Abstract

This work demonstrates the enhanced power conversion efficiency (PCE) in InGaN/GaN multiple quantum well (MQWs) solar cells with gradually decreasing indium composition in quantum wells (GQWs) toward p-GaN as absorber. The GQW can improve the fill factor from 42% to 62% and enhance the short current density from 0.8 mA/cm2 to 0.92 mA/cm2, as compares to the typical MQW solar cells. As a result, the PCE is boosted from 0.63% to 1.11% under AM1.5G illumination. Based on simulation and experimental results, the enhanced PCE can be attributed to the improved carrier collection in GQW caused by the reduction of potential barriers and piezoelectric polarization induced fields near the p-GaN layer. The presented concept paves a way toward highly efficient InGaN-based solar cells and other GaN-related MQW devices.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Efficiency dip observed with InGaN-based multiple quantum well solar cells

K. Y. Lai, G. J. Lin, Yuh-Renn Wu, Meng-Lun Tsai, and Jr-Hau He
Opt. Express 22(S7) A1753-A1760 (2014)

Enhanced performance of InGaN/GaN based solar cells with an In0.05Ga0.95N ultra-thin inserting layer between GaN barrier and In0.2Ga0.8N well

Zhiwei Ren, Liu Chao, Xin Chen, Bijun Zhao, Xinfu Wang, Jinhui Tong, Jun Zhang, Xiangjing Zhuo, Danwei Li, Hanxiang Yi, and Shuti Li
Opt. Express 21(6) 7118-7124 (2013)

Ag nanoparticles-embedded surface plasmonic InGaN-based solar cells via scattering and localized field enhancement

Jae-Phil Shim, Sang-Bae Choi, Duk-Jo Kong, Dong-Ju Seo, Hyung-jun Kim, and Dong-Seon Lee
Opt. Express 24(14) A1176-A1187 (2016)

References

  • View by:
  • |
  • |
  • |

  1. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/ InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
    [Crossref]
  2. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477 (2003).
    [Crossref]
  3. A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present state of the art and important challenges,” IEEE J. Photovolt. 2(3), 276–293 (2012).
    [Crossref]
  4. H. W. Wang, P. Yu, Y. R. Wu, H. C. Kuo, E. Y. Chang, and S. H. Lin, “Projected efficiency of polarization-matched p-InxGa1−xN/i-InyGa1−yN/n-GaN double heterojunction solar cells,” IEEE J. Photovolt. 3(3), 985–990 (2013).
    [Crossref]
  5. C. C. Yang, C. H. Jang, J. K. Sheu, M. L. Lee, S. J. Tu, F. W. Huang, Y. H. Yeh, and W. C. Lai, “Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration,” Opt. Express 19(S4Suppl 4), A695–A700 (2011).
    [Crossref] [PubMed]
  6. W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
    [Crossref]
  7. D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
    [Crossref]
  8. A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
    [Crossref]
  9. M. Leyer, J. Stellmach, C. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0 0 0 1) GaN,” J. Cryst. Growth 310(23), 4913–4915 (2008).
    [Crossref]
  10. X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “High-quality InGaN/GaN heterojunctions and their photovoltaic effects,” Appl. Phys. Lett. 93(26), 261108 (2008).
    [Crossref]
  11. Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
    [Crossref]
  12. Y. A. Chang, F. M. Chen, Y. L. Tsai, C. W. Chang, K. J. Chen, S. R. Li, T. C. Lu, H. C. Kuo, Y. K. Kuo, P. Yu, C. C. Lin, and L. W. Tu, “Fabrication and characterization of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes,” Opt. Express 22(S5), A1334–A1342 (2014).
    [Crossref] [PubMed]
  13. J. K. Sheu, F. B. Chen, S. H. Wu, M. L. Lee, P. C. Chen, and Y. H. Yeh, “Vertical InGaN-based green-band solar cells operating under high solar concentration up to 300 suns,” Opt. Express 22(S5), A1222–A1228 (2014).
    [Crossref] [PubMed]
  14. R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
    [Crossref]
  15. S. Valdueza-Felip, A. Mukhtarova, L. Grenet, C. Bougerol, C. Durand, J. Eymery, and E. Monroy, “Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration,” Appl. Phys. Express 7(3), 032301 (2014).
    [Crossref]
  16. A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys. 99(8), 084506 (2006).
    [Crossref]
  17. H. Fujii, K. Toprasertpong, Y. Wang, K. Watanabe, M. Sugiyama, and Y. Nakano, “100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current-matched Ge-based tandem cells,” Prog. Photovolt. Res. Appl. 22(7), 784–795 (2014).
    [Crossref]
  18. P. T. Barletta, E. Acar Berkman, B. F. Moody, N. A. El-Masry, A. M. Emara, M. J. Reed, and S. M. Bedair, “Development of green, yellow, and amber light emitting diodes using InGaN multiple quantum well structures,” Appl. Phys. Lett. 90(15), 151109 (2007).
    [Crossref]
  19. Z. Deng, Y. Jiang, Z. Ma, W. Wang, H. Jia, J. Zhou, and H. Chen, “A novel wavelength-adjusting method in InGaN-based light-emitting diodes,” Sci. Rep. 3, 3389 (2013).
    [Crossref] [PubMed]
  20. K. Y. Lai, G. J. Lin, Y. R. Wu, M. L. Tsai, and J. H. He, “Efficiency dip observed with InGaN-based multiple quantum well solar cells,” Opt. Express 22(S7), A1753–A1760 (2014).
    [Crossref] [PubMed]
  21. S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
    [Crossref] [PubMed]
  22. Y. C. Yao, M. T. Tsai, C. Y. Huang, T. Y. Lin, J. K. Sheu, and Y. J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
    [Crossref]
  23. J. R. Lang, N. G. Young, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells,” Appl. Phys. Lett. 101(18), 181105 (2012).
    [Crossref]
  24. J. Yang, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, L. C. Le, X. G. He, X. J. Li, and H. Yang, “Effects of quantum well number on spectral response of InGaN/GaN multiple quantum well solar cells,” Phys. Status Solidi A 211(9), 2157–2160 (2014).
    [Crossref]
  25. S. B. Choi, J. P. Shim, D. M. Kim, H. I. Jeong, Y. D. Jho, Y. H. Song, and D. S. Lee, “Effect of indium composition on carrier escape in InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 103(3), 033901 (2013).
    [Crossref]
  26. Y.-H. Ra, R. Navamathavan, J.-H. Park, and C.-R. Lee, “Radial growth behavior and characteristics of m-plane In0.16Ga0.84N/GaN MQW nanowires by MOCVD,” CrystEngComm 15(10), 1874 (2013).
    [Crossref]
  27. J. Piprek, Semiconductor Optoelectronic Devices (Academic, 2003).
  28. C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett. 98(24), 243507 (2011).
    [Crossref]
  29. APSYS, Crosslight Software Inc, Vancouver, BC, Canada, 2012.
  30. Y. K. Kuo, Y. A. Chang, H. W. Lin, J. Y. Chang, S. H. Yen, F. M. Chen, and Y. H. Chen, “Advantages of InGaN solar cells with p-doped and high-Al-content superlattice AlGaN barriers,” IEEE Photonics Technol. Lett. 25(1), 85–87 (2013).
    [Crossref]
  31. S. L. Chuang and C. S. Chang, “K•p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996).
    [Crossref]
  32. S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252–263 (1997).
    [Crossref]

2015 (1)

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

2014 (6)

J. Yang, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, L. C. Le, X. G. He, X. J. Li, and H. Yang, “Effects of quantum well number on spectral response of InGaN/GaN multiple quantum well solar cells,” Phys. Status Solidi A 211(9), 2157–2160 (2014).
[Crossref]

S. Valdueza-Felip, A. Mukhtarova, L. Grenet, C. Bougerol, C. Durand, J. Eymery, and E. Monroy, “Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration,” Appl. Phys. Express 7(3), 032301 (2014).
[Crossref]

H. Fujii, K. Toprasertpong, Y. Wang, K. Watanabe, M. Sugiyama, and Y. Nakano, “100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current-matched Ge-based tandem cells,” Prog. Photovolt. Res. Appl. 22(7), 784–795 (2014).
[Crossref]

J. K. Sheu, F. B. Chen, S. H. Wu, M. L. Lee, P. C. Chen, and Y. H. Yeh, “Vertical InGaN-based green-band solar cells operating under high solar concentration up to 300 suns,” Opt. Express 22(S5), A1222–A1228 (2014).
[Crossref] [PubMed]

Y. A. Chang, F. M. Chen, Y. L. Tsai, C. W. Chang, K. J. Chen, S. R. Li, T. C. Lu, H. C. Kuo, Y. K. Kuo, P. Yu, C. C. Lin, and L. W. Tu, “Fabrication and characterization of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes,” Opt. Express 22(S5), A1334–A1342 (2014).
[Crossref] [PubMed]

K. Y. Lai, G. J. Lin, Y. R. Wu, M. L. Tsai, and J. H. He, “Efficiency dip observed with InGaN-based multiple quantum well solar cells,” Opt. Express 22(S7), A1753–A1760 (2014).
[Crossref] [PubMed]

2013 (8)

Z. Deng, Y. Jiang, Z. Ma, W. Wang, H. Jia, J. Zhou, and H. Chen, “A novel wavelength-adjusting method in InGaN-based light-emitting diodes,” Sci. Rep. 3, 3389 (2013).
[Crossref] [PubMed]

Y. K. Kuo, Y. A. Chang, H. W. Lin, J. Y. Chang, S. H. Yen, F. M. Chen, and Y. H. Chen, “Advantages of InGaN solar cells with p-doped and high-Al-content superlattice AlGaN barriers,” IEEE Photonics Technol. Lett. 25(1), 85–87 (2013).
[Crossref]

S. B. Choi, J. P. Shim, D. M. Kim, H. I. Jeong, Y. D. Jho, Y. H. Song, and D. S. Lee, “Effect of indium composition on carrier escape in InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 103(3), 033901 (2013).
[Crossref]

Y.-H. Ra, R. Navamathavan, J.-H. Park, and C.-R. Lee, “Radial growth behavior and characteristics of m-plane In0.16Ga0.84N/GaN MQW nanowires by MOCVD,” CrystEngComm 15(10), 1874 (2013).
[Crossref]

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Y. C. Yao, M. T. Tsai, C. Y. Huang, T. Y. Lin, J. K. Sheu, and Y. J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

H. W. Wang, P. Yu, Y. R. Wu, H. C. Kuo, E. Y. Chang, and S. H. Lin, “Projected efficiency of polarization-matched p-InxGa1−xN/i-InyGa1−yN/n-GaN double heterojunction solar cells,” IEEE J. Photovolt. 3(3), 985–990 (2013).
[Crossref]

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

2012 (2)

J. R. Lang, N. G. Young, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells,” Appl. Phys. Lett. 101(18), 181105 (2012).
[Crossref]

A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present state of the art and important challenges,” IEEE J. Photovolt. 2(3), 276–293 (2012).
[Crossref]

2011 (3)

C. C. Yang, C. H. Jang, J. K. Sheu, M. L. Lee, S. J. Tu, F. W. Huang, Y. H. Yeh, and W. C. Lai, “Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration,” Opt. Express 19(S4Suppl 4), A695–A700 (2011).
[Crossref] [PubMed]

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett. 98(24), 243507 (2011).
[Crossref]

2008 (2)

M. Leyer, J. Stellmach, C. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0 0 0 1) GaN,” J. Cryst. Growth 310(23), 4913–4915 (2008).
[Crossref]

X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “High-quality InGaN/GaN heterojunctions and their photovoltaic effects,” Appl. Phys. Lett. 93(26), 261108 (2008).
[Crossref]

2007 (2)

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/ InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

P. T. Barletta, E. Acar Berkman, B. F. Moody, N. A. El-Masry, A. M. Emara, M. J. Reed, and S. M. Bedair, “Development of green, yellow, and amber light emitting diodes using InGaN multiple quantum well structures,” Appl. Phys. Lett. 90(15), 151109 (2007).
[Crossref]

2006 (2)

A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys. 99(8), 084506 (2006).
[Crossref]

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

2003 (1)

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477 (2003).
[Crossref]

1997 (2)

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252–263 (1997).
[Crossref]

1996 (1)

S. L. Chuang and C. S. Chang, “K•p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996).
[Crossref]

Acar Berkman, E.

P. T. Barletta, E. Acar Berkman, B. F. Moody, N. A. El-Masry, A. M. Emara, M. J. Reed, and S. M. Bedair, “Development of green, yellow, and amber light emitting diodes using InGaN multiple quantum well structures,” Appl. Phys. Lett. 90(15), 151109 (2007).
[Crossref]

Ager, J. W.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477 (2003).
[Crossref]

Akasaki, I.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Alemu, A.

A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys. 99(8), 084506 (2006).
[Crossref]

Amano, H.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Barletta, P. T.

P. T. Barletta, E. Acar Berkman, B. F. Moody, N. A. El-Masry, A. M. Emara, M. J. Reed, and S. M. Bedair, “Development of green, yellow, and amber light emitting diodes using InGaN multiple quantum well structures,” Appl. Phys. Lett. 90(15), 151109 (2007).
[Crossref]

Bedair, S. M.

P. T. Barletta, E. Acar Berkman, B. F. Moody, N. A. El-Masry, A. M. Emara, M. J. Reed, and S. M. Bedair, “Development of green, yellow, and amber light emitting diodes using InGaN multiple quantum well structures,” Appl. Phys. Lett. 90(15), 151109 (2007).
[Crossref]

Bhuiyan, A. G.

A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present state of the art and important challenges,” IEEE J. Photovolt. 2(3), 276–293 (2012).
[Crossref]

Bougerol, C.

S. Valdueza-Felip, A. Mukhtarova, L. Grenet, C. Bougerol, C. Durand, J. Eymery, and E. Monroy, “Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration,” Appl. Phys. Express 7(3), 032301 (2014).
[Crossref]

Bowers, J. E.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Carapella, J. J.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Chakraborty, A.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Chang, C. K.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Chang, C. S.

S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252–263 (1997).
[Crossref]

S. L. Chuang and C. S. Chang, “K•p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996).
[Crossref]

Chang, C. W.

Chang, E. Y.

H. W. Wang, P. Yu, Y. R. Wu, H. C. Kuo, E. Y. Chang, and S. H. Lin, “Projected efficiency of polarization-matched p-InxGa1−xN/i-InyGa1−yN/n-GaN double heterojunction solar cells,” IEEE J. Photovolt. 3(3), 985–990 (2013).
[Crossref]

Chang, J. Y.

Y. K. Kuo, Y. A. Chang, H. W. Lin, J. Y. Chang, S. H. Yen, F. M. Chen, and Y. H. Chen, “Advantages of InGaN solar cells with p-doped and high-Al-content superlattice AlGaN barriers,” IEEE Photonics Technol. Lett. 25(1), 85–87 (2013).
[Crossref]

Chang, Y. A.

Y. A. Chang, F. M. Chen, Y. L. Tsai, C. W. Chang, K. J. Chen, S. R. Li, T. C. Lu, H. C. Kuo, Y. K. Kuo, P. Yu, C. C. Lin, and L. W. Tu, “Fabrication and characterization of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes,” Opt. Express 22(S5), A1334–A1342 (2014).
[Crossref] [PubMed]

Y. K. Kuo, Y. A. Chang, H. W. Lin, J. Y. Chang, S. H. Yen, F. M. Chen, and Y. H. Chen, “Advantages of InGaN solar cells with p-doped and high-Al-content superlattice AlGaN barriers,” IEEE Photonics Technol. Lett. 25(1), 85–87 (2013).
[Crossref]

Chen, F. B.

Chen, F. M.

Y. A. Chang, F. M. Chen, Y. L. Tsai, C. W. Chang, K. J. Chen, S. R. Li, T. C. Lu, H. C. Kuo, Y. K. Kuo, P. Yu, C. C. Lin, and L. W. Tu, “Fabrication and characterization of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes,” Opt. Express 22(S5), A1334–A1342 (2014).
[Crossref] [PubMed]

Y. K. Kuo, Y. A. Chang, H. W. Lin, J. Y. Chang, S. H. Yen, F. M. Chen, and Y. H. Chen, “Advantages of InGaN solar cells with p-doped and high-Al-content superlattice AlGaN barriers,” IEEE Photonics Technol. Lett. 25(1), 85–87 (2013).
[Crossref]

Chen, H.

Z. Deng, Y. Jiang, Z. Ma, W. Wang, H. Jia, J. Zhou, and H. Chen, “A novel wavelength-adjusting method in InGaN-based light-emitting diodes,” Sci. Rep. 3, 3389 (2013).
[Crossref] [PubMed]

Chen, H. C.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Chen, K. J.

Y. A. Chang, F. M. Chen, Y. L. Tsai, C. W. Chang, K. J. Chen, S. R. Li, T. C. Lu, H. C. Kuo, Y. K. Kuo, P. Yu, C. C. Lin, and L. W. Tu, “Fabrication and characterization of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes,” Opt. Express 22(S5), A1334–A1342 (2014).
[Crossref] [PubMed]

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Chen, P.

J. Yang, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, L. C. Le, X. G. He, X. J. Li, and H. Yang, “Effects of quantum well number on spectral response of InGaN/GaN multiple quantum well solar cells,” Phys. Status Solidi A 211(9), 2157–2160 (2014).
[Crossref]

Chen, P. C.

Chen, Y. H.

Y. K. Kuo, Y. A. Chang, H. W. Lin, J. Y. Chang, S. H. Yen, F. M. Chen, and Y. H. Chen, “Advantages of InGaN solar cells with p-doped and high-Al-content superlattice AlGaN barriers,” IEEE Photonics Technol. Lett. 25(1), 85–87 (2013).
[Crossref]

Chichibu, S. F.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Choi, S. B.

S. B. Choi, J. P. Shim, D. M. Kim, H. I. Jeong, Y. D. Jho, Y. H. Song, and D. S. Lee, “Effect of indium composition on carrier escape in InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 103(3), 033901 (2013).
[Crossref]

Chu, M. T.

X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “High-quality InGaN/GaN heterojunctions and their photovoltaic effects,” Appl. Phys. Lett. 93(26), 261108 (2008).
[Crossref]

Chuang, S. L.

S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252–263 (1997).
[Crossref]

S. L. Chuang and C. S. Chang, “K•p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996).
[Crossref]

Coaquira, J. A. H.

A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys. 99(8), 084506 (2006).
[Crossref]

Cruz, S. C.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett. 98(24), 243507 (2011).
[Crossref]

DenBaars, S. P.

C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett. 98(24), 243507 (2011).
[Crossref]

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Deng, Z.

Z. Deng, Y. Jiang, Z. Ma, W. Wang, H. Jia, J. Zhou, and H. Chen, “A novel wavelength-adjusting method in InGaN-based light-emitting diodes,” Sci. Rep. 3, 3389 (2013).
[Crossref] [PubMed]

Duda, A.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Durand, C.

S. Valdueza-Felip, A. Mukhtarova, L. Grenet, C. Bougerol, C. Durand, J. Eymery, and E. Monroy, “Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration,” Appl. Phys. Express 7(3), 032301 (2014).
[Crossref]

El-Masry, N. A.

P. T. Barletta, E. Acar Berkman, B. F. Moody, N. A. El-Masry, A. M. Emara, M. J. Reed, and S. M. Bedair, “Development of green, yellow, and amber light emitting diodes using InGaN multiple quantum well structures,” Appl. Phys. Lett. 90(15), 151109 (2007).
[Crossref]

Emara, A. M.

P. T. Barletta, E. Acar Berkman, B. F. Moody, N. A. El-Masry, A. M. Emara, M. J. Reed, and S. M. Bedair, “Development of green, yellow, and amber light emitting diodes using InGaN multiple quantum well structures,” Appl. Phys. Lett. 90(15), 151109 (2007).
[Crossref]

Eymery, J.

S. Valdueza-Felip, A. Mukhtarova, L. Grenet, C. Bougerol, C. Durand, J. Eymery, and E. Monroy, “Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration,” Appl. Phys. Express 7(3), 032301 (2014).
[Crossref]

Farrell, R. M.

J. R. Lang, N. G. Young, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells,” Appl. Phys. Lett. 101(18), 181105 (2012).
[Crossref]

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett. 98(24), 243507 (2011).
[Crossref]

Ferguson, I.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/ InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Fini, P. T.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

France, R. M.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Freundlich, A.

A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys. 99(8), 084506 (2006).
[Crossref]

Friedman, D. J.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Fujii, H.

H. Fujii, K. Toprasertpong, Y. Wang, K. Watanabe, M. Sugiyama, and Y. Nakano, “100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current-matched Ge-based tandem cells,” Prog. Photovolt. Res. Appl. 22(7), 784–795 (2014).
[Crossref]

Geisz, J. F.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Grenet, L.

S. Valdueza-Felip, A. Mukhtarova, L. Grenet, C. Bougerol, C. Durand, J. Eymery, and E. Monroy, “Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration,” Appl. Phys. Express 7(3), 032301 (2014).
[Crossref]

Haller, E. E.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477 (2003).
[Crossref]

Han, H. V.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Han, J.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Hashimoto, A.

A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present state of the art and important challenges,” IEEE J. Photovolt. 2(3), 276–293 (2012).
[Crossref]

Haskell, B. A.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

He, J. H.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

K. Y. Lai, G. J. Lin, Y. R. Wu, M. L. Tsai, and J. H. He, “Efficiency dip observed with InGaN-based multiple quantum well solar cells,” Opt. Express 22(S7), A1753–A1760 (2014).
[Crossref] [PubMed]

He, X. G.

J. Yang, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, L. C. Le, X. G. He, X. J. Li, and H. Yang, “Effects of quantum well number on spectral response of InGaN/GaN multiple quantum well solar cells,” Phys. Status Solidi A 211(9), 2157–2160 (2014).
[Crossref]

Honsberg, C.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/ InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Horng, R. H.

X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “High-quality InGaN/GaN heterojunctions and their photovoltaic effects,” Appl. Phys. Lett. 93(26), 261108 (2008).
[Crossref]

Hsiao, Y. H.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Huang, C. Y.

Y. C. Yao, M. T. Tsai, C. Y. Huang, T. Y. Lin, J. K. Sheu, and Y. J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

Huang, F. W.

Iza, M.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett. 98(24), 243507 (2011).
[Crossref]

Jang, C. H.

Jani, O.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/ InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Jeong, H. I.

S. B. Choi, J. P. Shim, D. M. Kim, H. I. Jeong, Y. D. Jho, Y. H. Song, and D. S. Lee, “Effect of indium composition on carrier escape in InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 103(3), 033901 (2013).
[Crossref]

Jho, Y. D.

S. B. Choi, J. P. Shim, D. M. Kim, H. I. Jeong, Y. D. Jho, Y. H. Song, and D. S. Lee, “Effect of indium composition on carrier escape in InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 103(3), 033901 (2013).
[Crossref]

Jia, H.

Z. Deng, Y. Jiang, Z. Ma, W. Wang, H. Jia, J. Zhou, and H. Chen, “A novel wavelength-adjusting method in InGaN-based light-emitting diodes,” Sci. Rep. 3, 3389 (2013).
[Crossref] [PubMed]

Jiang, D. S.

J. Yang, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, L. C. Le, X. G. He, X. J. Li, and H. Yang, “Effects of quantum well number on spectral response of InGaN/GaN multiple quantum well solar cells,” Phys. Status Solidi A 211(9), 2157–2160 (2014).
[Crossref]

Jiang, Y.

Z. Deng, Y. Jiang, Z. Ma, W. Wang, H. Jia, J. Zhou, and H. Chen, “A novel wavelength-adjusting method in InGaN-based light-emitting diodes,” Sci. Rep. 3, 3389 (2013).
[Crossref] [PubMed]

Kamiyama, S.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Keller, S.

C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett. 98(24), 243507 (2011).
[Crossref]

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Kibbler, A. E.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Kim, D. M.

S. B. Choi, J. P. Shim, D. M. Kim, H. I. Jeong, Y. D. Jho, Y. H. Song, and D. S. Lee, “Effect of indium composition on carrier escape in InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 103(3), 033901 (2013).
[Crossref]

Kneissl, M.

M. Leyer, J. Stellmach, C. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0 0 0 1) GaN,” J. Cryst. Growth 310(23), 4913–4915 (2008).
[Crossref]

Koyama, T.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Kuo, H. C.

Y. A. Chang, F. M. Chen, Y. L. Tsai, C. W. Chang, K. J. Chen, S. R. Li, T. C. Lu, H. C. Kuo, Y. K. Kuo, P. Yu, C. C. Lin, and L. W. Tu, “Fabrication and characterization of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes,” Opt. Express 22(S5), A1334–A1342 (2014).
[Crossref] [PubMed]

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

H. W. Wang, P. Yu, Y. R. Wu, H. C. Kuo, E. Y. Chang, and S. H. Lin, “Projected efficiency of polarization-matched p-InxGa1−xN/i-InyGa1−yN/n-GaN double heterojunction solar cells,” IEEE J. Photovolt. 3(3), 985–990 (2013).
[Crossref]

Kuo, Y. K.

Y. A. Chang, F. M. Chen, Y. L. Tsai, C. W. Chang, K. J. Chen, S. R. Li, T. C. Lu, H. C. Kuo, Y. K. Kuo, P. Yu, C. C. Lin, and L. W. Tu, “Fabrication and characterization of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes,” Opt. Express 22(S5), A1334–A1342 (2014).
[Crossref] [PubMed]

Y. K. Kuo, Y. A. Chang, H. W. Lin, J. Y. Chang, S. H. Yen, F. M. Chen, and Y. H. Chen, “Advantages of InGaN solar cells with p-doped and high-Al-content superlattice AlGaN barriers,” IEEE Photonics Technol. Lett. 25(1), 85–87 (2013).
[Crossref]

Kurtz, S.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/ InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477 (2003).
[Crossref]

Lai, F. I.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Lai, K. Y.

Lai, W. C.

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

C. C. Yang, C. H. Jang, J. K. Sheu, M. L. Lee, S. J. Tu, F. W. Huang, Y. H. Yeh, and W. C. Lai, “Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration,” Opt. Express 19(S4Suppl 4), A695–A700 (2011).
[Crossref] [PubMed]

Lang, J. R.

J. R. Lang, N. G. Young, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells,” Appl. Phys. Lett. 101(18), 181105 (2012).
[Crossref]

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett. 98(24), 243507 (2011).
[Crossref]

Le, L. C.

J. Yang, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, L. C. Le, X. G. He, X. J. Li, and H. Yang, “Effects of quantum well number on spectral response of InGaN/GaN multiple quantum well solar cells,” Phys. Status Solidi A 211(9), 2157–2160 (2014).
[Crossref]

Lee, C.-R.

Y.-H. Ra, R. Navamathavan, J.-H. Park, and C.-R. Lee, “Radial growth behavior and characteristics of m-plane In0.16Ga0.84N/GaN MQW nanowires by MOCVD,” CrystEngComm 15(10), 1874 (2013).
[Crossref]

Lee, D. S.

S. B. Choi, J. P. Shim, D. M. Kim, H. I. Jeong, Y. D. Jho, Y. H. Song, and D. S. Lee, “Effect of indium composition on carrier escape in InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 103(3), 033901 (2013).
[Crossref]

Lee, M. L.

Lee, S. C.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Lee, Y. J.

Y. C. Yao, M. T. Tsai, C. Y. Huang, T. Y. Lin, J. K. Sheu, and Y. J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

Leyer, M.

M. Leyer, J. Stellmach, C. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0 0 0 1) GaN,” J. Cryst. Growth 310(23), 4913–4915 (2008).
[Crossref]

Li, S. R.

Li, X. J.

J. Yang, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, L. C. Le, X. G. He, X. J. Li, and H. Yang, “Effects of quantum well number on spectral response of InGaN/GaN multiple quantum well solar cells,” Phys. Status Solidi A 211(9), 2157–2160 (2014).
[Crossref]

Liao, W. Y.

X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “High-quality InGaN/GaN heterojunctions and their photovoltaic effects,” Appl. Phys. Lett. 93(26), 261108 (2008).
[Crossref]

Lien, D. H.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Lin, C. C.

Y. A. Chang, F. M. Chen, Y. L. Tsai, C. W. Chang, K. J. Chen, S. R. Li, T. C. Lu, H. C. Kuo, Y. K. Kuo, P. Yu, C. C. Lin, and L. W. Tu, “Fabrication and characterization of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes,” Opt. Express 22(S5), A1334–A1342 (2014).
[Crossref] [PubMed]

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Lin, C. T.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Lin, G. J.

Lin, H. W.

Y. K. Kuo, Y. A. Chang, H. W. Lin, J. Y. Chang, S. H. Yen, F. M. Chen, and Y. H. Chen, “Advantages of InGaN solar cells with p-doped and high-Al-content superlattice AlGaN barriers,” IEEE Photonics Technol. Lett. 25(1), 85–87 (2013).
[Crossref]

Lin, R. M.

X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “High-quality InGaN/GaN heterojunctions and their photovoltaic effects,” Appl. Phys. Lett. 93(26), 261108 (2008).
[Crossref]

Lin, S. H.

H. W. Wang, P. Yu, Y. R. Wu, H. C. Kuo, E. Y. Chang, and S. H. Lin, “Projected efficiency of polarization-matched p-InxGa1−xN/i-InyGa1−yN/n-GaN double heterojunction solar cells,” IEEE J. Photovolt. 3(3), 985–990 (2013).
[Crossref]

Lin, T. Y.

Y. C. Yao, M. T. Tsai, C. Y. Huang, T. Y. Lin, J. K. Sheu, and Y. J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

Liu, Z. S.

J. Yang, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, L. C. Le, X. G. He, X. J. Li, and H. Yang, “Effects of quantum well number on spectral response of InGaN/GaN multiple quantum well solar cells,” Phys. Status Solidi A 211(9), 2157–2160 (2014).
[Crossref]

Lu, H.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477 (2003).
[Crossref]

Lu, T. C.

Lu, Y. C.

X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “High-quality InGaN/GaN heterojunctions and their photovoltaic effects,” Appl. Phys. Lett. 93(26), 261108 (2008).
[Crossref]

Luque, A.

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Ma, Z.

Z. Deng, Y. Jiang, Z. Ma, W. Wang, H. Jia, J. Zhou, and H. Chen, “A novel wavelength-adjusting method in InGaN-based light-emitting diodes,” Sci. Rep. 3, 3389 (2013).
[Crossref] [PubMed]

Martí, A.

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

McMahon, W. E.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Meissner, C.

M. Leyer, J. Stellmach, C. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0 0 0 1) GaN,” J. Cryst. Growth 310(23), 4913–4915 (2008).
[Crossref]

Metzger, W. K.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477 (2003).
[Crossref]

Mishra, U. K.

C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett. 98(24), 243507 (2011).
[Crossref]

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Monroy, E.

S. Valdueza-Felip, A. Mukhtarova, L. Grenet, C. Bougerol, C. Durand, J. Eymery, and E. Monroy, “Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration,” Appl. Phys. Express 7(3), 032301 (2014).
[Crossref]

Moody, B. F.

P. T. Barletta, E. Acar Berkman, B. F. Moody, N. A. El-Masry, A. M. Emara, M. J. Reed, and S. M. Bedair, “Development of green, yellow, and amber light emitting diodes using InGaN multiple quantum well structures,” Appl. Phys. Lett. 90(15), 151109 (2007).
[Crossref]

Mukhtarova, A.

S. Valdueza-Felip, A. Mukhtarova, L. Grenet, C. Bougerol, C. Durand, J. Eymery, and E. Monroy, “Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration,” Appl. Phys. Express 7(3), 032301 (2014).
[Crossref]

Nakamura, S.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett. 98(24), 243507 (2011).
[Crossref]

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Nakano, Y.

H. Fujii, K. Toprasertpong, Y. Wang, K. Watanabe, M. Sugiyama, and Y. Nakano, “100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current-matched Ge-based tandem cells,” Prog. Photovolt. Res. Appl. 22(7), 784–795 (2014).
[Crossref]

Navamathavan, R.

Y.-H. Ra, R. Navamathavan, J.-H. Park, and C.-R. Lee, “Radial growth behavior and characteristics of m-plane In0.16Ga0.84N/GaN MQW nanowires by MOCVD,” CrystEngComm 15(10), 1874 (2013).
[Crossref]

Neufeld, C. J.

C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett. 98(24), 243507 (2011).
[Crossref]

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Olavarr’ia, W.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Olson, J. M.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Onuma, T.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Park, J.-H.

Y.-H. Ra, R. Navamathavan, J.-H. Park, and C.-R. Lee, “Radial growth behavior and characteristics of m-plane In0.16Ga0.84N/GaN MQW nanowires by MOCVD,” CrystEngComm 15(10), 1874 (2013).
[Crossref]

Perl, E. E.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Pristovsek, M.

M. Leyer, J. Stellmach, C. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0 0 0 1) GaN,” J. Cryst. Growth 310(23), 4913–4915 (2008).
[Crossref]

Ra, Y.-H.

Y.-H. Ra, R. Navamathavan, J.-H. Park, and C.-R. Lee, “Radial growth behavior and characteristics of m-plane In0.16Ga0.84N/GaN MQW nanowires by MOCVD,” CrystEngComm 15(10), 1874 (2013).
[Crossref]

Reed, M. J.

P. T. Barletta, E. Acar Berkman, B. F. Moody, N. A. El-Masry, A. M. Emara, M. J. Reed, and S. M. Bedair, “Development of green, yellow, and amber light emitting diodes using InGaN multiple quantum well structures,” Appl. Phys. Lett. 90(15), 151109 (2007).
[Crossref]

Schaff, W. J.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477 (2003).
[Crossref]

Shan, W.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477 (2003).
[Crossref]

Sheu, J. K.

J. K. Sheu, F. B. Chen, S. H. Wu, M. L. Lee, P. C. Chen, and Y. H. Yeh, “Vertical InGaN-based green-band solar cells operating under high solar concentration up to 300 suns,” Opt. Express 22(S5), A1222–A1228 (2014).
[Crossref] [PubMed]

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Y. C. Yao, M. T. Tsai, C. Y. Huang, T. Y. Lin, J. K. Sheu, and Y. J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

C. C. Yang, C. H. Jang, J. K. Sheu, M. L. Lee, S. J. Tu, F. W. Huang, Y. H. Yeh, and W. C. Lai, “Characteristics of InGaN-based concentrator solar cells operating under 150X solar concentration,” Opt. Express 19(S4Suppl 4), A695–A700 (2011).
[Crossref] [PubMed]

Shim, J. P.

S. B. Choi, J. P. Shim, D. M. Kim, H. I. Jeong, Y. D. Jho, Y. H. Song, and D. S. Lee, “Effect of indium composition on carrier escape in InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 103(3), 033901 (2013).
[Crossref]

Song, Y. H.

S. B. Choi, J. P. Shim, D. M. Kim, H. I. Jeong, Y. D. Jho, Y. H. Song, and D. S. Lee, “Effect of indium composition on carrier escape in InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 103(3), 033901 (2013).
[Crossref]

Sota, T.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Speck, J. S.

J. R. Lang, N. G. Young, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells,” Appl. Phys. Lett. 101(18), 181105 (2012).
[Crossref]

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett. 98(24), 243507 (2011).
[Crossref]

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Steiner, M. A.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Stellmach, J.

M. Leyer, J. Stellmach, C. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0 0 0 1) GaN,” J. Cryst. Growth 310(23), 4913–4915 (2008).
[Crossref]

Sugita, K.

A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present state of the art and important challenges,” IEEE J. Photovolt. 2(3), 276–293 (2012).
[Crossref]

Sugiyama, M.

H. Fujii, K. Toprasertpong, Y. Wang, K. Watanabe, M. Sugiyama, and Y. Nakano, “100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current-matched Ge-based tandem cells,” Prog. Photovolt. Res. Appl. 22(7), 784–795 (2014).
[Crossref]

Toprasertpong, K.

H. Fujii, K. Toprasertpong, Y. Wang, K. Watanabe, M. Sugiyama, and Y. Nakano, “100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current-matched Ge-based tandem cells,” Prog. Photovolt. Res. Appl. 22(7), 784–795 (2014).
[Crossref]

Tsai, M. L.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

K. Y. Lai, G. J. Lin, Y. R. Wu, M. L. Tsai, and J. H. He, “Efficiency dip observed with InGaN-based multiple quantum well solar cells,” Opt. Express 22(S7), A1753–A1760 (2014).
[Crossref] [PubMed]

Tsai, M. T.

Y. C. Yao, M. T. Tsai, C. Y. Huang, T. Y. Lin, J. K. Sheu, and Y. J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

Tsai, Y. L.

Y. A. Chang, F. M. Chen, Y. L. Tsai, C. W. Chang, K. J. Chen, S. R. Li, T. C. Lu, H. C. Kuo, Y. K. Kuo, P. Yu, C. C. Lin, and L. W. Tu, “Fabrication and characterization of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes,” Opt. Express 22(S5), A1334–A1342 (2014).
[Crossref] [PubMed]

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Tu, L. W.

Tu, S. J.

Uedono, A.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Valdueza-Felip, S.

S. Valdueza-Felip, A. Mukhtarova, L. Grenet, C. Bougerol, C. Durand, J. Eymery, and E. Monroy, “Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration,” Appl. Phys. Express 7(3), 032301 (2014).
[Crossref]

Walukiewicz, W.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477 (2003).
[Crossref]

Wang, H. W.

H. W. Wang, P. Yu, Y. R. Wu, H. C. Kuo, E. Y. Chang, and S. H. Lin, “Projected efficiency of polarization-matched p-InxGa1−xN/i-InyGa1−yN/n-GaN double heterojunction solar cells,” IEEE J. Photovolt. 3(3), 985–990 (2013).
[Crossref]

Wang, W.

Z. Deng, Y. Jiang, Z. Ma, W. Wang, H. Jia, J. Zhou, and H. Chen, “A novel wavelength-adjusting method in InGaN-based light-emitting diodes,” Sci. Rep. 3, 3389 (2013).
[Crossref] [PubMed]

Wang, Y.

H. Fujii, K. Toprasertpong, Y. Wang, K. Watanabe, M. Sugiyama, and Y. Nakano, “100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current-matched Ge-based tandem cells,” Prog. Photovolt. Res. Appl. 22(7), 784–795 (2014).
[Crossref]

Wanlass, M. W.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Ward, J. S.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Watanabe, K.

H. Fujii, K. Toprasertpong, Y. Wang, K. Watanabe, M. Sugiyama, and Y. Nakano, “100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current-matched Ge-based tandem cells,” Prog. Photovolt. Res. Appl. 22(7), 784–795 (2014).
[Crossref]

Wei, T. C.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Wu, J.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477 (2003).
[Crossref]

Wu, M. H.

X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “High-quality InGaN/GaN heterojunctions and their photovoltaic effects,” Appl. Phys. Lett. 93(26), 261108 (2008).
[Crossref]

Wu, S. H.

Wu, Y. R.

K. Y. Lai, G. J. Lin, Y. R. Wu, M. L. Tsai, and J. H. He, “Efficiency dip observed with InGaN-based multiple quantum well solar cells,” Opt. Express 22(S7), A1753–A1760 (2014).
[Crossref] [PubMed]

H. W. Wang, P. Yu, Y. R. Wu, H. C. Kuo, E. Y. Chang, and S. H. Lin, “Projected efficiency of polarization-matched p-InxGa1−xN/i-InyGa1−yN/n-GaN double heterojunction solar cells,” IEEE J. Photovolt. 3(3), 985–990 (2013).
[Crossref]

J. R. Lang, N. G. Young, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells,” Appl. Phys. Lett. 101(18), 181105 (2012).
[Crossref]

Wuu, D. S.

X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “High-quality InGaN/GaN heterojunctions and their photovoltaic effects,” Appl. Phys. Lett. 93(26), 261108 (2008).
[Crossref]

Yamaguchi, S.

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Yamamoto, A.

A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present state of the art and important challenges,” IEEE J. Photovolt. 2(3), 276–293 (2012).
[Crossref]

Yang, C. C.

Yang, H.

J. Yang, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, L. C. Le, X. G. He, X. J. Li, and H. Yang, “Effects of quantum well number on spectral response of InGaN/GaN multiple quantum well solar cells,” Phys. Status Solidi A 211(9), 2157–2160 (2014).
[Crossref]

Yang, J.

J. Yang, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, L. C. Le, X. G. He, X. J. Li, and H. Yang, “Effects of quantum well number on spectral response of InGaN/GaN multiple quantum well solar cells,” Phys. Status Solidi A 211(9), 2157–2160 (2014).
[Crossref]

Yang, S. G.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Yao, Y. C.

Y. C. Yao, M. T. Tsai, C. Y. Huang, T. Y. Lin, J. K. Sheu, and Y. J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

Yeh, Y. H.

Yen, S. H.

Y. K. Kuo, Y. A. Chang, H. W. Lin, J. Y. Chang, S. H. Yen, F. M. Chen, and Y. H. Chen, “Advantages of InGaN solar cells with p-doped and high-Al-content superlattice AlGaN barriers,” IEEE Photonics Technol. Lett. 25(1), 85–87 (2013).
[Crossref]

Young, M.

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

Young, N. G.

J. R. Lang, N. G. Young, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells,” Appl. Phys. Lett. 101(18), 181105 (2012).
[Crossref]

Yu, K. M.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477 (2003).
[Crossref]

Yu, P.

Y. A. Chang, F. M. Chen, Y. L. Tsai, C. W. Chang, K. J. Chen, S. R. Li, T. C. Lu, H. C. Kuo, Y. K. Kuo, P. Yu, C. C. Lin, and L. W. Tu, “Fabrication and characterization of back-side illuminated InGaN/GaN solar cells with periodic via-holes etching and Bragg mirror processes,” Opt. Express 22(S5), A1334–A1342 (2014).
[Crossref] [PubMed]

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

H. W. Wang, P. Yu, Y. R. Wu, H. C. Kuo, E. Y. Chang, and S. H. Lin, “Projected efficiency of polarization-matched p-InxGa1−xN/i-InyGa1−yN/n-GaN double heterojunction solar cells,” IEEE J. Photovolt. 3(3), 985–990 (2013).
[Crossref]

Zhao, D. G.

J. Yang, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, L. C. Le, X. G. He, X. J. Li, and H. Yang, “Effects of quantum well number on spectral response of InGaN/GaN multiple quantum well solar cells,” Phys. Status Solidi A 211(9), 2157–2160 (2014).
[Crossref]

Zheng, X.

X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “High-quality InGaN/GaN heterojunctions and their photovoltaic effects,” Appl. Phys. Lett. 93(26), 261108 (2008).
[Crossref]

Zhou, J.

Z. Deng, Y. Jiang, Z. Ma, W. Wang, H. Jia, J. Zhou, and H. Chen, “A novel wavelength-adjusting method in InGaN-based light-emitting diodes,” Sci. Rep. 3, 3389 (2013).
[Crossref] [PubMed]

Appl. Phys. Express (1)

S. Valdueza-Felip, A. Mukhtarova, L. Grenet, C. Bougerol, C. Durand, J. Eymery, and E. Monroy, “Improved conversion efficiency of as-grown InGaN/GaN quantum-well solar cells for hybrid integration,” Appl. Phys. Express 7(3), 032301 (2014).
[Crossref]

Appl. Phys. Lett. (8)

P. T. Barletta, E. Acar Berkman, B. F. Moody, N. A. El-Masry, A. M. Emara, M. J. Reed, and S. M. Bedair, “Development of green, yellow, and amber light emitting diodes using InGaN multiple quantum well structures,” Appl. Phys. Lett. 90(15), 151109 (2007).
[Crossref]

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/ InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

X. Zheng, R. H. Horng, D. S. Wuu, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “High-quality InGaN/GaN heterojunctions and their photovoltaic effects,” Appl. Phys. Lett. 93(26), 261108 (2008).
[Crossref]

Y. C. Yao, M. T. Tsai, C. Y. Huang, T. Y. Lin, J. K. Sheu, and Y. J. Lee, “Efficient collection of photogenerated carriers by inserting double tunnel junctions in III-nitride p-i-n solar cells,” Appl. Phys. Lett. 103(19), 193503 (2013).
[Crossref]

J. R. Lang, N. G. Young, R. M. Farrell, Y. R. Wu, and J. S. Speck, “Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells,” Appl. Phys. Lett. 101(18), 181105 (2012).
[Crossref]

S. B. Choi, J. P. Shim, D. M. Kim, H. I. Jeong, Y. D. Jho, Y. H. Song, and D. S. Lee, “Effect of indium composition on carrier escape in InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 103(3), 033901 (2013).
[Crossref]

C. J. Neufeld, S. C. Cruz, R. M. Farrell, M. Iza, J. R. Lang, S. Keller, S. Nakamura, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Effect of doping and polarization on carrier collection in InGaN quantum well solar cells,” Appl. Phys. Lett. 98(24), 243507 (2011).
[Crossref]

CrystEngComm (1)

Y.-H. Ra, R. Navamathavan, J.-H. Park, and C.-R. Lee, “Radial growth behavior and characteristics of m-plane In0.16Ga0.84N/GaN MQW nanowires by MOCVD,” CrystEngComm 15(10), 1874 (2013).
[Crossref]

IEEE J. Photovolt. (3)

A. G. Bhuiyan, K. Sugita, A. Hashimoto, and A. Yamamoto, “InGaN Solar Cells: Present state of the art and important challenges,” IEEE J. Photovolt. 2(3), 276–293 (2012).
[Crossref]

H. W. Wang, P. Yu, Y. R. Wu, H. C. Kuo, E. Y. Chang, and S. H. Lin, “Projected efficiency of polarization-matched p-InxGa1−xN/i-InyGa1−yN/n-GaN double heterojunction solar cells,” IEEE J. Photovolt. 3(3), 985–990 (2013).
[Crossref]

W. E. McMahon, C. T. Lin, J. S. Ward, J. F. Geisz, M. W. Wanlass, J. J. Carapella, W. Olavarr’ıa, M. Young, M. A. Steiner, R. M. France, A. E. Kibbler, A. Duda, J. M. Olson, E. E. Perl, D. J. Friedman, and J. E. Bowers, “Metal pillar interconnection topology for bonded two-terminal multijunction III–V solar cells,” IEEE J. Photovolt. 3(2), 868–872 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. K. Kuo, Y. A. Chang, H. W. Lin, J. Y. Chang, S. H. Yen, F. M. Chen, and Y. H. Chen, “Advantages of InGaN solar cells with p-doped and high-Al-content superlattice AlGaN barriers,” IEEE Photonics Technol. Lett. 25(1), 85–87 (2013).
[Crossref]

J. Appl. Phys. (2)

A. Alemu, J. A. H. Coaquira, and A. Freundlich, “Dependence of device performance on carrier escape sequence in multi-quantum-well p-i-n solar cells,” J. Appl. Phys. 99(8), 084506 (2006).
[Crossref]

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477 (2003).
[Crossref]

J. Cryst. Growth (1)

M. Leyer, J. Stellmach, C. Meissner, M. Pristovsek, and M. Kneissl, “The critical thickness of InGaN on (0 0 0 1) GaN,” J. Cryst. Growth 310(23), 4913–4915 (2008).
[Crossref]

Nano Energy (1)

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Nat. Mater. (1)

S. F. Chichibu, A. Uedono, T. Onuma, B. A. Haskell, A. Chakraborty, T. Koyama, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, U. K. Mishra, S. Nakamura, S. Yamaguchi, S. Kamiyama, H. Amano, I. Akasaki, J. Han, and T. Sota, “Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors,” Nat. Mater. 5(10), 810–816 (2006).
[Crossref] [PubMed]

Opt. Express (4)

Phys. Rev. B (1)

S. L. Chuang and C. S. Chang, “K•p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491–2504 (1996).
[Crossref]

Phys. Rev. Lett. (1)

A. Luque and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels,” Phys. Rev. Lett. 78(26), 5014–5017 (1997).
[Crossref]

Phys. Status Solidi A (1)

J. Yang, D. G. Zhao, D. S. Jiang, P. Chen, Z. S. Liu, L. C. Le, X. G. He, X. J. Li, and H. Yang, “Effects of quantum well number on spectral response of InGaN/GaN multiple quantum well solar cells,” Phys. Status Solidi A 211(9), 2157–2160 (2014).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

H. Fujii, K. Toprasertpong, Y. Wang, K. Watanabe, M. Sugiyama, and Y. Nakano, “100-period, 1.23-eV bandgap InGaAs/GaAsP quantum wells for high-efficiency GaAs solar cells: toward current-matched Ge-based tandem cells,” Prog. Photovolt. Res. Appl. 22(7), 784–795 (2014).
[Crossref]

Sci. Rep. (1)

Z. Deng, Y. Jiang, Z. Ma, W. Wang, H. Jia, J. Zhou, and H. Chen, “A novel wavelength-adjusting method in InGaN-based light-emitting diodes,” Sci. Rep. 3, 3389 (2013).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252–263 (1997).
[Crossref]

Sol. Energy Mater. Sol. Cells (1)

Y. L. Tsai, C. C. Lin, H. V. Han, C. K. Chang, H. C. Chen, K. J. Chen, W. C. Lai, J. K. Sheu, F. I. Lai, P. Yu, and H. C. Kuo, “Improving efficiency of InGaN/GaN multiple quantum well solar cells using CdS quantum dots and distributed Bragg reflectors,” Sol. Energy Mater. Sol. Cells 117, 531–536 (2013).
[Crossref]

Other (2)

J. Piprek, Semiconductor Optoelectronic Devices (Academic, 2003).

APSYS, Crosslight Software Inc, Vancouver, BC, Canada, 2012.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic plots of the fabricated InGaN/GaN typical MQW and GQW solar cell. (b) The indium composition distributions in typical MQW and GQW absorber.

Fig. 2
Fig. 2

Room temperature PL emission spectra of (a) typical MQW and (b) GQW solar cell.

Fig. 3
Fig. 3

(a) Current-voltage curve under dark situation. (b) Current density-voltage (J-V) curve of typical MQW and GQW solar cell under AM1.5G illumination condition.

Fig. 4
Fig. 4

(a) The external quantum efficiency (EQE) of typical MQW and GQW solar cell and (b) the corresponding enhancement ratio in EQE. Bias dependence EQE of (c) GQW and (d) typical MQW solar cell under the bias voltage of 0V, −0.5V, −1V and −1.5V.

Fig. 5
Fig. 5

(a) Simulated band diagram and (b) detailed band diagram in final quantum well at p-GaN interface for conduction band and (c) valence band of GQW and typical MQW solar cell. (d) Hole concentration distribution of GQW and typical MQW solar cell.

Tables (1)

Tables Icon

Table 1 Current-voltage characteristics of typical MQW and GQW solar cell under AM1.5G illumination condition.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E g = 0.7 x + 0.34 ( 1 x ) 1.43 x ( 1 x )
E n h a n c e m e n t r a t i o = E Q E G Q W / E Q E t y p i c a l M Q W

Metrics