Abstract

We demonstrate interrogation of a large-capacity sensor array with nearly identical weak fiber Bragg gratings (FBGs) based on frequency-shifted interferometry (FSI). In contrast to time-division multiplexing, FSI uses continuous-wave light and therefore requires no pulse modulation or high-speed detection/acquisition. FSI utilizes a frequency shifter in the Sagnac interferometer to encode sensor location information into the relative phase between the clock-wise and counter-clockwise propagating lightwaves. Sixty-five weak FBGs with reflectivities in the range of −31 ~-34 dB and with near identical peak reflection wavelengths around 1555 nm at room temperature were interrogated simultaneously. Temperature sensing was conducted and the average measurement accuracy of the peak wavelengths was ± 3.9 pm, corresponding to a temperature resolution of ± 0.4 °C. Our theoretical analysis taking into account of detector noise, fiber loss, and sensor cross-talk noise shows that there exists an optimal reflectivity that maximizes multiplexing capacity. The multiplexing capacity can reach 3000 with the corresponding sensing range of 30 km, when the peak reflectivity of each grating is −40 dB, the sensor separation 10 m and the source power 14 mW. Experimental results and theoretical analysis reveal that FSI has distinct cost and speed advantages in multiplexing large-scale FBG networks.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings

Zhihui Luo, Hongqiao Wen, Huiyong Guo, and Minghong Yang
Opt. Express 21(19) 22799-22807 (2013)

Spot event detection along a large-scale sensor based on ultra-weak fiber Bragg gratings using time–frequency analysis

Amelia Lavinia Ricchiuti and Salvador Sales
Appl. Opt. 55(5) 1054-1060 (2016)

Distributed sensing technology of high-spatial resolution based on dense ultra-short FBG array with large multiplexing capacity

Gui Xin, Li Zhengying, Wang Fan, Wang Yiming, Wang Changjia, Zeng Siyue, and Yu Haihu
Opt. Express 25(23) 28112-28122 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(12), 3687–3705 (2011).
    [Crossref] [PubMed]
  2. D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
    [Crossref] [PubMed]
  3. M. H. Yau, T. H. Chan, D. P. Thambiratnam, and H. Tam, “Static vertical displacement measurement of bridges using fiber Bragg grating (FBG) sensors,” Adv. Struct. Eng. 16(1), 165–176 (2013).
    [Crossref]
  4. M. S. Milczewski, J. C. da Silva, C. Martelli, L. Grabarski, I. Abe, and H. J. Kalinowski, “Force monitoring in a maxilla model and dentition using optical fiber Bragg gratings,” Sensors (Basel) 12(12), 11957–11965 (2012).
    [Crossref] [PubMed]
  5. S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
    [Crossref] [PubMed]
  6. G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high-temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
    [Crossref]
  7. Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, A. M. Shalagin, S. A. Babin, and I. N. Nemov, “Differential multiplexing of fiber Bragg gratings by means of optical time domain refractometry,” Meas. Tech. 54(2), 170–174 (2011).
    [Crossref]
  8. K. Yuksel, P. Megret, and M. Wuilpart, “A quasi-distributed temperature sensor interrogated by optical frequency-domain reflectometer,” Meas. Sci. Technol. 22(11), 115204 (2011).
    [Crossref]
  9. K. Stępień, M. Slowikowski, T. Tenderenda, M. Murawski, M. Szymanski, L. Szostkiewicz, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, L. R. Jaroszewicz, and T. Nasilowski, “Fiber Bragg gratings in hole-assisted multicore fiber for space division multiplexing,” Opt. Lett. 39(12), 3571–3574 (2014).
    [Crossref] [PubMed]
  10. K. de Morais Sousa, W. Probst, F. Bortolotti, C. Martelli, and J. C. da Silva, “Fiber Bragg grating temperature sensors in a 6.5-MW generator exciter bridge and the development and simulation of its thermal model,” Sensors (Basel) 14(9), 16651–16663 (2014).
    [Crossref] [PubMed]
  11. Y. B. Dai, P. Li, Y. J. Liu, A. Anand, and J. S. Leng, “Integrated real-time monitoring system for strain temperature distribution based on simultaneous wavelength and time division multiplexing technique,” Opt. Lasers Eng. 59, 19–24 (2014).
    [Crossref]
  12. L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor,” IEEE Photonics J. 6(6), 5501410 (2014).
    [Crossref]
  13. Y. M. Wang, J. M. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).
    [Crossref]
  14. Z. Luo, H. Wen, H. Guo, and M. Yang, “A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings,” Opt. Express 21(19), 22799–22807 (2013).
    [Crossref] [PubMed]
  15. H. Y. Guo, J. G. Tang, X. F. Li, Y. Zheng, and H. F. Yu, “On-line writing weak fiber Bragg gratings array,” Chin. Opt. Lett. 11(3), 030602 (2013).
    [Crossref]
  16. L. Qian, “Sagnac Loop Sensors,” in Fiber Optic Sensing and Imaging, J.U. Kang and Springer, eds. (Academic, 2013), pp. 119–146.
  17. F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 2009  27(23), 5356–5364 (2011).
  18. Y. Ou, C. Zhou, A. Zheng, C. Cheng, D. Fan, J. Yin, H. Tian, M. Li, and Y. Lu, “Method of hybrid multiplexing for fiber-optic Fabry-Perot sensors utilizing frequency-shifted interferometry,” Appl. Opt. 53(35), 8358–8365 (2014).
    [Crossref] [PubMed]
  19. F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photonics Technol. Lett. 20(17), 1488–1490 (2008).
    [Crossref]
  20. Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. H. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
    [Crossref]
  21. M. Froggatt, B. Childers, J. Moore, and T. Erdogan, “High density strain sensing using optical frequency domain reflectometry,” Proc. SPIE 4185, 249–255 (2000).
  22. F. Ye, “Frequency-shifted interferometry for fiber-optic sensing,” PhD Thesis, University of Toronto, (2013).
  23. C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4 (2000).

2014 (6)

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

K. de Morais Sousa, W. Probst, F. Bortolotti, C. Martelli, and J. C. da Silva, “Fiber Bragg grating temperature sensors in a 6.5-MW generator exciter bridge and the development and simulation of its thermal model,” Sensors (Basel) 14(9), 16651–16663 (2014).
[Crossref] [PubMed]

Y. B. Dai, P. Li, Y. J. Liu, A. Anand, and J. S. Leng, “Integrated real-time monitoring system for strain temperature distribution based on simultaneous wavelength and time division multiplexing technique,” Opt. Lasers Eng. 59, 19–24 (2014).
[Crossref]

L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor,” IEEE Photonics J. 6(6), 5501410 (2014).
[Crossref]

K. Stępień, M. Slowikowski, T. Tenderenda, M. Murawski, M. Szymanski, L. Szostkiewicz, M. Becker, M. Rothhardt, H. Bartelt, P. Mergo, L. R. Jaroszewicz, and T. Nasilowski, “Fiber Bragg gratings in hole-assisted multicore fiber for space division multiplexing,” Opt. Lett. 39(12), 3571–3574 (2014).
[Crossref] [PubMed]

Y. Ou, C. Zhou, A. Zheng, C. Cheng, D. Fan, J. Yin, H. Tian, M. Li, and Y. Lu, “Method of hybrid multiplexing for fiber-optic Fabry-Perot sensors utilizing frequency-shifted interferometry,” Appl. Opt. 53(35), 8358–8365 (2014).
[Crossref] [PubMed]

2013 (4)

M. H. Yau, T. H. Chan, D. P. Thambiratnam, and H. Tam, “Static vertical displacement measurement of bridges using fiber Bragg grating (FBG) sensors,” Adv. Struct. Eng. 16(1), 165–176 (2013).
[Crossref]

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high-temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
[Crossref]

H. Y. Guo, J. G. Tang, X. F. Li, Y. Zheng, and H. F. Yu, “On-line writing weak fiber Bragg gratings array,” Chin. Opt. Lett. 11(3), 030602 (2013).
[Crossref]

Z. Luo, H. Wen, H. Guo, and M. Yang, “A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings,” Opt. Express 21(19), 22799–22807 (2013).
[Crossref] [PubMed]

2012 (3)

M. S. Milczewski, J. C. da Silva, C. Martelli, L. Grabarski, I. Abe, and H. J. Kalinowski, “Force monitoring in a maxilla model and dentition using optical fiber Bragg gratings,” Sensors (Basel) 12(12), 11957–11965 (2012).
[Crossref] [PubMed]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

Y. M. Wang, J. M. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).
[Crossref]

2011 (5)

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(12), 3687–3705 (2011).
[Crossref] [PubMed]

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 2009  27(23), 5356–5364 (2011).

Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, A. M. Shalagin, S. A. Babin, and I. N. Nemov, “Differential multiplexing of fiber Bragg gratings by means of optical time domain refractometry,” Meas. Tech. 54(2), 170–174 (2011).
[Crossref]

K. Yuksel, P. Megret, and M. Wuilpart, “A quasi-distributed temperature sensor interrogated by optical frequency-domain reflectometer,” Meas. Sci. Technol. 22(11), 115204 (2011).
[Crossref]

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. H. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

2008 (1)

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photonics Technol. Lett. 20(17), 1488–1490 (2008).
[Crossref]

2000 (1)

M. Froggatt, B. Childers, J. Moore, and T. Erdogan, “High density strain sensing using optical frequency domain reflectometry,” Proc. SPIE 4185, 249–255 (2000).

Abe, I.

M. S. Milczewski, J. C. da Silva, C. Martelli, L. Grabarski, I. Abe, and H. J. Kalinowski, “Force monitoring in a maxilla model and dentition using optical fiber Bragg gratings,” Sensors (Basel) 12(12), 11957–11965 (2012).
[Crossref] [PubMed]

Anand, A.

Y. B. Dai, P. Li, Y. J. Liu, A. Anand, and J. S. Leng, “Integrated real-time monitoring system for strain temperature distribution based on simultaneous wavelength and time division multiplexing technique,” Opt. Lasers Eng. 59, 19–24 (2014).
[Crossref]

Babin, S. A.

Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, A. M. Shalagin, S. A. Babin, and I. N. Nemov, “Differential multiplexing of fiber Bragg gratings by means of optical time domain refractometry,” Meas. Tech. 54(2), 170–174 (2011).
[Crossref]

Barrera, D.

L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor,” IEEE Photonics J. 6(6), 5501410 (2014).
[Crossref]

Bartelt, H.

Becker, M.

Bi, W. H.

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. H. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Bortolotti, F.

K. de Morais Sousa, W. Probst, F. Bortolotti, C. Martelli, and J. C. da Silva, “Fiber Bragg grating temperature sensors in a 6.5-MW generator exciter bridge and the development and simulation of its thermal model,” Sensors (Basel) 14(9), 16651–16663 (2014).
[Crossref] [PubMed]

Capmany, J.

L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor,” IEEE Photonics J. 6(6), 5501410 (2014).
[Crossref]

Caucheteur, C.

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

Chan, C. C.

C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4 (2000).

Chan, T. H.

M. H. Yau, T. H. Chan, D. P. Thambiratnam, and H. Tam, “Static vertical displacement measurement of bridges using fiber Bragg grating (FBG) sensors,” Adv. Struct. Eng. 16(1), 165–176 (2013).
[Crossref]

Cheng, C.

Childers, B.

M. Froggatt, B. Childers, J. Moore, and T. Erdogan, “High density strain sensing using optical frequency domain reflectometry,” Proc. SPIE 4185, 249–255 (2000).

Cotillard, R.

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high-temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
[Crossref]

da Silva, J. C.

K. de Morais Sousa, W. Probst, F. Bortolotti, C. Martelli, and J. C. da Silva, “Fiber Bragg grating temperature sensors in a 6.5-MW generator exciter bridge and the development and simulation of its thermal model,” Sensors (Basel) 14(9), 16651–16663 (2014).
[Crossref] [PubMed]

M. S. Milczewski, J. C. da Silva, C. Martelli, L. Grabarski, I. Abe, and H. J. Kalinowski, “Force monitoring in a maxilla model and dentition using optical fiber Bragg gratings,” Sensors (Basel) 12(12), 11957–11965 (2012).
[Crossref] [PubMed]

Dai, Y. B.

Y. B. Dai, P. Li, Y. J. Liu, A. Anand, and J. S. Leng, “Integrated real-time monitoring system for strain temperature distribution based on simultaneous wavelength and time division multiplexing technique,” Opt. Lasers Eng. 59, 19–24 (2014).
[Crossref]

de Morais Sousa, K.

K. de Morais Sousa, W. Probst, F. Bortolotti, C. Martelli, and J. C. da Silva, “Fiber Bragg grating temperature sensors in a 6.5-MW generator exciter bridge and the development and simulation of its thermal model,” Sensors (Basel) 14(9), 16651–16663 (2014).
[Crossref] [PubMed]

Demokan, M. S.

C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4 (2000).

Dong, B.

Y. M. Wang, J. M. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).
[Crossref]

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. H. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Dyshlyuk, A. V.

Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, A. M. Shalagin, S. A. Babin, and I. N. Nemov, “Differential multiplexing of fiber Bragg gratings by means of optical time domain refractometry,” Meas. Tech. 54(2), 170–174 (2011).
[Crossref]

Erdogan, T.

M. Froggatt, B. Childers, J. Moore, and T. Erdogan, “High density strain sensing using optical frequency domain reflectometry,” Proc. SPIE 4185, 249–255 (2000).

Fan, D.

Ferdinand, P.

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high-temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
[Crossref]

Froggatt, M.

M. Froggatt, B. Childers, J. Moore, and T. Erdogan, “High density strain sensing using optical frequency domain reflectometry,” Proc. SPIE 4185, 249–255 (2000).

Gong, J. M.

Y. M. Wang, J. M. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).
[Crossref]

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. H. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Goossen, K. W.

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

Grabarski, L.

M. S. Milczewski, J. C. da Silva, C. Martelli, L. Grabarski, I. Abe, and H. J. Kalinowski, “Force monitoring in a maxilla model and dentition using optical fiber Bragg gratings,” Sensors (Basel) 12(12), 11957–11965 (2012).
[Crossref] [PubMed]

Guo, H.

Z. Luo, H. Wen, H. Guo, and M. Yang, “A time- and wavelength-division multiplexing sensor network with ultra-weak fiber Bragg gratings,” Opt. Express 21(19), 22799–22807 (2013).
[Crossref] [PubMed]

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(12), 3687–3705 (2011).
[Crossref] [PubMed]

Guo, H. Y.

Heider, D.

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

Hervás, J.

L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor,” IEEE Photonics J. 6(6), 5501410 (2014).
[Crossref]

Jaroszewicz, L. R.

Jin, W.

C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4 (2000).

Kalinowski, H. J.

M. S. Milczewski, J. C. da Silva, C. Martelli, L. Grabarski, I. Abe, and H. J. Kalinowski, “Force monitoring in a maxilla model and dentition using optical fiber Bragg gratings,” Sensors (Basel) 12(12), 11957–11965 (2012).
[Crossref] [PubMed]

Kinet, D.

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

Kulchin, Yu. N.

Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, A. M. Shalagin, S. A. Babin, and I. N. Nemov, “Differential multiplexing of fiber Bragg gratings by means of optical time domain refractometry,” Meas. Tech. 54(2), 170–174 (2011).
[Crossref]

Laffont, G.

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high-temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
[Crossref]

Leng, J. S.

Y. B. Dai, P. Li, Y. J. Liu, A. Anand, and J. S. Leng, “Integrated real-time monitoring system for strain temperature distribution based on simultaneous wavelength and time division multiplexing technique,” Opt. Lasers Eng. 59, 19–24 (2014).
[Crossref]

Li, M.

Li, P.

Y. B. Dai, P. Li, Y. J. Liu, A. Anand, and J. S. Leng, “Integrated real-time monitoring system for strain temperature distribution based on simultaneous wavelength and time division multiplexing technique,” Opt. Lasers Eng. 59, 19–24 (2014).
[Crossref]

Li, X. F.

Liu, Y.

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photonics Technol. Lett. 20(17), 1488–1490 (2008).
[Crossref]

Liu, Y. J.

Y. B. Dai, P. Li, Y. J. Liu, A. Anand, and J. S. Leng, “Integrated real-time monitoring system for strain temperature distribution based on simultaneous wavelength and time division multiplexing technique,” Opt. Lasers Eng. 59, 19–24 (2014).
[Crossref]

Lu, Y.

Luo, Z.

Martelli, C.

K. de Morais Sousa, W. Probst, F. Bortolotti, C. Martelli, and J. C. da Silva, “Fiber Bragg grating temperature sensors in a 6.5-MW generator exciter bridge and the development and simulation of its thermal model,” Sensors (Basel) 14(9), 16651–16663 (2014).
[Crossref] [PubMed]

M. S. Milczewski, J. C. da Silva, C. Martelli, L. Grabarski, I. Abe, and H. J. Kalinowski, “Force monitoring in a maxilla model and dentition using optical fiber Bragg gratings,” Sensors (Basel) 12(12), 11957–11965 (2012).
[Crossref] [PubMed]

Megret, P.

K. Yuksel, P. Megret, and M. Wuilpart, “A quasi-distributed temperature sensor interrogated by optical frequency-domain reflectometer,” Meas. Sci. Technol. 22(11), 115204 (2011).
[Crossref]

Mégret, P.

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

Mergo, P.

Mihailov, S. J.

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

Milczewski, M. S.

M. S. Milczewski, J. C. da Silva, C. Martelli, L. Grabarski, I. Abe, and H. J. Kalinowski, “Force monitoring in a maxilla model and dentition using optical fiber Bragg gratings,” Sensors (Basel) 12(12), 11957–11965 (2012).
[Crossref] [PubMed]

Moore, J.

M. Froggatt, B. Childers, J. Moore, and T. Erdogan, “High density strain sensing using optical frequency domain reflectometry,” Proc. SPIE 4185, 249–255 (2000).

Mrad, N.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(12), 3687–3705 (2011).
[Crossref] [PubMed]

Murawski, M.

Nasilowski, T.

Nemov, I. N.

Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, A. M. Shalagin, S. A. Babin, and I. N. Nemov, “Differential multiplexing of fiber Bragg gratings by means of optical time domain refractometry,” Meas. Tech. 54(2), 170–174 (2011).
[Crossref]

Ou, Y.

Probst, W.

K. de Morais Sousa, W. Probst, F. Bortolotti, C. Martelli, and J. C. da Silva, “Fiber Bragg grating temperature sensors in a 6.5-MW generator exciter bridge and the development and simulation of its thermal model,” Sensors (Basel) 14(9), 16651–16663 (2014).
[Crossref] [PubMed]

Qi, B.

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 2009  27(23), 5356–5364 (2011).

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photonics Technol. Lett. 20(17), 1488–1490 (2008).
[Crossref]

Qian, L.

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 2009  27(23), 5356–5364 (2011).

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photonics Technol. Lett. 20(17), 1488–1490 (2008).
[Crossref]

Qiu, L.

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

Ricchiuti, L.

L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor,” IEEE Photonics J. 6(6), 5501410 (2014).
[Crossref]

Rothhardt, M.

Sales, S.

L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor,” IEEE Photonics J. 6(6), 5501410 (2014).
[Crossref]

Shalagin, A. M.

Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, A. M. Shalagin, S. A. Babin, and I. N. Nemov, “Differential multiplexing of fiber Bragg gratings by means of optical time domain refractometry,” Meas. Tech. 54(2), 170–174 (2011).
[Crossref]

Shillig, T. J.

Slowikowski, M.

Stepien, K.

Szostkiewicz, L.

Szymanski, M.

Tam, H.

M. H. Yau, T. H. Chan, D. P. Thambiratnam, and H. Tam, “Static vertical displacement measurement of bridges using fiber Bragg grating (FBG) sensors,” Adv. Struct. Eng. 16(1), 165–176 (2013).
[Crossref]

Tang, J. G.

Tenderenda, T.

Thambiratnam, D. P.

M. H. Yau, T. H. Chan, D. P. Thambiratnam, and H. Tam, “Static vertical displacement measurement of bridges using fiber Bragg grating (FBG) sensors,” Adv. Struct. Eng. 16(1), 165–176 (2013).
[Crossref]

Tian, H.

Vitrik, O. B.

Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, A. M. Shalagin, S. A. Babin, and I. N. Nemov, “Differential multiplexing of fiber Bragg gratings by means of optical time domain refractometry,” Meas. Tech. 54(2), 170–174 (2011).
[Crossref]

Wang, A.

Y. M. Wang, J. M. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).
[Crossref]

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. H. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Wang, D. J.

C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4 (2000).

Wang, D. Y.

Y. M. Wang, J. M. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).
[Crossref]

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. H. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Wang, Y. M.

Y. M. Wang, J. M. Gong, B. Dong, D. Y. Wang, T. J. Shillig, and A. Wang, “A large serial time-division multiplexed fiber Bragg grating sensor network,” J. Lightwave Technol. 30(17), 2751–2756 (2012).
[Crossref]

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. H. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

Wen, H.

Wuilpart, M.

K. Yuksel, P. Megret, and M. Wuilpart, “A quasi-distributed temperature sensor interrogated by optical frequency-domain reflectometer,” Meas. Sci. Technol. 22(11), 115204 (2011).
[Crossref]

Xiao, G.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(12), 3687–3705 (2011).
[Crossref] [PubMed]

Yang, M.

Yao, J.

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(12), 3687–3705 (2011).
[Crossref] [PubMed]

Yau, M. H.

M. H. Yau, T. H. Chan, D. P. Thambiratnam, and H. Tam, “Static vertical displacement measurement of bridges using fiber Bragg grating (FBG) sensors,” Adv. Struct. Eng. 16(1), 165–176 (2013).
[Crossref]

Ye, F.

F. Ye, L. Qian, and B. Qi, “Multipoint chemical gas sensing using frequency-shifted interferometry,” J. Lightwave Technol. 2009  27(23), 5356–5364 (2011).

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photonics Technol. Lett. 20(17), 1488–1490 (2008).
[Crossref]

Yin, J.

Yu, H. F.

Yuksel, K.

K. Yuksel, P. Megret, and M. Wuilpart, “A quasi-distributed temperature sensor interrogated by optical frequency-domain reflectometer,” Meas. Sci. Technol. 22(11), 115204 (2011).
[Crossref]

Zheng, A.

Zheng, Y.

Zhou, C.

Adv. Struct. Eng. (1)

M. H. Yau, T. H. Chan, D. P. Thambiratnam, and H. Tam, “Static vertical displacement measurement of bridges using fiber Bragg grating (FBG) sensors,” Adv. Struct. Eng. 16(1), 165–176 (2013).
[Crossref]

Appl. Opt. (1)

Chin. Opt. Lett. (1)

IEEE Photon. Technol. Lett. (1)

Y. M. Wang, J. M. Gong, D. Y. Wang, B. Dong, W. H. Bi, and A. Wang, “A quasi-distributed sensing network with time-division-multiplexed fiber Bragg gratings,” IEEE Photon. Technol. Lett. 23(2), 70–72 (2011).
[Crossref]

IEEE Photonics J. (1)

L. Ricchiuti, J. Hervás, D. Barrera, S. Sales, and J. Capmany, “Microwave photonics filtering technique for interrogating a very-weak fiber Bragg grating cascade sensor,” IEEE Photonics J. 6(6), 5501410 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. Ye, L. Qian, Y. Liu, and B. Qi, “Using frequency-shifted interferometry for multiplexing a fiber Bragg grating array,” IEEE Photonics Technol. Lett. 20(17), 1488–1490 (2008).
[Crossref]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (2)

G. Laffont, R. Cotillard, and P. Ferdinand, “Multiplexed regenerated fiber Bragg gratings for high-temperature measurement,” Meas. Sci. Technol. 24(9), 094010 (2013).
[Crossref]

K. Yuksel, P. Megret, and M. Wuilpart, “A quasi-distributed temperature sensor interrogated by optical frequency-domain reflectometer,” Meas. Sci. Technol. 22(11), 115204 (2011).
[Crossref]

Meas. Tech. (1)

Yu. N. Kulchin, O. B. Vitrik, A. V. Dyshlyuk, A. M. Shalagin, S. A. Babin, and I. N. Nemov, “Differential multiplexing of fiber Bragg gratings by means of optical time domain refractometry,” Meas. Tech. 54(2), 170–174 (2011).
[Crossref]

Opt. Express (1)

Opt. Lasers Eng. (1)

Y. B. Dai, P. Li, Y. J. Liu, A. Anand, and J. S. Leng, “Integrated real-time monitoring system for strain temperature distribution based on simultaneous wavelength and time division multiplexing technique,” Opt. Lasers Eng. 59, 19–24 (2014).
[Crossref]

Opt. Lett. (1)

Proc. SPIE (1)

M. Froggatt, B. Childers, J. Moore, and T. Erdogan, “High density strain sensing using optical frequency domain reflectometry,” Proc. SPIE 4185, 249–255 (2000).

Sensors (Basel) (5)

K. de Morais Sousa, W. Probst, F. Bortolotti, C. Martelli, and J. C. da Silva, “Fiber Bragg grating temperature sensors in a 6.5-MW generator exciter bridge and the development and simulation of its thermal model,” Sensors (Basel) 14(9), 16651–16663 (2014).
[Crossref] [PubMed]

M. S. Milczewski, J. C. da Silva, C. Martelli, L. Grabarski, I. Abe, and H. J. Kalinowski, “Force monitoring in a maxilla model and dentition using optical fiber Bragg gratings,” Sensors (Basel) 12(12), 11957–11965 (2012).
[Crossref] [PubMed]

S. J. Mihailov, “Fiber Bragg grating sensors for harsh environments,” Sensors (Basel) 12(2), 1898–1918 (2012).
[Crossref] [PubMed]

H. Guo, G. Xiao, N. Mrad, and J. Yao, “Fiber optic sensors for structural health monitoring of air platforms,” Sensors (Basel) 11(12), 3687–3705 (2011).
[Crossref] [PubMed]

D. Kinet, P. Mégret, K. W. Goossen, L. Qiu, D. Heider, and C. Caucheteur, “Fiber Bragg grating sensors toward structural health monitoring in composite materials: challenges and solutions,” Sensors (Basel) 14(4), 7394–7419 (2014).
[Crossref] [PubMed]

Other (3)

F. Ye, “Frequency-shifted interferometry for fiber-optic sensing,” PhD Thesis, University of Toronto, (2013).

C. C. Chan, W. Jin, D. J. Wang, and M. S. Demokan, “Intrinsic crosstalk analysis of a serial TDM FBG sensor array by using a tunable laser,” Proc. LEOS36, 2–4 (2000).

L. Qian, “Sagnac Loop Sensors,” in Fiber Optic Sensing and Imaging, J.U. Kang and Springer, eds. (Academic, 2013), pp. 119–146.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Block diagram of the FSI interrogation system for a near-identical weak FBG sensor array. TSL: tunable semiconductor laser; Cir: circulator; C1 and C2: 3 dB couplers; AOM: acousto-optic modulator; BD: balanced detector; DAQ: data acquisition card; PC: personal computer.

Fig. 2
Fig. 2

A differential interference signal at 1555.02 nm: (a) the time-domain signal sampled by DAQ; (b) the location-resolved signal after performing FFT on the time-domain signal.

Fig. 3
Fig. 3

The projection of all FFT spectra measured by FSI.

Fig. 4
Fig. 4

Reflection spectra characteristics of the nearly identical weak FBG array: (a) The reconstructed reflection spectra of the 40th to the 50th FBG sensors; (b) The peak reflection wavelengths and locations of all the 65 weak FBGs.

Fig. 5
Fig. 5

Temperature measurement results of the 65-sensor array.

Fig. 6
Fig. 6

Peak wavelength as a function of temperature.

Fig. 7
Fig. 7

One standard deviation of peak wavelengths for the 65 near -identical weak FBGs calculated from 40 repeated measurements.

Fig. 8
Fig. 8

Returning signal power of a 65-sensor array at different reflectivities.

Fig. 9
Fig. 9

First-order MPI crosstalk power of a 65-sensor array at different reflectivities.

Fig. 10
Fig. 10

SNR as a function of reflectivity of FBG at different sensor separations.

Fig. 11
Fig. 11

Multiplexing capacity as a function of FBG reflectivity under different sensor separations.

Fig. 12
Fig. 12

The relationship between the multiplexing capacity and the reflectivity of FBG at different source powers.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ΔI(λ,f)= i=1 N I i (λ)cos( 4π n( L 0 + L i ) c f )
I i (λ)= [ j=1 i1 ( 1 R j (λ) ) ] 2 R i (λ) 10 2β L i 10 I 0 (λ)
I 0 (λ)=4 κ 1 κ 2 γ 4 10 α c 10 P s (λ)
C i (λ)=( (i1)(i2) 2 R 3 (λ) (1R(λ)) (2i4) ) 10 2β L i 10 I 0 (λ)
I i 10( C i + P min )
P min =NEP BW
SNR= I i C i + P min

Metrics