S. Park, S. Jung, N. Lakshminarayan, and Junsin Yi, “Simulation and study of the influence of the buffer intrinsic layer back-surface field, densities and interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin layer (HIT) solar cell,” Sol. Energy 84, 777–783 (2010).
[Crossref]

Christesen, J. D.

X. Zhang, C. W. Pinion, J. D. Christesen, C. J. Flynn, T. A. Celano, and J. F. Cahoon, “Horizontal silicon nanowires with radial p-n junctions: A platform for unconventional solar cells,” J. Phys. Chem. Lett. 4, 2002–2009 (2013).
[Crossref] [PubMed]

Chu, C.-W.

M.-H. Hsu, P. Yu, J.-H. Huang, C.-H. Chang, C.-W. Wu, Y.-C. Cheng, and C.-W. Chu, “Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes,” Appl. Phys. Lett. 98073308 (2011).
[Crossref]

Dao, V.A.

V.A. Dao, J. Heo, H. Choi, Y. Kim, S. Park, S. Jung, N. Lakshminarayan, and Junsin Yi, “Simulation and study of the influence of the buffer intrinsic layer back-surface field, densities and interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin layer (HIT) solar cell,” Sol. Energy 84, 777–783 (2010).
[Crossref]

Daw, M.

Day, T.D.

R. He, T.D. Day, M. Krishnamurthi, J.R. Sparks, P.J.A. Sazio, V. Gopalan, and J.V. Badding, “Silicon p-i-n Junction Fibers,” Adv. Mater. 25, 1461–1467 (2013).
[Crossref]

Dibbs, A. N.

Duoss, E. B.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Ellison, M.

Elvikis, P.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Eraker, A. J.

Fang, Y.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nonowires as solar cells and nanoelectronic power sources,” Nature 449, 885–890 (2007).
[Crossref] [PubMed]

Fathi, E.

M. Gharghi, E. Fathi, B. Kante, S. Sivoththaman, and X. Zhang, “Heterojunction Silicon Microwire Solar Cells,” Nano Lett. 12, 6278–6282 (2012).
[Crossref] [PubMed]

Ferreira, P. M.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Filler, M.A.

M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, and H.A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8, 710–714 (2008).
[Crossref] [PubMed]

Fink, Y.

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6, 6248 (2015).
[Crossref] [PubMed]

Flynn, C. J.

X. Zhang, C. W. Pinion, J. D. Christesen, C. J. Flynn, T. A. Celano, and J. F. Cahoon, “Horizontal silicon nanowires with radial p-n junctions: A platform for unconventional solar cells,” J. Phys. Chem. Lett. 4, 2002–2009 (2013).
[Crossref] [PubMed]

Foy, P.

Geddes, J. B.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Gee, J.

J. Gee, “The effect of parasitic absorption losses on light trapping in thin silicon solar cells,” in 20th IEEE Photovoltaic Specialist Conference (PVSC) (IEEE, 1988), pp. 549–554.

Gharghi, M.

M. Gharghi, E. Fathi, B. Kante, S. Sivoththaman, and X. Zhang, “Heterojunction Silicon Microwire Solar Cells,” Nano Lett. 12, 6278–6282 (2012).
[Crossref] [PubMed]

Gibson, U. J.

F.A. Martinsen, B. K. Smeltzer, M. Nord, T. Hawkins, J. Ballato, and U. J. Gibson, “Silicon-core glass fibes as microwire radial-junction solar cells,” Sci. Rep. 4, 6283 (2014).
[Crossref]

Gibson, U.J.

F.A. Martinsen, T. Hawkins, J. Ballato, and U.J. Gibson, “Bulk fabrication and properties of solar grade silicon microwires,” APL Mat. 2, 116108 (2014).
[Crossref]

E.F. Nordstrand, A. N. Dibbs, A. J. Eraker, and U.J. Gibson, “Alkaline oxide interface modifiers for silicon fiber production,” Opt. Mater. Express 3, 651–657 (2013).
[Crossref]

Gopalan, V.

R. He, T.D. Day, M. Krishnamurthi, J.R. Sparks, P.J.A. Sazio, V. Gopalan, and J.V. Badding, “Silicon p-i-n Junction Fibers,” Adv. Mater. 25, 1461–1467 (2013).
[Crossref]

Guha, S.

O. Gunawan and S. Guha, “Characteristics of vapor-liquid-solid grown silicon nanowire solar cells,” Sol. Energy Mater. Sol. Cells 93, 1388–1393 (2009).
[Crossref]

Gunawan, O.

O. Gunawan and S. Guha, “Characteristics of vapor-liquid-solid grown silicon nanowire solar cells,” Sol. Energy Mater. Sol. Cells 93, 1388–1393 (2009).
[Crossref]

Guo, N.

N. Guo, J. Wei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, K. Wang, S. Song, Y. Xu, and D. Wu, “Fabrication of silicon microwire array for photovoltaic applications,” Appl. Phys. A 102, 109–114 (2011).
[Crossref]

Hawkins, T.

F.A. Martinsen, B. K. Smeltzer, M. Nord, T. Hawkins, J. Ballato, and U. J. Gibson, “Silicon-core glass fibes as microwire radial-junction solar cells,” Sci. Rep. 4, 6283 (2014).
[Crossref]

F.A. Martinsen, T. Hawkins, J. Ballato, and U.J. Gibson, “Bulk fabrication and properties of solar grade silicon microwires,” APL Mat. 2, 116108 (2014).
[Crossref]

J. Ballato, T. Hawkins, P. Foy, R. Stolen, B. Kokouz, M. Ellison, C. McMillen, J. Reppert, A.M. Rao, M. Daw, S. Sharma, R. Shori, O. Stafsudd, R. R. Rice, and D.R. Powers, “Silicon optical fiber,” Opt. Express 16, 18675 (2008).
[Crossref]

He, R.

R. He, T.D. Day, M. Krishnamurthi, J.R. Sparks, P.J.A. Sazio, V. Gopalan, and J.V. Badding, “Silicon p-i-n Junction Fibers,” Adv. Mater. 25, 1461–1467 (2013).
[Crossref]

Heo, J.

V.A. Dao, J. Heo, H. Choi, Y. Kim, S. Park, S. Jung, N. Lakshminarayan, and Junsin Yi, “Simulation and study of the influence of the buffer intrinsic layer back-surface field, densities and interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin layer (HIT) solar cell,” Sol. Energy 84, 777–783 (2010).
[Crossref]

Hilali, M.

Hou, C.

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6, 6248 (2015).
[Crossref] [PubMed]

Hsu, M.-H.

M.-H. Hsu, P. Yu, J.-H. Huang, C.-H. Chang, C.-W. Wu, Y.-C. Cheng, and C.-W. Chu, “Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes,” Appl. Phys. Lett. 98073308 (2011).
[Crossref]

Huang, J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nonowires as solar cells and nanoelectronic power sources,” Nature 449, 885–890 (2007).
[Crossref] [PubMed]

Huang, J.-H.

M.-H. Hsu, P. Yu, J.-H. Huang, C.-H. Chang, C.-W. Wu, Y.-C. Cheng, and C.-W. Chu, “Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes,” Appl. Phys. Lett. 98073308 (2011).
[Crossref]

Huang, Y.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Iwaniczko, E.

T.H. Wang, E. Iwaniczko, M.R. Page, D.H. Levi, Y. Yan, H.M. Branz, and Q. Wang, “Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells,” Thin Solid Films 501, 284–287 (2006).
[Crossref]

Jia, X.

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6, 6248 (2015).
[Crossref] [PubMed]

Jia, Y.

N. Guo, J. Wei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, K. Wang, S. Song, Y. Xu, and D. Wu, “Fabrication of silicon microwire array for photovoltaic applications,” Appl. Phys. A 102, 109–114 (2011).
[Crossref]

Joannopoulos, J. D.

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6, 6248 (2015).
[Crossref] [PubMed]

Jung, S.

V.A. Dao, J. Heo, H. Choi, Y. Kim, S. Park, S. Jung, N. Lakshminarayan, and Junsin Yi, “Simulation and study of the influence of the buffer intrinsic layer back-surface field, densities and interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin layer (HIT) solar cell,” Sol. Energy 84, 777–783 (2010).
[Crossref]

Kante, B.

M. Gharghi, E. Fathi, B. Kante, S. Sivoththaman, and X. Zhang, “Heterojunction Silicon Microwire Solar Cells,” Nano Lett. 12, 6278–6282 (2012).
[Crossref] [PubMed]

Karim, K. S.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Sci. Rep. 3, 1546 (2013).
[Crossref] [PubMed]

Kayes, B.M.

M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, and H.A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8, 710–714 (2008).
[Crossref] [PubMed]

B.M. Kayes, H.A. Atwater, and N.S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
[Crossref]

Kelzenberg, M. D.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, R.M. Briggs, J.Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4, 866–871 (2011).
[Crossref]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J.M. Spurgeon, E. L Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3, 1037–1041 (2010).
[Crossref]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire array for photovoltaic application,” Nat. Mater. 9, 239–244 (2010).
[Crossref] [PubMed]

Kelzenberg, M.D.

M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, and H.A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8, 710–714 (2008).
[Crossref] [PubMed]

Kempa, T. J.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nonowires as solar cells and nanoelectronic power sources,” Nature 449, 885–890 (2007).
[Crossref] [PubMed]

Kendrick, C.E.

H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski, and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Appl. Phys. Lett. 96, 213503 (2010).
[Crossref]

Khan, M. R.

B. Ray, M. R. Khan, C. Black, and M. A. Alam, “Nanostructured electrodes for organic solar cells: analysis and design fundamentals,” IEEE. J. Photovoltaics 3, 318 (2012).
[Crossref]

Kim, D. R.

D. R. Kim, C. H. Lee, P. M. Rao, I. S. Cho, and X. Zheng, “Hybrid Si microwire and plannar solar cells: passivation and characterization,” Nano Lett. 11, 2704–2708 (2011).
[Crossref] [PubMed]

Kim, R. H.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Kim, T.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Kim, Y.

V.A. Dao, J. Heo, H. Choi, Y. Kim, S. Park, S. Jung, N. Lakshminarayan, and Junsin Yi, “Simulation and study of the influence of the buffer intrinsic layer back-surface field, densities and interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin layer (HIT) solar cell,” Sol. Energy 84, 777–783 (2010).
[Crossref]

Kokouz, B.

Krishnamurthi, M.

R. He, T.D. Day, M. Krishnamurthi, J.R. Sparks, P.J.A. Sazio, V. Gopalan, and J.V. Badding, “Silicon p-i-n Junction Fibers,” Adv. Mater. 25, 1461–1467 (2013).
[Crossref]

Lakshminarayan, N.

V.A. Dao, J. Heo, H. Choi, Y. Kim, S. Park, S. Jung, N. Lakshminarayan, and Junsin Yi, “Simulation and study of the influence of the buffer intrinsic layer back-surface field, densities and interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin layer (HIT) solar cell,” Sol. Energy 84, 777–783 (2010).
[Crossref]

Lee, C. H.

D. R. Kim, C. H. Lee, P. M. Rao, I. S. Cho, and X. Zheng, “Hybrid Si microwire and plannar solar cells: passivation and characterization,” Nano Lett. 11, 2704–2708 (2011).
[Crossref] [PubMed]

Levi, D.H.

T.H. Wang, E. Iwaniczko, M.R. Page, D.H. Levi, Y. Yan, H.M. Branz, and Q. Wang, “Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells,” Thin Solid Films 501, 284–287 (2006).
[Crossref]

Lewis, J. A.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Lewis, N. S.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, R.M. Briggs, J.Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4, 866–871 (2011).
[Crossref]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J.M. Spurgeon, E. L Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3, 1037–1041 (2010).
[Crossref]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire array for photovoltaic application,” Nat. Mater. 9, 239–244 (2010).
[Crossref] [PubMed]

Lewis, N.S.

M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, and H.A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8, 710–714 (2008).
[Crossref] [PubMed]

B.M. Kayes, H.A. Atwater, and N.S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
[Crossref]

Li, L.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Li, Z.

N. Guo, J. Wei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, K. Wang, S. Song, Y. Xu, and D. Wu, “Fabrication of silicon microwire array for photovoltaic applications,” Appl. Phys. A 102, 109–114 (2011).
[Crossref]

Lieber, C. M.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nonowires as solar cells and nanoelectronic power sources,” Nature 449, 885–890 (2007).
[Crossref] [PubMed]

Mallouk, T.E.

H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski, and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Appl. Phys. Lett. 96, 213503 (2010).
[Crossref]

Martinsen, F.A.

F.A. Martinsen, B. K. Smeltzer, M. Nord, T. Hawkins, J. Ballato, and U. J. Gibson, “Silicon-core glass fibes as microwire radial-junction solar cells,” Sci. Rep. 4, 6283 (2014).
[Crossref]

F.A. Martinsen, T. Hawkins, J. Ballato, and U.J. Gibson, “Bulk fabrication and properties of solar grade silicon microwires,” APL Mat. 2, 116108 (2014).
[Crossref]

Mathew, L.

Mayer, T.S.

H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski, and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Appl. Phys. Lett. 96, 213503 (2010).
[Crossref]

McMillen, C.

Motala, M. J.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Nord, M.

F.A. Martinsen, B. K. Smeltzer, M. Nord, T. Hawkins, J. Ballato, and U. J. Gibson, “Silicon-core glass fibes as microwire radial-junction solar cells,” Sci. Rep. 4, 6283 (2014).
[Crossref]

Nordstrand, E.F.

Nuzzo, R. G.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Onyegan, E.

Page, M.R.

T.H. Wang, E. Iwaniczko, M.R. Page, D.H. Levi, Y. Yan, H.M. Branz, and Q. Wang, “Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells,” Thin Solid Films 501, 284–287 (2006).
[Crossref]

Park, S.

V.A. Dao, J. Heo, H. Choi, Y. Kim, S. Park, S. Jung, N. Lakshminarayan, and Junsin Yi, “Simulation and study of the influence of the buffer intrinsic layer back-surface field, densities and interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin layer (HIT) solar cell,” Sol. Energy 84, 777–783 (2010).
[Crossref]

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Petykiewicz, J. A.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire array for photovoltaic application,” Nat. Mater. 9, 239–244 (2010).
[Crossref] [PubMed]

Pickrell, G.

B. L. Scott, K. Wang, and G. Pickrell, “Fabrication of n-Type Silicon Optical Fibers,” IEEE Photonics Technol. Lett. 21, 1798–1800 (2009).
[Crossref]

Pinion, C. W.

X. Zhang, C. W. Pinion, J. D. Christesen, C. J. Flynn, T. A. Celano, and J. F. Cahoon, “Horizontal silicon nanowires with radial p-n junctions: A platform for unconventional solar cells,” J. Phys. Chem. Lett. 4, 2002–2009 (2013).
[Crossref] [PubMed]

Podraza, N.J.

H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski, and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Appl. Phys. Lett. 96, 213503 (2010).
[Crossref]

Powers, D.R.

Putnam, M. C.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, R.M. Briggs, J.Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4, 866–871 (2011).
[Crossref]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J.M. Spurgeon, E. L Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3, 1037–1041 (2010).
[Crossref]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire array for photovoltaic application,” Nat. Mater. 9, 239–244 (2010).
[Crossref] [PubMed]

Putnam, M.C.

M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, and H.A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8, 710–714 (2008).
[Crossref] [PubMed]

Rao, A.M.

Rao, P. M.

D. R. Kim, C. H. Lee, P. M. Rao, I. S. Cho, and X. Zheng, “Hybrid Si microwire and plannar solar cells: passivation and characterization,” Nano Lett. 11, 2704–2708 (2011).
[Crossref] [PubMed]

Rao, R.

Ray, B.

B. Ray, M. R. Khan, C. Black, and M. A. Alam, “Nanostructured electrodes for organic solar cells: analysis and design fundamentals,” IEEE. J. Photovoltaics 3, 318 (2012).
[Crossref]

Redwing, J.M.

H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski, and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Appl. Phys. Lett. 96, 213503 (2010).
[Crossref]

Reppert, J.

Rice, R. R.

Rockett, A.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Rogers, J. A.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Saha, S.

Sazio, P.J.A.

R. He, T.D. Day, M. Krishnamurthi, J.R. Sparks, P.J.A. Sazio, V. Gopalan, and J.V. Badding, “Silicon p-i-n Junction Fibers,” Adv. Mater. 25, 1461–1467 (2013).
[Crossref]

Scott, B. L.

B. L. Scott, K. Wang, and G. Pickrell, “Fabrication of n-Type Silicon Optical Fibers,” IEEE Photonics Technol. Lett. 21, 1798–1800 (2009).
[Crossref]

Sharma, S.

Shori, R.

Shu, Q.

N. Guo, J. Wei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, K. Wang, S. Song, Y. Xu, and D. Wu, “Fabrication of silicon microwire array for photovoltaic applications,” Appl. Phys. A 102, 109–114 (2011).
[Crossref]

Sivoththaman, S.

M. Gharghi, E. Fathi, B. Kante, S. Sivoththaman, and X. Zhang, “Heterojunction Silicon Microwire Solar Cells,” Nano Lett. 12, 6278–6282 (2012).
[Crossref] [PubMed]

Smeltzer, B. K.

F.A. Martinsen, B. K. Smeltzer, M. Nord, T. Hawkins, J. Ballato, and U. J. Gibson, “Silicon-core glass fibes as microwire radial-junction solar cells,” Sci. Rep. 4, 6283 (2014).
[Crossref]

Song, S.

N. Guo, J. Wei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, K. Wang, S. Song, Y. Xu, and D. Wu, “Fabrication of silicon microwire array for photovoltaic applications,” Appl. Phys. A 102, 109–114 (2011).
[Crossref]

Sparks, J.R.

R. He, T.D. Day, M. Krishnamurthi, J.R. Sparks, P.J.A. Sazio, V. Gopalan, and J.V. Badding, “Silicon p-i-n Junction Fibers,” Adv. Mater. 25, 1461–1467 (2013).
[Crossref]

Spurgeon, J. M.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire array for photovoltaic application,” Nat. Mater. 9, 239–244 (2010).
[Crossref] [PubMed]

Spurgeon, J.M.

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J.M. Spurgeon, E. L Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3, 1037–1041 (2010).
[Crossref]

Stafsudd, O.

Stolen, R.

Tan, S.

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6, 6248 (2015).
[Crossref] [PubMed]

Tian, B.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nonowires as solar cells and nanoelectronic power sources,” Nature 449, 885–890 (2007).
[Crossref] [PubMed]

Turner-Evans, D. B.

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, R.M. Briggs, J.Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4, 866–871 (2011).
[Crossref]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J.M. Spurgeon, E. L Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3, 1037–1041 (2010).
[Crossref]

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire array for photovoltaic application,” Nat. Mater. 9, 239–244 (2010).
[Crossref] [PubMed]

Turner-Evans, D.B.

M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, and H.A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8, 710–714 (2008).
[Crossref] [PubMed]

Wang, K.

N. Guo, J. Wei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, K. Wang, S. Song, Y. Xu, and D. Wu, “Fabrication of silicon microwire array for photovoltaic applications,” Appl. Phys. A 102, 109–114 (2011).
[Crossref]

B. L. Scott, K. Wang, and G. Pickrell, “Fabrication of n-Type Silicon Optical Fibers,” IEEE Photonics Technol. Lett. 21, 1798–1800 (2009).
[Crossref]

Wang, Q.

T.H. Wang, E. Iwaniczko, M.R. Page, D.H. Levi, Y. Yan, H.M. Branz, and Q. Wang, “Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells,” Thin Solid Films 501, 284–287 (2006).
[Crossref]

Wang, S.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Wang, T.H.

T.H. Wang, E. Iwaniczko, M.R. Page, D.H. Levi, Y. Yan, H.M. Branz, and Q. Wang, “Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells,” Thin Solid Films 501, 284–287 (2006).
[Crossref]

Warren, E. L

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J.M. Spurgeon, E. L Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3, 1037–1041 (2010).
[Crossref]

Warren, E. L.

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire array for photovoltaic application,” Nat. Mater. 9, 239–244 (2010).
[Crossref] [PubMed]

Wei, J.

N. Guo, J. Wei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, K. Wang, S. Song, Y. Xu, and D. Wu, “Fabrication of silicon microwire array for photovoltaic applications,” Appl. Phys. A 102, 109–114 (2011).
[Crossref]

Wei, L.

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6, 6248 (2015).
[Crossref] [PubMed]

Wronski, C.R.

H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski, and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Appl. Phys. Lett. 96, 213503 (2010).
[Crossref]

Wu, C.-W.

M.-H. Hsu, P. Yu, J.-H. Huang, C.-H. Chang, C.-W. Wu, Y.-C. Cheng, and C.-W. Chu, “Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes,” Appl. Phys. Lett. 98073308 (2011).
[Crossref]

Wu, D.

N. Guo, J. Wei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, K. Wang, S. Song, Y. Xu, and D. Wu, “Fabrication of silicon microwire array for photovoltaic applications,” Appl. Phys. A 102, 109–114 (2011).
[Crossref]

Xiao, J.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Xu, Y.

N. Guo, J. Wei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, K. Wang, S. Song, Y. Xu, and D. Wu, “Fabrication of silicon microwire array for photovoltaic applications,” Appl. Phys. A 102, 109–114 (2011).
[Crossref]

Yan, Y.

T.H. Wang, E. Iwaniczko, M.R. Page, D.H. Levi, Y. Yan, H.M. Branz, and Q. Wang, “Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells,” Thin Solid Films 501, 284–287 (2006).
[Crossref]

Yi, Junsin

V.A. Dao, J. Heo, H. Choi, Y. Kim, S. Park, S. Jung, N. Lakshminarayan, and Junsin Yi, “Simulation and study of the influence of the buffer intrinsic layer back-surface field, densities and interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin layer (HIT) solar cell,” Sol. Energy 84, 777–783 (2010).
[Crossref]

Yoon, H.P.

H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski, and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Appl. Phys. Lett. 96, 213503 (2010).
[Crossref]

Yoon, J.

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Yu, N.

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nonowires as solar cells and nanoelectronic power sources,” Nature 449, 885–890 (2007).
[Crossref] [PubMed]

Yu, P.

M.-H. Hsu, P. Yu, J.-H. Huang, C.-H. Chang, C.-W. Wu, Y.-C. Cheng, and C.-W. Chu, “Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes,” Appl. Phys. Lett. 98073308 (2011).
[Crossref]

Yuwen, Y.A.

H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski, and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Appl. Phys. Lett. 96, 213503 (2010).
[Crossref]

Zhang, K.

N. Guo, J. Wei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, K. Wang, S. Song, Y. Xu, and D. Wu, “Fabrication of silicon microwire array for photovoltaic applications,” Appl. Phys. A 102, 109–114 (2011).
[Crossref]

Zhang, X.

X. Zhang, C. W. Pinion, J. D. Christesen, C. J. Flynn, T. A. Celano, and J. F. Cahoon, “Horizontal silicon nanowires with radial p-n junctions: A platform for unconventional solar cells,” J. Phys. Chem. Lett. 4, 2002–2009 (2013).
[Crossref] [PubMed]

M. Gharghi, E. Fathi, B. Kante, S. Sivoththaman, and X. Zhang, “Heterojunction Silicon Microwire Solar Cells,” Nano Lett. 12, 6278–6282 (2012).
[Crossref] [PubMed]

Zhao, X.

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6, 6248 (2015).
[Crossref] [PubMed]

Zheng, X.

D. R. Kim, C. H. Lee, P. M. Rao, I. S. Cho, and X. Zheng, “Hybrid Si microwire and plannar solar cells: passivation and characterization,” Nano Lett. 11, 2704–2708 (2011).
[Crossref] [PubMed]

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nonowires as solar cells and nanoelectronic power sources,” Nature 449, 885–890 (2007).
[Crossref] [PubMed]

Zhu, H.

N. Guo, J. Wei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, K. Wang, S. Song, Y. Xu, and D. Wu, “Fabrication of silicon microwire array for photovoltaic applications,” Appl. Phys. A 102, 109–114 (2011).
[Crossref]

Adv. Mater. (1)

R. He, T.D. Day, M. Krishnamurthi, J.R. Sparks, P.J.A. Sazio, V. Gopalan, and J.V. Badding, “Silicon p-i-n Junction Fibers,” Adv. Mater. 25, 1461–1467 (2013).
[Crossref]

APL Mat. (1)

F.A. Martinsen, T. Hawkins, J. Ballato, and U.J. Gibson, “Bulk fabrication and properties of solar grade silicon microwires,” APL Mat. 2, 116108 (2014).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

N. Guo, J. Wei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, K. Wang, S. Song, Y. Xu, and D. Wu, “Fabrication of silicon microwire array for photovoltaic applications,” Appl. Phys. A 102, 109–114 (2011).
[Crossref]

Appl. Phys. Lett. (2)

H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski, and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Appl. Phys. Lett. 96, 213503 (2010).
[Crossref]

M.-H. Hsu, P. Yu, J.-H. Huang, C.-H. Chang, C.-W. Wu, Y.-C. Cheng, and C.-W. Chu, “Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes,” Appl. Phys. Lett. 98073308 (2011).
[Crossref]

Energy Environ. Sci. (2)

M. D. Kelzenberg, D. B. Turner-Evans, M. C. Putnam, S. W. Boettcher, R. M. Briggs, R.M. Briggs, J.Y. Baek, N. S. Lewis, and H. A. Atwater, “High-performance Si microwire photovoltaics,” Energy Environ. Sci. 4, 866–871 (2011).
[Crossref]

M. C. Putnam, S. W. Boettcher, M. D. Kelzenberg, D. B. Turner-Evans, J.M. Spurgeon, E. L Warren, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Si microwire-array solar cells,” Energy Environ. Sci. 3, 1037–1041 (2010).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. L. Scott, K. Wang, and G. Pickrell, “Fabrication of n-Type Silicon Optical Fibers,” IEEE Photonics Technol. Lett. 21, 1798–1800 (2009).
[Crossref]

IEEE. J. Photovoltaics (1)

B. Ray, M. R. Khan, C. Black, and M. A. Alam, “Nanostructured electrodes for organic solar cells: analysis and design fundamentals,” IEEE. J. Photovoltaics 3, 318 (2012).
[Crossref]

J. Appl. Phys. (1)

B.M. Kayes, H.A. Atwater, and N.S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97, 114302 (2005).
[Crossref]

J. Phys. Chem. Lett. (1)

X. Zhang, C. W. Pinion, J. D. Christesen, C. J. Flynn, T. A. Celano, and J. F. Cahoon, “Horizontal silicon nanowires with radial p-n junctions: A platform for unconventional solar cells,” J. Phys. Chem. Lett. 4, 2002–2009 (2013).
[Crossref] [PubMed]

Nano Lett. (3)

D. R. Kim, C. H. Lee, P. M. Rao, I. S. Cho, and X. Zheng, “Hybrid Si microwire and plannar solar cells: passivation and characterization,” Nano Lett. 11, 2704–2708 (2011).
[Crossref] [PubMed]

M. Gharghi, E. Fathi, B. Kante, S. Sivoththaman, and X. Zhang, “Heterojunction Silicon Microwire Solar Cells,” Nano Lett. 12, 6278–6282 (2012).
[Crossref] [PubMed]

M.D. Kelzenberg, D.B. Turner-Evans, B.M. Kayes, M.A. Filler, M.C. Putnam, N.S. Lewis, and H.A. Atwater, “Photovoltaic measurements in single-nanowire silicon solar cells,” Nano Lett. 8, 710–714 (2008).
[Crossref] [PubMed]

Nat. Commun. (1)

C. Hou, X. Jia, L. Wei, S. Tan, X. Zhao, J. D. Joannopoulos, and Y. Fink, “Crystalline silicon core fibres from aluminium core preforms,” Nat. Commun. 6, 6248 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire array for photovoltaic application,” Nat. Mater. 9, 239–244 (2010).
[Crossref] [PubMed]

Nature (1)

B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, J. Huang, and C. M. Lieber, “Coaxial silicon nonowires as solar cells and nanoelectronic power sources,” Nature 449, 885–890 (2007).
[Crossref] [PubMed]

Nature Mat. (1)

J. Yoon, A. J. Baca, S. Park, P. Elvikis, J. B. Geddes, L. Li, R. H. Kim, J. Xiao, S. Wang, T. Kim, M. J. Motala, B. Y. Ahn, E. B. Duoss, J. A. Lewis, R. G. Nuzzo, P. M. Ferreira, Y. Huang, A. Rockett, and J. A. Rogers, “Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs,” Nature Mat. 7, 907–915 (2008).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (1)

Sci. Rep. (2)

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Sci. Rep. 3, 1546 (2013).
[Crossref] [PubMed]

F.A. Martinsen, B. K. Smeltzer, M. Nord, T. Hawkins, J. Ballato, and U. J. Gibson, “Silicon-core glass fibes as microwire radial-junction solar cells,” Sci. Rep. 4, 6283 (2014).
[Crossref]

Sol. Energy (1)

V.A. Dao, J. Heo, H. Choi, Y. Kim, S. Park, S. Jung, N. Lakshminarayan, and Junsin Yi, “Simulation and study of the influence of the buffer intrinsic layer back-surface field, densities and interface defects, resistivity of p-type silicon substrate and transparent conductive oxide on heterojunction with intrinsic thin layer (HIT) solar cell,” Sol. Energy 84, 777–783 (2010).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

O. Gunawan and S. Guha, “Characteristics of vapor-liquid-solid grown silicon nanowire solar cells,” Sol. Energy Mater. Sol. Cells 93, 1388–1393 (2009).
[Crossref]

Thin Solid Films (1)

T.H. Wang, E. Iwaniczko, M.R. Page, D.H. Levi, Y. Yan, H.M. Branz, and Q. Wang, “Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells,” Thin Solid Films 501, 284–287 (2006).
[Crossref]

Other (1)

J. Gee, “The effect of parasitic absorption losses on light trapping in thin silicon solar cells,” in 20th IEEE Photovoltaic Specialist Conference (PVSC) (IEEE, 1988), pp. 549–554.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cell fabrication and light scattering: (a) microwires are placed in a horizontal array on a substrate, and (b) core-shell radial junctions and electrodes are fabricated along the length of the microwire. (c) The light trapping of the structure placed on a transparent substrate can be improved (d) by using a scattering top surface and by placing the wires on or above a Lambertian reflector.

Fig. 2
Fig. 2

Images of microwires produced using the molten core fiber drawing method. (a) An optical image of a large silica-silicon fiber (core appears magnified due to glass lensing), (b) a cross-sectional optical image of a similar fiber, (c) an SEM micrograph of a silicon core after glass removal, and (d) an image of a small-core fiber demonstrating a bending radius of ∼5 mm.

Fig. 3
Fig. 3

(a) Schematic of the geometry used for measuring the absorption and (b) the corresponding absorption data measured for 0° and 45° incident light with and without a Lambertian back reflector. The absorption was modeled as shown schematically in (c), taking into account the various reflection and transmission terms in the samples.

Fig. 4
Fig. 4

(a) An optical image of a close packed fiber assembly of ∼35 μm diameter fibers and (b) a scanning electron micrograph of the core-shell part of a multi-fiber solar cell structure made from wires with ∼ 50 μm diameter. (c) Schematic of the full cell structure and (d) the junction formed by PECVD deposition of amorphous silicon. (e) I–V characteristics of a cell with an IQE ∼0.6 made from 6 wires with varying diameters similar to those in (b). The spectral absorption of an F = 0.97 and F = 0.35 sample are presented in (f); g) presents the upper bound on the current possible [IQE=1] for the absorption values shown in (f). The F= 0.97 array absorbs 67% of the relevant photons. The 0.97 fill factor is due to small gaps between the wire cores, illustrated in (b). (h) Details of spectral dependence of the absorption in the roll-off region (650 – 900 nm) for the F=0.97 sample.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I 1 = ( 1 R ext ) I inc + R int I 2 ,
I 2 = R array I 1 + T array I 4 ,
I 3 = T array I 1 + R array I 4 ,
I 4 = R br I 3 .

Metrics