Abstract

We report a class of thermophotovoltaic emitter structures built upon planar films that support resonant modes, known as perfectly-absorbing modes, that facilitate an exceptional optical response for selective emission. These planar structures have several key advantages over previously-proposed designs for TPV applications: they are simple to fabricate, are stable across a range of temperatures and conditions, and are capable of achieving some of the highest spectral efficiencies reported of any class of emitter structure. Utilization of these emitters leads to exceptionally high device efficiencies under low operating temperature conditions, which should open new opportunities for waste heat management. We present a theoretical framework for understanding this performance, and show that this framework can be leveraged as a search algorithm for promising candidate structures. In addition to providing an efficient theoretical methodology for identifying high-performance emitter structures, our methodology provides new insight into underlying design principles and should pave way for future design of structures that are simple to fabricate, temperature stable, and possess exceptional optical properties.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Novel and efficient Mie-metamaterial thermal emitter for thermophotovoltaic systems

Alok Ghanekar, Laura Lin, and Yi Zheng
Opt. Express 24(10) A868-A877 (2016)

Photonic crystal enhanced silicon cell based thermophotovoltaic systems

Yi Xiang Yeng, Walker R. Chan, Veronika Rinnerbauer, Veronika Stelmakh, Jay J. Senkevich, John D. Joannopoulos, Marin Soljacic, and Ivan Čelanović
Opt. Express 23(3) A157-A168 (2015)

Design and optimization of one-dimensional photonic crystals for thermophotovoltaic applications

Ivan Celanovic, Francis O’Sullivan, Milos Ilak, John Kassakian, and David Perreault
Opt. Lett. 29(8) 863-865 (2004)

References

  • View by:
  • |
  • |
  • |

  1. S. Fan, “Photovoltaics: An alternative ’sun’ for solar cells,” Nat. Nanotechnol. 9, 92–93 (2014).
    [Crossref] [PubMed]
  2. P. A. Davies and A. Luque, “Solar thermophotovoltaics: brief review and a new look,” Sol. Energ. Mat. Sol. Cells 33, 11–22 (1994).
    [Crossref]
  3. P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljacic, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
    [Crossref] [PubMed]
  4. C. Ungaro, S. K. Gray, and M. C. Gupta, “Black tungsten for solar power generation,” Appl. Phys. Lett. 103, 071105 (2013).
    [Crossref]
  5. C. Ungaro, S. K. Gray, and M. C. Gupta, “Graded-index structures for high-efficiency solar thermophotovoltaic emitting surfaces,” Opt. Lett. 18, 5259–5262 (2014).
    [Crossref]
  6. A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
    [Crossref] [PubMed]
  7. H. Ye, H. Wang, and Q. Cai, “Two-dimensional VO2 photonic crystal selective emitter,” J. Quant. Spectros. Radia. Transfer 158, 119–126 (2015).
    [Crossref]
  8. E. Rephaeli and S. Fan, “Absorber and emitter for solar thermophotovoltaic systems to achieve efficiency exceeding the Schockley-Queisser limit,” Opt. Express 17, 15145–15159 (2009).
    [Crossref] [PubMed]
  9. L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18, S247 (2003).
    [Crossref]
  10. V. P. Khvostikov, S. V. Sorokina, O. A. Khvostikova, N. K. Timoshina, N. S. Potapovich, B. Y. Ber, D. Y. Kazantsev, and V. M. Andreev, “High-efficiency GaSb photocells,” Physics of Semiconductor Devices 47, 307–313 (2013).
    [Crossref]
  11. M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
    [Crossref]
  12. C. A. Wang, H. K. Choi, S. L. Ransom, G. W. Charache, L. R. Danielson, and D. M. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
    [Crossref]
  13. N. P. Sergeant, O. Pincon, M. Agrawal, and P. Peumans, “Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks,” Opt. Express 17, 22800–22812 (2009).
    [Crossref]
  14. J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 09929 (2015).
    [Crossref]
  15. P. Yeh, Optical waves in layered media (Wiley, 2005).
  16. J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comp. J. 7, 308–313 (1965).
    [Crossref]
  17. J. M. Montgomery and S. K. Gray, “Enhancing surface plasmon polariton propagation lengths via coupling to asymmetric waveguide structures,” Phys. Rev. B 77, 125407 (2008).
    [Crossref]
  18. E. D. Palik, Handbook of optical constants of solids (Academic Press, 1998).
  19. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370 (1972).
    [Crossref]
  20. M. Shimizu, A. Kohiyama, and H. Y. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5, 053099 (2015).
    [Crossref]
  21. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2, 478–489 (2012).
    [Crossref]
  22. W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Materials and Solar Cells 94, 509–514 (2010).
    [Crossref]
  23. P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
    [Crossref] [PubMed]
  24. M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted si-insb thermophotovoltaic system for low temperature applications,” Opt. Express 23, A240–A253 (2015).
    [Crossref] [PubMed]

2015 (4)

H. Ye, H. Wang, and Q. Cai, “Two-dimensional VO2 photonic crystal selective emitter,” J. Quant. Spectros. Radia. Transfer 158, 119–126 (2015).
[Crossref]

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 09929 (2015).
[Crossref]

M. Shimizu, A. Kohiyama, and H. Y. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5, 053099 (2015).
[Crossref]

M. Lim, S. Jin, S. S. Lee, and B. J. Lee, “Graphene-assisted si-insb thermophotovoltaic system for low temperature applications,” Opt. Express 23, A240–A253 (2015).
[Crossref] [PubMed]

2014 (3)

S. Fan, “Photovoltaics: An alternative ’sun’ for solar cells,” Nat. Nanotechnol. 9, 92–93 (2014).
[Crossref] [PubMed]

C. Ungaro, S. K. Gray, and M. C. Gupta, “Graded-index structures for high-efficiency solar thermophotovoltaic emitting surfaces,” Opt. Lett. 18, 5259–5262 (2014).
[Crossref]

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

2013 (2)

V. P. Khvostikov, S. V. Sorokina, O. A. Khvostikova, N. K. Timoshina, N. S. Potapovich, B. Y. Ber, D. Y. Kazantsev, and V. M. Andreev, “High-efficiency GaSb photocells,” Physics of Semiconductor Devices 47, 307–313 (2013).
[Crossref]

C. Ungaro, S. K. Gray, and M. C. Gupta, “Black tungsten for solar power generation,” Appl. Phys. Lett. 103, 071105 (2013).
[Crossref]

2012 (1)

2010 (2)

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljacic, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref] [PubMed]

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Materials and Solar Cells 94, 509–514 (2010).
[Crossref]

2009 (2)

2008 (2)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref] [PubMed]

J. M. Montgomery and S. K. Gray, “Enhancing surface plasmon polariton propagation lengths via coupling to asymmetric waveguide structures,” Phys. Rev. B 77, 125407 (2008).
[Crossref]

2006 (1)

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

2003 (1)

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18, S247 (2003).
[Crossref]

1999 (1)

C. A. Wang, H. K. Choi, S. L. Ransom, G. W. Charache, L. R. Danielson, and D. M. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[Crossref]

1994 (1)

P. A. Davies and A. Luque, “Solar thermophotovoltaics: brief review and a new look,” Sol. Energ. Mat. Sol. Cells 33, 11–22 (1994).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

1965 (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comp. J. 7, 308–313 (1965).
[Crossref]

Agrawal, M.

Andreev, V. M.

V. P. Khvostikov, S. V. Sorokina, O. A. Khvostikova, N. K. Timoshina, N. S. Potapovich, B. Y. Ber, D. Y. Kazantsev, and V. M. Andreev, “High-efficiency GaSb photocells,” Physics of Semiconductor Devices 47, 307–313 (2013).
[Crossref]

Anikeev, S.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Araghchini, M.

Avery, J. E.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18, S247 (2003).
[Crossref]

Baldasar, P. F.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Beausang, J. F.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Belenky, G. L.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Ber, B. Y.

V. P. Khvostikov, S. V. Sorokina, O. A. Khvostikova, N. K. Timoshina, N. S. Potapovich, B. Y. Ber, D. Y. Kazantsev, and V. M. Andreev, “High-efficiency GaSb photocells,” Physics of Semiconductor Devices 47, 307–313 (2013).
[Crossref]

Bermel, P.

Bierman, D. M.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

Boltasseva, A.

Brown, E. J.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Burger, S. R.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Cai, Q.

H. Ye, H. Wang, and Q. Cai, “Two-dimensional VO2 photonic crystal selective emitter,” J. Quant. Spectros. Radia. Transfer 158, 119–126 (2015).
[Crossref]

Celanovic, I.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljacic, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref] [PubMed]

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Materials and Solar Cells 94, 509–514 (2010).
[Crossref]

Chan, W.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Materials and Solar Cells 94, 509–514 (2010).
[Crossref]

P. Bermel, M. Ghebrebrhan, W. Chan, Y. X. Yeng, M. Araghchini, R. Hamam, C. H. Marton, K. F. Jensen, M. Soljacic, J. D. Joannopoulos, S. G. Johnson, and I. Celanovic, “Design and global optimization of high-efficiency thermophotovoltaic systems,” Opt. Express 18, A314–A334 (2010).
[Crossref] [PubMed]

Chan, W. R.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

Charache, G. W.

C. A. Wang, H. K. Choi, S. L. Ransom, G. W. Charache, L. R. Danielson, and D. M. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[Crossref]

Choi, H. K.

C. A. Wang, H. K. Choi, S. L. Ransom, G. W. Charache, L. R. Danielson, and D. M. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Connors, M. K.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Danielson, L. R.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

C. A. Wang, H. K. Choi, S. L. Ransom, G. W. Charache, L. R. Danielson, and D. M. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[Crossref]

Dashiell, M. W.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Davies, P. A.

P. A. Davies and A. Luque, “Solar thermophotovoltaics: brief review and a new look,” Sol. Energ. Mat. Sol. Cells 33, 11–22 (1994).
[Crossref]

Depoy, D. M.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

C. A. Wang, H. K. Choi, S. L. Ransom, G. W. Charache, L. R. Danielson, and D. M. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[Crossref]

Divan, R.

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 09929 (2015).
[Crossref]

Donetski, D.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Ehsani, H.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Fan, S.

Foley, J. J.

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 09929 (2015).
[Crossref]

Fourspring, P. M.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Fraas, L. M.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18, S247 (2003).
[Crossref]

Ghebrebrhan, M.

Gray, S. K.

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 09929 (2015).
[Crossref]

C. Ungaro, S. K. Gray, and M. C. Gupta, “Graded-index structures for high-efficiency solar thermophotovoltaic emitting surfaces,” Opt. Lett. 18, 5259–5262 (2014).
[Crossref]

C. Ungaro, S. K. Gray, and M. C. Gupta, “Black tungsten for solar power generation,” Appl. Phys. Lett. 103, 071105 (2013).
[Crossref]

J. M. Montgomery and S. K. Gray, “Enhancing surface plasmon polariton propagation lengths via coupling to asymmetric waveguide structures,” Phys. Rev. B 77, 125407 (2008).
[Crossref]

Gupta, M. C.

C. Ungaro, S. K. Gray, and M. C. Gupta, “Graded-index structures for high-efficiency solar thermophotovoltaic emitting surfaces,” Opt. Lett. 18, 5259–5262 (2014).
[Crossref]

C. Ungaro, S. K. Gray, and M. C. Gupta, “Black tungsten for solar power generation,” Appl. Phys. Lett. 103, 071105 (2013).
[Crossref]

Hamam, R.

Han, S. E.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref] [PubMed]

Harutyunyan, H.

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 09929 (2015).
[Crossref]

Huang, H. X.

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18, S247 (2003).
[Crossref]

Huang, R.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Materials and Solar Cells 94, 509–514 (2010).
[Crossref]

Huang, R. K.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Jensen, K. F.

Jin, S.

Jizhong, L.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Joannopoulos, J.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Materials and Solar Cells 94, 509–514 (2010).
[Crossref]

Joannopoulos, J. D.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

Johnson, S. G.

Kassakian, J.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Materials and Solar Cells 94, 509–514 (2010).
[Crossref]

Kazantsev, D. Y.

V. P. Khvostikov, S. V. Sorokina, O. A. Khvostikova, N. K. Timoshina, N. S. Potapovich, B. Y. Ber, D. Y. Kazantsev, and V. M. Andreev, “High-efficiency GaSb photocells,” Physics of Semiconductor Devices 47, 307–313 (2013).
[Crossref]

Khvostikov, V. P.

V. P. Khvostikov, S. V. Sorokina, O. A. Khvostikova, N. K. Timoshina, N. S. Potapovich, B. Y. Ber, D. Y. Kazantsev, and V. M. Andreev, “High-efficiency GaSb photocells,” Physics of Semiconductor Devices 47, 307–313 (2013).
[Crossref]

Khvostikova, O. A.

V. P. Khvostikov, S. V. Sorokina, O. A. Khvostikova, N. K. Timoshina, N. S. Potapovich, B. Y. Ber, D. Y. Kazantsev, and V. M. Andreev, “High-efficiency GaSb photocells,” Physics of Semiconductor Devices 47, 307–313 (2013).
[Crossref]

Kildishev, A. V.

Kohiyama, A.

M. Shimizu, A. Kohiyama, and H. Y. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5, 053099 (2015).
[Crossref]

Lee, B. J.

Lee, S. S.

Lenert, A.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

Lim, M.

Luque, A.

P. A. Davies and A. Luque, “Solar thermophotovoltaics: brief review and a new look,” Sol. Energ. Mat. Sol. Cells 33, 11–22 (1994).
[Crossref]

Luryi, S.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Martinelli, R.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Marton, C. H.

Mead, R.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comp. J. 7, 308–313 (1965).
[Crossref]

Montgomery, J. M.

J. M. Montgomery and S. K. Gray, “Enhancing surface plasmon polariton propagation lengths via coupling to asymmetric waveguide structures,” Phys. Rev. B 77, 125407 (2008).
[Crossref]

Nagpal, P.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref] [PubMed]

Naik, G. V.

Nam, Y.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

Nelder, J. A.

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comp. J. 7, 308–313 (1965).
[Crossref]

Ni, X.

Nichols, G. J.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Norris, D. J.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of optical constants of solids (Academic Press, 1998).

Peumans, P.

Pincon, O.

Potapovich, N. S.

V. P. Khvostikov, S. V. Sorokina, O. A. Khvostikova, N. K. Timoshina, N. S. Potapovich, B. Y. Ber, D. Y. Kazantsev, and V. M. Andreev, “High-efficiency GaSb photocells,” Physics of Semiconductor Devices 47, 307–313 (2013).
[Crossref]

Rahner, K. D.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Ransom, S. L.

C. A. Wang, H. K. Choi, S. L. Ransom, G. W. Charache, L. R. Danielson, and D. M. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[Crossref]

Rephaeli, E.

Rosenmann, D.

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 09929 (2015).
[Crossref]

Sands, T. D.

Schroeder, J. L.

Sergeant, N. P.

Shellenbarger, Z. A.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Shimizu, M.

M. Shimizu, A. Kohiyama, and H. Y. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5, 053099 (2015).
[Crossref]

Soljacic, M.

Sorokina, S. V.

V. P. Khvostikov, S. V. Sorokina, O. A. Khvostikova, N. K. Timoshina, N. S. Potapovich, B. Y. Ber, D. Y. Kazantsev, and V. M. Andreev, “High-efficiency GaSb photocells,” Physics of Semiconductor Devices 47, 307–313 (2013).
[Crossref]

Stein, A.

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref] [PubMed]

Talamo, P.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Taylor, G.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Timoshina, N. K.

V. P. Khvostikov, S. V. Sorokina, O. A. Khvostikova, N. K. Timoshina, N. S. Potapovich, B. Y. Ber, D. Y. Kazantsev, and V. M. Andreev, “High-efficiency GaSb photocells,” Physics of Semiconductor Devices 47, 307–313 (2013).
[Crossref]

Topper, W. F.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Turner, G. W.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

Ungaro, C.

C. Ungaro, S. K. Gray, and M. C. Gupta, “Graded-index structures for high-efficiency solar thermophotovoltaic emitting surfaces,” Opt. Lett. 18, 5259–5262 (2014).
[Crossref]

C. Ungaro, S. K. Gray, and M. C. Gupta, “Black tungsten for solar power generation,” Appl. Phys. Lett. 103, 071105 (2013).
[Crossref]

Wang, C.

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Materials and Solar Cells 94, 509–514 (2010).
[Crossref]

Wang, C. A.

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

C. A. Wang, H. K. Choi, S. L. Ransom, G. W. Charache, L. R. Danielson, and D. M. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[Crossref]

Wang, E. N.

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

Wang, H.

H. Ye, H. Wang, and Q. Cai, “Two-dimensional VO2 photonic crystal selective emitter,” J. Quant. Spectros. Radia. Transfer 158, 119–126 (2015).
[Crossref]

Wiederrecht, G. P.

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 09929 (2015).
[Crossref]

Ye, H.

H. Ye, H. Wang, and Q. Cai, “Two-dimensional VO2 photonic crystal selective emitter,” J. Quant. Spectros. Radia. Transfer 158, 119–126 (2015).
[Crossref]

Yeh, P.

P. Yeh, Optical waves in layered media (Wiley, 2005).

Yeng, Y. X.

Yugami, H. Y.

M. Shimizu, A. Kohiyama, and H. Y. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5, 053099 (2015).
[Crossref]

Appl. Phys. Lett. (2)

C. Ungaro, S. K. Gray, and M. C. Gupta, “Black tungsten for solar power generation,” Appl. Phys. Lett. 103, 071105 (2013).
[Crossref]

C. A. Wang, H. K. Choi, S. L. Ransom, G. W. Charache, L. R. Danielson, and D. M. DePoy, “High-quantum-efficiency 0.5 eV GaInAsSb/GaSb thermophotovoltaic devices,” Appl. Phys. Lett. 75, 1305–1307 (1999).
[Crossref]

Comp. J. (1)

J. A. Nelder and R. Mead, “A simplex method for function minimization,” Comp. J. 7, 308–313 (1965).
[Crossref]

IEEE Trans. Electron Dev. (1)

M. W. Dashiell, J. F. Beausang, H. Ehsani, G. J. Nichols, D. M. Depoy, L. R. Danielson, P. Talamo, K. D. Rahner, E. J. Brown, S. R. Burger, P. M. Fourspring, W. F. Topper, P. F. Baldasar, C. A. Wang, R. K. Huang, M. K. Connors, G. W. Turner, Z. A. Shellenbarger, G. Taylor, L. Jizhong, R. Martinelli, D. Donetski, S. Anikeev, G. L. Belenky, and S. Luryi, “Quaternary InGaAsSb thermophotovoltaic diodes,” IEEE Trans. Electron Dev. 53, 2879–2891 (2006).
[Crossref]

J. Photon. Energy (1)

M. Shimizu, A. Kohiyama, and H. Y. Yugami, “High-efficiency solar-thermophotovoltaic system equipped with a monolithic planar selective absorber/emitter,” J. Photon. Energy 5, 053099 (2015).
[Crossref]

J. Quant. Spectros. Radia. Transfer (1)

H. Ye, H. Wang, and Q. Cai, “Two-dimensional VO2 photonic crystal selective emitter,” J. Quant. Spectros. Radia. Transfer 158, 119–126 (2015).
[Crossref]

Nano Lett. (1)

P. Nagpal, S. E. Han, A. Stein, and D. J. Norris, “Efficient low-temperature thermophotovoltaic emitters from metallic photonic crystals,” Nano Lett. 8, 3238–3243 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

A. Lenert, D. M. Bierman, Y. Nam, W. R. Chan, I. Celanovic, M. Soljacic, and E. N. Wang, “A nanophotonic solar thermophotovoltaic device,” Nat. Nanotechnol. 9, 126–130 (2014).
[Crossref] [PubMed]

S. Fan, “Photovoltaics: An alternative ’sun’ for solar cells,” Nat. Nanotechnol. 9, 92–93 (2014).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (1)

C. Ungaro, S. K. Gray, and M. C. Gupta, “Graded-index structures for high-efficiency solar thermophotovoltaic emitting surfaces,” Opt. Lett. 18, 5259–5262 (2014).
[Crossref]

Opt. Mater. Express (1)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370 (1972).
[Crossref]

J. M. Montgomery and S. K. Gray, “Enhancing surface plasmon polariton propagation lengths via coupling to asymmetric waveguide structures,” Phys. Rev. B 77, 125407 (2008).
[Crossref]

Physics of Semiconductor Devices (1)

V. P. Khvostikov, S. V. Sorokina, O. A. Khvostikova, N. K. Timoshina, N. S. Potapovich, B. Y. Ber, D. Y. Kazantsev, and V. M. Andreev, “High-efficiency GaSb photocells,” Physics of Semiconductor Devices 47, 307–313 (2013).
[Crossref]

Sci. Rep. (1)

J. J. Foley, H. Harutyunyan, D. Rosenmann, R. Divan, G. P. Wiederrecht, and S. K. Gray, “When are surface plasmon polaritons excited in the Kretschmann-Raether configuration?” Sci. Rep. 5, 09929 (2015).
[Crossref]

Semicond. Sci. Technol. (1)

L. M. Fraas, J. E. Avery, and H. X. Huang, “Thermophotovoltaic furnace-generator for the home using low bandgap GaSb cells,” Semicond. Sci. Technol. 18, S247 (2003).
[Crossref]

Sol. Energ. Mat. Sol. Cells (1)

P. A. Davies and A. Luque, “Solar thermophotovoltaics: brief review and a new look,” Sol. Energ. Mat. Sol. Cells 33, 11–22 (1994).
[Crossref]

Solar Energy Materials and Solar Cells (1)

W. Chan, R. Huang, C. Wang, J. Kassakian, J. Joannopoulos, and I. Celanovic, “Modeling low-bandgap thermophotovoltaic diodes for high-efficiency portable power generators,” Solar Energy Materials and Solar Cells 94, 509–514 (2010).
[Crossref]

Other (2)

E. D. Palik, Handbook of optical constants of solids (Academic Press, 1998).

P. Yeh, Optical waves in layered media (Wiley, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Comparison of simulated and experimental results for the reflectance of a sample with a d 1 of 120 nm, a d 2 of 13.5 nm, and a d 3 of 345 nm. Inset: The fabricated structure.
Fig. 2
Fig. 2 Maps of Emissivity as a function of emission angle and wavelength. a) Emissivity map of thin-film structure optimized for PV material with λbg = 1707 nm with an operating temperature of 1000 K. b) Emissivity map of thin-film structure optimized for PV material with λbg = 2254 nm with an operating temperature of 1000 K. c) Schematic of emitter structure consisting of an optically-thick tungsten substrate with thin-film layers of Ag and Si3N4 to mediate selective absorption/emission.
Fig. 3
Fig. 3 Top Emissivity of various structures optimized for InGaAsSb cells. Bottom Reflectance in the complex β, α plane for optimized YSZ/Ag/YSZ/W structure at λ = 2μm. We see that the strong emissivity peak of the YSZ/Ag/YSZ/W structure corresponds to resonant perfect absorption.
Fig. 4
Fig. 4 Schematic of 4 layer system with finite thickness (d2 and d3) sandwiched by 2 semi-infinite dielectric layers illustrating coordinate system used for Fresnel equations.
Fig. 5
Fig. 5 Dispersion of perfectly absorbing modes in various structures. W with AR corresponds to a 2-layer YSZ/W structure. W with W film corresponds to a 4-layer YSZ/W/YSZ/W structure. W with Ag film corresponds to a 4-layer YSZ/Ag/YSZ/W structure. Ag with Ag film corresponds to a 4-layer YSZ/Ag/YSZ/Ag structure. At critical frequencies, the YSZ/Ag/YSZ/W structure supports perfectly absorbing modes with low β and α, indicating that normally-incident light couples efficiently into these modes.
Fig. 6
Fig. 6 Reflectance in the complex wavevector plane near perfectly absorbing resonances. Reflectance plane near PA resonance for a) YSZ/W structure and b) YSZ/W/YSZ/W structure optimized for InGaAsSb cells at 1000K operation, see Table I in the main text for geometries.
Fig. 7
Fig. 7 Map of the β (panel a)) and α (panel b)) defining the PA modes in a hypothetical structure illustrated in panel c). For this structure, we fix the geometries of all layers as illustrated. We use a permittivity value of 4.41 for layers 1 and 3 (corresponding to YSZ), and a permittivity value of −56.13 + 19.25i for layer 4 (corresponding to Tungsten at 2 μm). The modal equations are scanned for values of Re(ε) in the range of −250 to 0 and Im(ε) in the range 0.5 to 30 with k 0 fixed at 3.14μm, yielding a map of the β and α values, note that α can have both positive and negative values. This calculation reveals that in general, large negative values of Re(ε) and small values of Im(ε) give rise to PA modes in this structure with small β and α values, meaning that normally incident light can couple efficiently to these modes and that these modes have narrow resonance features.

Tables (2)

Tables Icon

Table 1 Geometries, spectral efficiencies, and device efficiencies of structures optimized for λbg = 2254 nm and λbg = 1707 nm, for low- (1000 K) and high-temperature (1750 K) operation. We compare 4-layer structures to 2-layer structures. For 4-layer structures, d 1 is the thickness of a dielectric coating, d 2 is the thickness of a thin metal film, d 3 is the thickness of the dielectric spacer on top of an optically-thick tungsten substrate. For to 2-layer structures, d 3 is the thickness of a dielectric coating on top of optically-thick tungsten.

Tables Icon

Table 2 Geometries and output power densities of emitter structures. We compare highly selective 4-layer emitter structures (YSZ/Ag/YSZ/W) to broad-band 2-layer structures (YSZ/W). For the 4-layer structures, d 1 is the thickness of YSZ, d 2 is the thickness of Ag, and d 3 is the thickness of the YSZ spacer layer on top of an optically-thick tungsten substrate. For the 2-layer structures, d 3 is the thickness of a YSZ coating on top of optically-thick tungsten. Geometries are taken from the structures given in Table 1.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

SE = 0 λ bg E bg E λ B ( λ , T ) ε S ( λ ) d λ 0 B ( λ , T ) ε S ( λ ) d λ
( E 1 + E 1 ) = ( M 1 , 1 M 1 , 2 M 2 , 1 M 2 , 2 ) ( E L + E L ) ,
E ( z ) = { E 1 + exp ( i k z 1 z ) + E 1 exp ( i k z 1 z ) z < z 1 0 E 2 + exp ( i k z 2 ( z z 1 ) ) + E 2 exp ( i k z 2 ( z z 1 ) ) z 1 < z < z 2 E L + exp ( i k z L ( z z L 1 ) ) + E L exp ( i k z L ( z z L 1 ) ) z > z L 1 )
k z j = ± N j 2 k 0 2 k x 2 ,
( E 1 + E 1 ) = D 1 1 D 2 ( E 2 + E 2 )
( E l + E l ) = P l D l 1 D l + 1 ( E l + 1 + E l + 1 )
D l = ( cos ( θ l ) cos ( θ l ) N l N l )
D l = ( 1 1 N l cos ( θ l ) N l cos ( θ 1 ) )
( M 11 M 12 M 21 M 22 ) = D 1 1 ( l = 2 L 1 D l P l D l 1 ) D L ,
P l = ( exp ( i k z l d l ) 0 0 exp ( i k z l d l ) ) .

Metrics