Abstract

We report the essential condition for three-photon electromagnetically induced absorption (TPEIA) in a Doppler-broadened ladder-type atomic system. When the two coupling lasers operate at different frequencies, we observed Doppler-free TPEIA resonance at a counterintuitive frequency, which is the almost half-frequency detuning of the frequency difference between the two coupling fields. Considering three-photon coherence in a Doppler-broadened ladder-type three-level atomic system, the TPEIA due to the atomic group of non-zero velocity was in good agreement with the calculated TPEIA spectrum under the one-photon resonance condition of all three optical fields. From the results, we found that an atomic group with a proper velocity for ladder-type TPEIA should satisfy the one-photon resonances of all three optical fields.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Relationship between two- and three-photon coherence in a ladder-type atomic system

Yoon-Seok Lee, Heung-Ryoul Noh, and Han Seb Moon
Opt. Express 23(3) 2999-3009 (2015)

Doppler-free three-photon coherence in Doppler-broadened diamond-type atomic system

Yoon-Seok Lee and Han Seb Moon
Opt. Express 25(5) 5316-5326 (2017)

Stimulated emission from ladder-type two-photon coherent atomic ensemble

Jiho Park and Han Seb Moon
Opt. Express 26(11) 14461-14471 (2018)

References

  • View by:
  • |
  • |
  • |

  1. K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref] [PubMed]
  2. M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
    [Crossref] [PubMed]
  3. A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
    [Crossref]
  4. N. Mulchan, D. G. Ducreay, R. Pina, M. Yan, and Y. Zhu, “Nonlinear excitation by quantum interference in a Doppler-broadened rubidium atomic system,” J. Opt. Soc. Am. B 17(5), 820–826 (2000).
    [Crossref]
  5. H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91(9), 093601 (2003).
    [Crossref] [PubMed]
  6. H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802 (2006).
    [Crossref]
  7. R. B. Li, L. Deng, and E. W. Hagley, “Fast, all-optical logic gates and transistor functionalities using a room-temperature atomic controlled Kerr gate,” Phys. Rev. A 90(6), 063806 (2014).
    [Crossref]
  8. B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
    [Crossref] [PubMed]
  9. Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
    [Crossref] [PubMed]
  10. D.-S. Ding, W. Zhang, S. Shi, Z.-Y. Zhou, Y. Li, B.-S. Shi, and G.-C. Guo, “Hybrid-cascaded generation of tripartite telecom photons using an atomic ensemble and a nonlinear waveguide,” Optica 2(7), 642–645 (2015).
    [Crossref]
  11. S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
    [Crossref]
  12. K. Pandey, “Role of different types of subsystems in a doubly driven Λ system in 87Rb,” Phys. Rev. A 87(4), 043838 (2013).
    [Crossref]
  13. I. Ben-Aroya and G. Eisenstein, “Observation of large contrast electromagnetically induced absorption resonance due to population transfer in a three-level Λ-system interacting with three separate electromagnetic fields,” Opt. Express 19(10), 9956–9961 (2011).
    [Crossref] [PubMed]
  14. C. Carr, M. Tanasittikosol, A. Sargsyan, D. Sarkisyan, C. S. Adams, and K. J. Weatherill, “Three-photon electromagnetically induced transparency using Rydberg states,” Opt. Lett. 37(18), 3858–3860 (2012).
    [Crossref] [PubMed]
  15. H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89(3), 033822 (2014).
    [Crossref]
  16. Y.-S. Lee, H.-R. Noh, and H. S. Moon, “Relationship between two- and three-photon coherence in a ladder-type atomic system,” Opt. Express 23(3), 2999–3009 (2015).
    [Crossref] [PubMed]
  17. H.-R. Noh and H. S. Moon, “Three-photon coherence in a ladder-type atomic system,” Phys. Rev. A 92(1), 013807 (2015).
    [Crossref]
  18. D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40(18), 4289–4292 (2015).
    [Crossref] [PubMed]
  19. V. Bharti and A. Wasan, “Electromagnetic induced transparency in the Doppler broadened cascade transition with multiple excited levels,” J. Phys. B 45(18), 185501 (2012).
    [Crossref]

2015 (4)

2014 (3)

H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89(3), 033822 (2014).
[Crossref]

R. B. Li, L. Deng, and E. W. Hagley, “Fast, all-optical logic gates and transistor functionalities using a room-temperature atomic controlled Kerr gate,” Phys. Rev. A 90(6), 063806 (2014).
[Crossref]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

2013 (2)

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

K. Pandey, “Role of different types of subsystems in a doubly driven Λ system in 87Rb,” Phys. Rev. A 87(4), 043838 (2013).
[Crossref]

2012 (2)

V. Bharti and A. Wasan, “Electromagnetic induced transparency in the Doppler broadened cascade transition with multiple excited levels,” J. Phys. B 45(18), 185501 (2012).
[Crossref]

C. Carr, M. Tanasittikosol, A. Sargsyan, D. Sarkisyan, C. S. Adams, and K. J. Weatherill, “Three-photon electromagnetically induced transparency using Rydberg states,” Opt. Lett. 37(18), 3858–3860 (2012).
[Crossref] [PubMed]

2011 (1)

2006 (1)

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802 (2006).
[Crossref]

2003 (2)

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[Crossref]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91(9), 093601 (2003).
[Crossref] [PubMed]

2000 (1)

1998 (1)

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

1995 (1)

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

1991 (1)

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Adams, C. S.

Akulshin, A. M.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

Babin, S. A.

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[Crossref]

Barreiro, S.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

Ben-Aroya, I.

Bharti, V.

V. Bharti and A. Wasan, “Electromagnetic induced transparency in the Doppler broadened cascade transition with multiple excited levels,” J. Phys. B 45(18), 185501 (2012).
[Crossref]

Bimbard, E.

Boller, K.

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Carr, C.

Chng, B.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

Cho, Y.-W.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

Churkin, D. V.

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[Crossref]

Deng, L.

R. B. Li, L. Deng, and E. W. Hagley, “Fast, all-optical logic gates and transistor functionalities using a room-temperature atomic controlled Kerr gate,” Phys. Rev. A 90(6), 063806 (2014).
[Crossref]

Ding, D.-S.

Ducreay, D. G.

Eisenstein, G.

Gea-Banacloche, J.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Gulati, G. K.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

Guo, G.-C.

Hagley, E. W.

R. B. Li, L. Deng, and E. W. Hagley, “Fast, all-optical logic gates and transistor functionalities using a room-temperature atomic controlled Kerr gate,” Phys. Rev. A 90(6), 063806 (2014).
[Crossref]

Harris, S. E.

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Hernandez, G.

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802 (2006).
[Crossref]

Hughes, I. G.

Imamolu, A.

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Jeong, T.

H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89(3), 033822 (2014).
[Crossref]

Jin, S.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Kang, H.

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802 (2006).
[Crossref]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91(9), 093601 (2003).
[Crossref] [PubMed]

Keaveney, J.

Kim, Y.-H.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

Kurtsiefer, C.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

Lee, J.-C.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

Lee, Y.-S.

Lezama, A.

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

Li, R. B.

R. B. Li, L. Deng, and E. W. Hagley, “Fast, all-optical logic gates and transistor functionalities using a room-temperature atomic controlled Kerr gate,” Phys. Rev. A 90(6), 063806 (2014).
[Crossref]

Li, Y.

D.-S. Ding, W. Zhang, S. Shi, Z.-Y. Zhou, Y. Li, B.-S. Shi, and G.-C. Guo, “Hybrid-cascaded generation of tripartite telecom photons using an atomic ensemble and a nonlinear waveguide,” Optica 2(7), 642–645 (2015).
[Crossref]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Maslennikov, G.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

Matsukevich, D.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

Moon, H. S.

H.-R. Noh and H. S. Moon, “Three-photon coherence in a ladder-type atomic system,” Phys. Rev. A 92(1), 013807 (2015).
[Crossref]

Y.-S. Lee, H.-R. Noh, and H. S. Moon, “Relationship between two- and three-photon coherence in a ladder-type atomic system,” Opt. Express 23(3), 2999–3009 (2015).
[Crossref] [PubMed]

H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89(3), 033822 (2014).
[Crossref]

Mulchan, N.

Noh, H.-R.

Pandey, K.

K. Pandey, “Role of different types of subsystems in a doubly driven Λ system in 87Rb,” Phys. Rev. A 87(4), 043838 (2013).
[Crossref]

Park, K.-K.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

Pina, R.

Podivilov, E. V.

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[Crossref]

Potapov, V. V.

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[Crossref]

Sargsyan, A.

Sarkisyan, D.

Shapiro, D. A.

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[Crossref]

Shi, B.-S.

Shi, S.

Srivathsan, B.

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

Tanasittikosol, M.

Wasan, A.

V. Bharti and A. Wasan, “Electromagnetic induced transparency in the Doppler broadened cascade transition with multiple excited levels,” J. Phys. B 45(18), 185501 (2012).
[Crossref]

Weatherill, K. J.

Whiting, D. J.

Xiao, M.

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Yan, M.

Zentile, M. A.

Zhang, J.

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802 (2006).
[Crossref]

Zhang, W.

Zhou, Z.-Y.

Zhu, Y.

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802 (2006).
[Crossref]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91(9), 093601 (2003).
[Crossref] [PubMed]

N. Mulchan, D. G. Ducreay, R. Pina, M. Yan, and Y. Zhu, “Nonlinear excitation by quantum interference in a Doppler-broadened rubidium atomic system,” J. Opt. Soc. Am. B 17(5), 820–826 (2000).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

V. Bharti and A. Wasan, “Electromagnetic induced transparency in the Doppler broadened cascade transition with multiple excited levels,” J. Phys. B 45(18), 185501 (2012).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Optica (1)

Phys. Rev. A (7)

S. A. Babin, D. V. Churkin, E. V. Podivilov, V. V. Potapov, and D. A. Shapiro, “Splitting of the peak of electromagnetically induced transparency by the higher-order spatial harmonics of the atomic coherence,” Phys. Rev. A 67(4), 043808 (2003).
[Crossref]

K. Pandey, “Role of different types of subsystems in a doubly driven Λ system in 87Rb,” Phys. Rev. A 87(4), 043838 (2013).
[Crossref]

H. S. Moon and T. Jeong, “Three-photon electromagnetically induced absorption in a ladder-type atomic system,” Phys. Rev. A 89(3), 033822 (2014).
[Crossref]

A. M. Akulshin, S. Barreiro, and A. Lezama, “Electromagnetically induced absorption and transparency due to resonant two-field excitation of quasidegenerate levels in Rb vapor,” Phys. Rev. A 57(4), 2996–3002 (1998).
[Crossref]

H.-R. Noh and H. S. Moon, “Three-photon coherence in a ladder-type atomic system,” Phys. Rev. A 92(1), 013807 (2015).
[Crossref]

H. Kang, G. Hernandez, J. Zhang, and Y. Zhu, “Phase-controlled light switching at low light levels,” Phys. Rev. A 73(1), 011802 (2006).
[Crossref]

R. B. Li, L. Deng, and E. W. Hagley, “Fast, all-optical logic gates and transistor functionalities using a room-temperature atomic controlled Kerr gate,” Phys. Rev. A 90(6), 063806 (2014).
[Crossref]

Phys. Rev. Lett. (5)

B. Srivathsan, G. K. Gulati, B. Chng, G. Maslennikov, D. Matsukevich, and C. Kurtsiefer, “Narrow band source of transform-limited photon pairs via four-wave mixing in a cold atomic ensemble,” Phys. Rev. Lett. 111(12), 123602 (2013).
[Crossref] [PubMed]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

H. Kang and Y. Zhu, “Observation of large Kerr nonlinearity at low light intensities,” Phys. Rev. Lett. 91(9), 093601 (2003).
[Crossref] [PubMed]

K. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche, “Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms,” Phys. Rev. Lett. 74(5), 666–669 (1995).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 TPEIA configurations of a three-level ladder-type system for the two cases of (a) identical and (b) nonmatching frequencies (frequency difference = δ) of the two coupling fields.
Fig. 2
Fig. 2 (a) Energy-level diagram of the ladder-type atomic system of the 5S1/2–5P3/2–5D5/2 transition of 87Rb. (b) Experimental schematic for TPEIA. The probe field (Ωp) and two counter-propagating coupling fields (ΩC1 and ΩC2) traverse in a Rb vapor cell (AOM: acoustic optic modulator, PBS: polarization beam splitter, HWP: half-wave plate, IF: interference filter, M: Mirror, and APD: avalanche photodiode).
Fig. 3
Fig. 3 (a) TPEIA spectra as a function of the detuning frequency of the probe laser over each section for three cases (black, red, and blue curves) of the different detuning frequencies of the coupling laser of the 5S1/2(F = 2)–5P3/2–5D5/2 transition. (b) Crossover transition configurations for counter-propagating probe (Ωp) and coupling (ΩC1 and ΩC2) lasers interacting with two counter-propagating velocity groups of atoms presented using simple energy diagrams of the 5S1/2(F = 2)–5P3/2(F′ = 2 and 3)–5D5/2(F″ = 3) transition.
Fig. 4
Fig. 4 Absorption spectra for a frequency difference of 80 MHz between δC1 and δC2, EIT spectrum (black curve) of the 5S1/2(F = 2)–5P3/2–5D5/2 transition and the absorption spectra of the probe laser according to several detunings of δC1 and δC2.
Fig. 5
Fig. 5 Ladder-type three-level atomic system with model considering a frequency difference of 80 MHz between ΩC1 and ΩC2 in (a) zero-velocity atomic group and (b) atomic group with a special velocity of 31.1 m∕s.
Fig. 6
Fig. 6 (a) Numerically calculated absorption spectra according to the Doppler shift of the atomic group with velocities varying from 7.8 m/s (10 MHz) to 54.6 m/s (70 MHz). (b) Numerically calculated TPEIA spectrum for a frequency difference of 80 MHz between the ΩC1 and ΩC2 fields.

Metrics