Abstract

We propose here a method for absolute distance measurement by chirped pulse interferometry using frequency comb. The principle is introduced, and the distance can be measured via the shift of the widest fringe. The experimental results show an agreement within 26 μm in a range up to 65 m, corresponding to a relative precision of 4 × 10−7, compared with a reference distance meter.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Intensity evaluation using a femtosecond pulse laser for absolute distance measurement

Hanzhong Wu, Fumin Zhang, Jianshuang Li, Shiying Cao, Xiangsong Meng, and Xinghua Qu
Appl. Opt. 54(17) 5581-5590 (2015)

Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser

Hanzhong Wu, Fumin Zhang, Tingyang Liu, Petr Balling, and Xinghua Qu
Appl. Opt. 55(15) 4210-4218 (2016)

Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser

Hanzhong Wu, Fumin Zhang, Shiying Cao, Shujian Xing, and Xinghua Qu
Opt. Express 22(9) 10380-10397 (2014)

References

  • View by:
  • |
  • |
  • |

  1. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [Crossref]
  2. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
    [Crossref]
  3. T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
    [Crossref] [PubMed]
  4. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [Crossref] [PubMed]
  5. N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
    [Crossref]
  6. J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [Crossref]
  7. I. Coddington, C. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurement at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  8. S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
    [Crossref] [PubMed]
  9. H. Zhang, X. Wu, H. Wei, and Y. Li, “Compact dual-comb absolute distance ranging with an electric reference,” IEEE Photonics J. 7, 6801508 (2015).
  10. N. Schuhler, Y. Salvadé, S. Lévêque, R. Dändliker, and R. Holzwarth, “Frequency-comb-referenced two-wavelength source for absolute distance measurement,” Opt. Lett. 31(21), 3101–3103 (2006).
    [Crossref] [PubMed]
  11. R. Yang, F. Pollinger, K. Meiners-Hagen, J. Tan, and H. Bosse, “Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair,” Opt. Lett. 39(20), 5834–5837 (2014).
    [Crossref] [PubMed]
  12. H. Wu, F. Zhang, F. Meng, P. Balling, J. Li, L. Pan, and X. Qu, “Absolute distance measurement using frequency comb and a single-frequency laser,” IEEE Photonics Technol. Lett. 27(24), 2587–2590 (2015).
    [Crossref]
  13. D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011).
    [Crossref] [PubMed]
  14. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
    [Crossref] [PubMed]
  15. H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
    [Crossref] [PubMed]
  16. H. Wu, F. Zhang, J. Li, S. Cao, X. Meng, and X. Qu, “Intensity evaluation using a femtosecond pulse laser for absolute distance measurement,” Appl. Opt. 54(17), 5581–5590 (2015).
    [Crossref] [PubMed]
  17. H. Matsumoto, X. Wang, K. Takamasu, and T. Aoto, “Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb,” Appl. Phys. Express 5(4), 046601 (2012).
    [Crossref]
  18. P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 094001 (2012).
    [Crossref]
  19. P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
    [Crossref] [PubMed]
  20. M. G. Zeitouny, M. Cui, N. Bhattacharya, H. P. Urbach, S. A. van den Berg, and A. J. E. M. Janssen, “From a discrete to a continuous model for interpulse interference with a frequency-comb laser,” Phys. Rev. A 82(2), 023808 (2010).
    [Crossref]
  21. K. N. Joo and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
    [Crossref] [PubMed]
  22. H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol.In press.
  23. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
    [Crossref] [PubMed]
  24. H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
    [Crossref] [PubMed]
  25. R. Yang, F. Pollinger, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
    [Crossref]
  26. J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
    [Crossref]
  27. G. Wu, M. Takahashi, H. Inaba, and K. Minoshima, “Pulse-to-pulse alignment technique based on synthetic-wavelength interferometry of optical frequency combs for distance measurement,” Opt. Lett. 38(12), 2140–2143 (2013).
    [Crossref] [PubMed]
  28. J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
    [Crossref] [PubMed]
  29. K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33(Part 2, No. 9B), L1348–L1351 (1994).
    [Crossref]
  30. W. Fan, B. Zhu, Y. Wu, F. Qian, M. Shui, S. Du, B. Zhang, Y. Wu, J. Xin, Z. Zhao, L. Cao, Y. Wang, and Y. Gu, “Measurement of the chirp characteristics of linearly chirped pulses by a frequency domain interference method,” Opt. Express 21(11), 13062–13067 (2013).
    [Crossref] [PubMed]
  31. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35(9), 1566–1573 (1996).
    [Crossref] [PubMed]
  32. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009).
    [Crossref] [PubMed]

2015 (7)

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

H. Zhang, X. Wu, H. Wei, and Y. Li, “Compact dual-comb absolute distance ranging with an electric reference,” IEEE Photonics J. 7, 6801508 (2015).

H. Wu, F. Zhang, F. Meng, P. Balling, J. Li, L. Pan, and X. Qu, “Absolute distance measurement using frequency comb and a single-frequency laser,” IEEE Photonics Technol. Lett. 27(24), 2587–2590 (2015).
[Crossref]

R. Yang, F. Pollinger, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
[Crossref] [PubMed]

H. Wu, F. Zhang, J. Li, S. Cao, X. Meng, and X. Qu, “Intensity evaluation using a femtosecond pulse laser for absolute distance measurement,” Appl. Opt. 54(17), 5581–5590 (2015).
[Crossref] [PubMed]

2014 (3)

2013 (3)

2012 (3)

H. Matsumoto, X. Wang, K. Takamasu, and T. Aoto, “Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb,” Appl. Phys. Express 5(4), 046601 (2012).
[Crossref]

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 094001 (2012).
[Crossref]

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

2011 (3)

2010 (3)

M. G. Zeitouny, M. Cui, N. Bhattacharya, H. P. Urbach, S. A. van den Berg, and A. J. E. M. Janssen, “From a discrete to a continuous model for interpulse interference with a frequency-comb laser,” Phys. Rev. A 82(2), 023808 (2010).
[Crossref]

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

2009 (3)

2006 (2)

2004 (1)

2000 (1)

1996 (1)

1994 (1)

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33(Part 2, No. 9B), L1348–L1351 (1994).
[Crossref]

Abou-Zeid, A.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Aoto, T.

H. Matsumoto, X. Wang, K. Takamasu, and T. Aoto, “Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb,” Appl. Phys. Express 5(4), 046601 (2012).
[Crossref]

Bae, E.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Balling, P.

H. Wu, F. Zhang, F. Meng, P. Balling, J. Li, L. Pan, and X. Qu, “Absolute distance measurement using frequency comb and a single-frequency laser,” IEEE Photonics Technol. Lett. 27(24), 2587–2590 (2015).
[Crossref]

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 094001 (2012).
[Crossref]

P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
[Crossref] [PubMed]

Barrett, M. D.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Bhattacharya, N.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

M. G. Zeitouny, M. Cui, N. Bhattacharya, H. P. Urbach, S. A. van den Berg, and A. J. E. M. Janssen, “From a discrete to a continuous model for interpulse interference with a frequency-comb laser,” Phys. Rev. A 82(2), 023808 (2010).
[Crossref]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009).
[Crossref] [PubMed]

Bloom, B. J.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Bosse, H.

R. Yang, F. Pollinger, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

R. Yang, F. Pollinger, K. Meiners-Hagen, J. Tan, and H. Bosse, “Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair,” Opt. Lett. 39(20), 5834–5837 (2014).
[Crossref] [PubMed]

Braat, J. J. M.

Campbell, S. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Cao, L.

Cao, S.

Ciddor, P. E.

Coddington, I.

I. Coddington, C. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurement at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Cui, M.

Cui, P.

Dändliker, R.

Das, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Doležal, M.

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 094001 (2012).
[Crossref]

Doloca, N. R.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Du, S.

Fan, W.

Gu, Y.

Guo, Y.

Han, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Holzwarth, R.

Hutson, R. B.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Inaba, H.

Janssen, A. J. E. M.

M. G. Zeitouny, M. Cui, N. Bhattacharya, H. P. Urbach, S. A. van den Berg, and A. J. E. M. Janssen, “From a discrete to a continuous model for interpulse interference with a frequency-comb laser,” Phys. Rev. A 82(2), 023808 (2010).
[Crossref]

Joo, K. N.

Katori, H.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Kim, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Kim, S. W.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

K. N. Joo and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

Kim, Y.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

Kim, Y. J.

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Kok, G. J. P.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Kren, P.

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 094001 (2012).
[Crossref]

P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
[Crossref] [PubMed]

Krystek, M.

R. Yang, F. Pollinger, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

Lee, J.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, K.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lévêque, S.

Li, J.

H. Wu, F. Zhang, F. Meng, P. Balling, J. Li, L. Pan, and X. Qu, “Absolute distance measurement using frequency comb and a single-frequency laser,” IEEE Photonics Technol. Lett. 27(24), 2587–2590 (2015).
[Crossref]

H. Wu, F. Zhang, J. Li, S. Cao, X. Meng, and X. Qu, “Intensity evaluation using a femtosecond pulse laser for absolute distance measurement,” Appl. Opt. 54(17), 5581–5590 (2015).
[Crossref] [PubMed]

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol.In press.

Li, Y.

H. Zhang, X. Wu, H. Wei, and Y. Li, “Compact dual-comb absolute distance ranging with an electric reference,” IEEE Photonics J. 7, 6801508 (2015).

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
[Crossref] [PubMed]

Lin, J.

Liu, T.

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol.In press.

Marti, G. E.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Mašika, P.

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 094001 (2012).
[Crossref]

P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
[Crossref] [PubMed]

Matsumoto, H.

H. Matsumoto, X. Wang, K. Takamasu, and T. Aoto, “Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb,” Appl. Phys. Express 5(4), 046601 (2012).
[Crossref]

D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011).
[Crossref] [PubMed]

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[Crossref] [PubMed]

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33(Part 2, No. 9B), L1348–L1351 (1994).
[Crossref]

McNally, R. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Meiners-Hagen, K.

R. Yang, F. Pollinger, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

R. Yang, F. Pollinger, K. Meiners-Hagen, J. Tan, and H. Bosse, “Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair,” Opt. Lett. 39(20), 5834–5837 (2014).
[Crossref] [PubMed]

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Meng, F.

H. Wu, F. Zhang, F. Meng, P. Balling, J. Li, L. Pan, and X. Qu, “Absolute distance measurement using frequency comb and a single-frequency laser,” IEEE Photonics Technol. Lett. 27(24), 2587–2590 (2015).
[Crossref]

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol.In press.

Meng, X.

Minoshima, K.

Nenadovic, L.

I. Coddington, C. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurement at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N.

I. Coddington, C. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurement at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

Nicholson, T. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Ohkubo, T.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Pan, L.

H. Wu, F. Zhang, F. Meng, P. Balling, J. Li, L. Pan, and X. Qu, “Absolute distance measurement using frequency comb and a single-frequency laser,” IEEE Photonics Technol. Lett. 27(24), 2587–2590 (2015).
[Crossref]

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol.In press.

Persijn, S. T.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Pollinger, F.

R. Yang, F. Pollinger, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

R. Yang, F. Pollinger, K. Meiners-Hagen, J. Tan, and H. Bosse, “Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair,” Opt. Lett. 39(20), 5834–5837 (2014).
[Crossref] [PubMed]

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Qian, F.

Qu, X.

H. Wu, F. Zhang, F. Meng, P. Balling, J. Li, L. Pan, and X. Qu, “Absolute distance measurement using frequency comb and a single-frequency laser,” IEEE Photonics Technol. Lett. 27(24), 2587–2590 (2015).
[Crossref]

H. Wu, F. Zhang, J. Li, S. Cao, X. Meng, and X. Qu, “Intensity evaluation using a femtosecond pulse laser for absolute distance measurement,” Appl. Opt. 54(17), 5581–5590 (2015).
[Crossref] [PubMed]

H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
[Crossref] [PubMed]

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol.In press.

Safronova, M. S.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Salvadé, Y.

Schuhler, N.

Shui, M.

Strouse, G. F.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Swann, C.

I. Coddington, C. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurement at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Takahashi, M.

Takahashi, S.

Takamasu, K.

H. Matsumoto, X. Wang, K. Takamasu, and T. Aoto, “Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb,” Appl. Phys. Express 5(4), 046601 (2012).
[Crossref]

D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011).
[Crossref] [PubMed]

Takamoto, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Tan, J.

R. Yang, F. Pollinger, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

R. Yang, F. Pollinger, K. Meiners-Hagen, J. Tan, and H. Bosse, “Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair,” Opt. Lett. 39(20), 5834–5837 (2014).
[Crossref] [PubMed]

Tew, W. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Urbach, H. P.

Ushijima, I.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

van den Berg, S. A.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

M. G. Zeitouny, M. Cui, N. Bhattacharya, H. P. Urbach, S. A. van den Berg, and A. J. E. M. Janssen, “From a discrete to a continuous model for interpulse interference with a frequency-comb laser,” Phys. Rev. A 82(2), 023808 (2010).
[Crossref]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009).
[Crossref] [PubMed]

P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
[Crossref] [PubMed]

Wang, X.

H. Matsumoto, X. Wang, K. Takamasu, and T. Aoto, “Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb,” Appl. Phys. Express 5(4), 046601 (2012).
[Crossref]

Wang, Y.

Wedde, M.

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Wei, D.

Wei, H.

H. Zhang, X. Wu, H. Wei, and Y. Li, “Compact dual-comb absolute distance ranging with an electric reference,” IEEE Photonics J. 7, 6801508 (2015).

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
[Crossref] [PubMed]

Wu, G.

Wu, H.

H. Wu, F. Zhang, F. Meng, P. Balling, J. Li, L. Pan, and X. Qu, “Absolute distance measurement using frequency comb and a single-frequency laser,” IEEE Photonics Technol. Lett. 27(24), 2587–2590 (2015).
[Crossref]

H. Wu, F. Zhang, J. Li, S. Cao, X. Meng, and X. Qu, “Intensity evaluation using a femtosecond pulse laser for absolute distance measurement,” Appl. Opt. 54(17), 5581–5590 (2015).
[Crossref] [PubMed]

H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
[Crossref] [PubMed]

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol.In press.

Wu, X.

H. Zhang, X. Wu, H. Wei, and Y. Li, “Compact dual-comb absolute distance ranging with an electric reference,” IEEE Photonics J. 7, 6801508 (2015).

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
[Crossref] [PubMed]

Wu, Y.

Xin, J.

Xing, S.

Yagi, T.

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33(Part 2, No. 9B), L1348–L1351 (1994).
[Crossref]

Yang, H.

Yang, L.

Yang, R.

R. Yang, F. Pollinger, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

R. Yang, F. Pollinger, K. Meiners-Hagen, J. Tan, and H. Bosse, “Heterodyne multi-wavelength absolute interferometry based on a cavity-enhanced electro-optic frequency comb pair,” Opt. Lett. 39(20), 5834–5837 (2014).
[Crossref] [PubMed]

Ye, J.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
[Crossref] [PubMed]

Zeitouny, M. G.

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

M. G. Zeitouny, M. Cui, N. Bhattacharya, H. P. Urbach, S. A. van den Berg, and A. J. E. M. Janssen, “From a discrete to a continuous model for interpulse interference with a frequency-comb laser,” Phys. Rev. A 82(2), 023808 (2010).
[Crossref]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(13), 1982–1984 (2009).
[Crossref] [PubMed]

Zhang, B.

Zhang, F.

H. Wu, F. Zhang, F. Meng, P. Balling, J. Li, L. Pan, and X. Qu, “Absolute distance measurement using frequency comb and a single-frequency laser,” IEEE Photonics Technol. Lett. 27(24), 2587–2590 (2015).
[Crossref]

H. Wu, F. Zhang, J. Li, S. Cao, X. Meng, and X. Qu, “Intensity evaluation using a femtosecond pulse laser for absolute distance measurement,” Appl. Opt. 54(17), 5581–5590 (2015).
[Crossref] [PubMed]

H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
[Crossref] [PubMed]

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol.In press.

Zhang, H.

H. Zhang, X. Wu, H. Wei, and Y. Li, “Compact dual-comb absolute distance ranging with an electric reference,” IEEE Photonics J. 7, 6801508 (2015).

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
[Crossref] [PubMed]

Zhang, W.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Zhang, Z.

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33(Part 2, No. 9B), L1348–L1351 (1994).
[Crossref]

Zhao, Z.

Zhu, B.

Zhu, J.

Appl. Opt. (3)

Appl. Phys. Express (1)

H. Matsumoto, X. Wang, K. Takamasu, and T. Aoto, “Absolute measurement of baselines up to 403 m using heterodyne temporal coherence interferometer with optical frequency comb,” Appl. Phys. Express 5(4), 046601 (2012).
[Crossref]

IEEE Photonics J. (1)

H. Zhang, X. Wu, H. Wei, and Y. Li, “Compact dual-comb absolute distance ranging with an electric reference,” IEEE Photonics J. 7, 6801508 (2015).

IEEE Photonics Technol. Lett. (1)

H. Wu, F. Zhang, F. Meng, P. Balling, J. Li, L. Pan, and X. Qu, “Absolute distance measurement using frequency comb and a single-frequency laser,” IEEE Photonics Technol. Lett. 27(24), 2587–2590 (2015).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Minoshima, H. Matsumoto, Z. Zhang, and T. Yagi, “Simultaneous 3-D imaging using chirped ultrashort optical pulses,” Jpn. J. Appl. Phys. 33(Part 2, No. 9B), L1348–L1351 (1994).
[Crossref]

Meas. Sci. Technol. (4)

R. Yang, F. Pollinger, K. Meiners-Hagen, M. Krystek, J. Tan, and H. Bosse, “Absolute distance measurement by dual-comb interferometry with multi-channel digital lock-in phase detection,” Meas. Sci. Technol. 26(8), 084001 (2015).
[Crossref]

J. Lee, S. Han, K. Lee, E. Bae, S. Kim, S. Lee, S. Kim, and Y. Kim, “Absolute distance measurement by dual-comb interferometry with adjustable synthetic wavelength,” Meas. Sci. Technol. 24(4), 045201 (2013).
[Crossref]

P. Balling, P. Mašika, P. Křen, and M. Doležal, “Length and refractive index measurement by Fourier transform interferometry and frequency comb spectroscopy,” Meas. Sci. Technol. 23(9), 094001 (2012).
[Crossref]

N. R. Doloca, K. Meiners-Hagen, M. Wedde, F. Pollinger, and A. Abou-Zeid, “Absolute distance measurement system using a femtosecond laser as a modulator,” Meas. Sci. Technol. 21(11), 115302 (2010).
[Crossref]

Nat. Commun. (1)

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Nat. Photonics (4)

J. Lee, Y. J. Kim, K. Lee, S. Lee, and S. W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

I. Coddington, C. Swann, L. Nenadovic, and N. Newbury, “Rapid and precise absolute distance measurement at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 9(3), 185–189 (2015).
[Crossref]

Opt. Express (8)

H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
[Crossref] [PubMed]

D. Wei, S. Takahashi, K. Takamasu, and H. Matsumoto, “Time-of-flight method using multiple pulse train interference as a time recorder,” Opt. Express 19(6), 4881–4889 (2011).
[Crossref] [PubMed]

P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(11), 9300–9313 (2009).
[Crossref] [PubMed]

W. Fan, B. Zhu, Y. Wu, F. Qian, M. Shui, S. Du, B. Zhang, Y. Wu, J. Xin, Z. Zhao, L. Cao, Y. Wang, and Y. Gu, “Measurement of the chirp characteristics of linearly chirped pulses by a frequency domain interference method,” Opt. Express 21(11), 13062–13067 (2013).
[Crossref] [PubMed]

K. N. Joo and S. W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, and H. P. Urbach, “Long distance measurement with femtosecond pulses using a dispersive interferometer,” Opt. Express 19(7), 6549–6562 (2011).
[Crossref] [PubMed]

H. Zhang, H. Wei, X. Wu, H. Yang, and Y. Li, “Absolute distance measurement by dual-comb nonlinear asynchronous optical sampling,” Opt. Express 22(6), 6597–6604 (2014).
[Crossref] [PubMed]

J. Zhu, P. Cui, Y. Guo, L. Yang, and J. Lin, “Pulse-to-pulse alignment based on interference fringes and the second-order temporal coherence function of optical frequency combs for distance measurement,” Opt. Express 23(10), 13069–13081 (2015).
[Crossref] [PubMed]

Opt. Lett. (5)

Phys. Rev. A (1)

M. G. Zeitouny, M. Cui, N. Bhattacharya, H. P. Urbach, S. A. van den Berg, and A. J. E. M. Janssen, “From a discrete to a continuous model for interpulse interference with a frequency-comb laser,” Phys. Rev. A 82(2), 023808 (2010).
[Crossref]

Phys. Rev. Lett. (1)

S. A. van den Berg, S. T. Persijn, G. J. P. Kok, M. G. Zeitouny, and N. Bhattacharya, “Many-wavelength interferometry with thousands of lasers for absolute distance measurement,” Phys. Rev. Lett. 108(18), 183901 (2012).
[Crossref] [PubMed]

Other (1)

H. Wu, F. Zhang, F. Meng, T. Liu, J. Li, L. Pan, and X. Qu, “Absolute distance measurement in a combined-dispersive interferometer using a femtosecond pulse laser,” Meas. Sci. Technol.In press.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic of chirped pulse interferometry. BS: beam splitter; D: grating interval; i: the incidence angle; θ: the diffractive angle; l; the corresponding length.
Fig. 2
Fig. 2 Simulations of chirped pulse interferometry with difference time delays.
Fig. 3
Fig. 3 The experimental photograph.
Fig. 4
Fig. 4 The experimental set up.
Fig. 5
Fig. 5 The spectrum of Onefive Origami-15 pulse laser.
Fig. 6
Fig. 6 (a). The spectrogram at the initial position; (b). Spectrogram after shifting the target mirror.
Fig. 7
Fig. 7 Spectrograms at different positions; (a). 13 m; (b). 60 m.
Fig. 8
Fig. 8 The experimental results compared with a cw counting interferometer. lref: the reference distance value given by the cw counting interferometer; lmeas: the distance value measured using the method of the chirped pulse interferometry.

Tables (1)

Tables Icon

Table 1 Uncertainty evaluation of absolute distance measurement using chirped pulse interferometry.

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E t r a i n = E 0 exp ( a t 2 ) exp ( i ω c t + i φ 0 + i φ c e t )
E r e f ( t ) = α E 0 exp [ a 1 ( t τ ) 2 ] exp [ i ( ω c + b ( t τ ) ) ( t τ ) ] = α E 0 exp [ a 1 ( t τ ) 2 ] exp [ i ω c ( t τ ) ] exp [ i b ( t τ ) 2 ]
E p r o ( t ) = β E 0 exp ( a t 2 ) exp ( i ω c t )
E r e f ( ω ) = α E 0 2 ( a 1 + i b ) exp [ ( ω ω c ) 2 + 4 τ ω ( b i a 1 ) 4 ( a 1 + i b ) ]
E p r o ( ω ) = β E 0 2 a exp [ ( ω ω c ) 2 4 a ]
I ( ω ) = ( E r e f ( ω ) + E p r o ( ω ) ) 2 = ( E r e f ( ω ) + E p r o ( ω ) ) ( E r e f ( ω ) + E p r o ( ω ) ) = | E r e f ( ω ) | 2 + | E p r o ( ω ) | 2 + 2 Re [ E r e f ( ω ) E p r o ( ω ) ] = | E r e f ( ω ) | 2 + | E p r o ( ω ) | 2 + 2 cos ( ϕ ( ω ) )
ϕ ( ω ) = b ( ω ω c ) 2 4 ( a 1 2 + b 2 ) τ ω 1 2 arg ( a 1 + i b )
ϕ ( ω ) ω = 2 b ( ω ω c ) 4 ( a 1 2 + b 2 ) τ = 0
ω b = ω c + 2 b τ + 2 a 1 2 τ b ω c + 2 b τ = ω c + 4 b n g L c b a 1
L = c 4 n g b ( ω b ω c ) = c 4 n g b ω s h i f t b a 1
L = 1 2 ( N L p p + c 2 n g b ω s h i f t ) = 1 2 c n g ( N f r e p + ω s h i f t 2 b ) = 1 2 c n g ( N f r e p + π f s h i f t b )
b = c 4 n g Δ L ω s h i f t = c π 2 n g Δ L f s h i f t
f w i d e s t = 1 2 ( f l e f t + f r i g h t )
b = 299792458 × π 2 × 1.0002649 × 0.301 × 10 3 × ( 191.678 193.780 ) × 10 12 = 3.29 × 10 24 H z / s 2
N ( a ) = r o u n d ( 2 × 13187.058 299792458 ( 1.0002649 × 250.012 × 10 3 ) ) = r o u n d ( 22.010 ) = 22
N ( b ) = r o u n d ( 2 × 59939.702 299792458 ( 1.0002649 × 250.012 × 10 3 ) ) = r o u n d ( 100.043 ) = 100
L ( a ) = 1 2 299792458 1.0002649 ( 22 250.012 × 10 6 + π ( 2.255 × 10 12 ) 3.29 × 10 24 ) = 13187.064 m m
L ( b ) = 1 2 299792458 1.0002649 ( 100 250.012 × 10 6 + π 0.114 × 10 12 3.29 × 10 24 ) = 59939.719 m m
u L = ( L n g u n g ) 2 + ( c N 2 n g f r e p 2 u f r e p ) 2 + ( c π 2 n g b u f s h i f t ) 2 + ( c π f s h i f t 2 n g b 2 u b ) 2

Metrics