Abstract

A tri-color composite volume holographic polymer dispersed liquid crystal (H-PDLC) grating and its application to 3-dimensional (3D) color autostereoscopic display are reported in this paper. The composite volume H-PDLC grating consists of three different period volume H-PDLC sub-gratings. The longer period diffracts red light, the medium period diffracts the green light, and the shorter period diffracts the blue light. To record three different period gratings simultaneously, two photoinitiators are employed. The first initiator consists of methylene blue and p-toluenesulfonic acid and the second initiator is composed of Rose Bengal and N-phenyglycine. In this case, the holographic recording medium is sensitive to entire visible wavelengths, including red, green, and blue so that the tri-color composite grating can be written simultaneously by harnessing three different color laser beams. In the experiment, the red beam comes from a He-Ne laser with an output wavelength of 632.8 nm, the green beam comes from a Verdi solid state laser with an output wavelength of 532 nm, and the blue beam comes from a He-Cd laser with an output wavelength of 441.6 nm. The experimental results show that diffraction efficiencies corresponding to red, green, and blue colors are 57%, 75% and 33%, respectively. Although this diffraction efficiency is not perfect, it is high enough to demonstrate the effect of 3D color autostereoscopic display.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Time-sequential autostereoscopic 3-D display with a novel directional backlight system based on volume-holographic optical elements

Yong Seok Hwang, Friedrich-Karl Bruder, Thomas Fäcke, Seung-Cheol Kim, Günther Walze, Rainer Hagen, and Eun-Soo Kim
Opt. Express 22(8) 9820-9838 (2014)

Design of a symmetric blazed grating sheet embedded in an autostereoscopic display

Chien-Yue Chen, Qing-Long Deng, and Hui-Hsiung Lin
Opt. Lett. 36(17) 3422-3424 (2011)

References

  • View by:
  • |
  • |
  • |

  1. J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen, and B. Lee, “Three-dimensional display technologies of recent interest: principles, status, and issues,” Appl. Opt. 50(34), H87–H115 (2011).
    [Crossref] [PubMed]
  2. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
    [Crossref]
  3. Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. Optoelectron. 2008, 1–52 (2008).
    [Crossref]
  4. S. Bronnikov, S. Kostromin, and V. Zuev, “Polymer-dispersed liquid crystals: progress in preparation, investigation, and application,” J. Macromol. Sci. B 52(12), 1718–1735 (2013).
    [Crossref]
  5. G. Zito and S. Pissadakis, “Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber,” Opt. Lett. 38(17), 3253–3256 (2013).
    [Crossref] [PubMed]
  6. M. S. Li, A. Y. Fuh, J. H. Liu, and S. T. Wu, “Bichromatic optical switch of diffractive light from a BCT photonic crystal based on an azo component-doped HPDLC,” Opt. Express 20(23), 25545–25553 (2012).
    [Crossref] [PubMed]
  7. L. Petti, P. Mormile, and W. J. Blau, “Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals,” Opt. Lasers Eng. 39(3), 369–377 (2003).
    [Crossref]
  8. A. E. Fox, K. Rai, and A. K. Fontecchio, “Holographically formed polymer dispersed liquid crystal films for transmission mode spectrometer applications,” Appl. Opt. 46(25), 6277–6282 (2007).
    [Crossref] [PubMed]
  9. A. Y. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys. 96(10), 5402–5404 (2004).
    [Crossref]
  10. J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
    [Crossref]
  11. F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
    [Crossref]
  12. Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
    [Crossref]
  13. L. J. Liu, L. Xuan, G. Y. Zhang, M. H. Liu, L. F. Hu, Y. G. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
    [Crossref]
  14. Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
    [Crossref]
  15. P. C. Wu, E. R. Yeh, V. Y. Zyryanov, and W. Lee, “Spatial and electrical switching of defect modes in a photonic bandgap device with a polymer-dispersed liquid crystal defect layer,” Opt. Express 22(17), 20278–20283 (2014).
    [Crossref] [PubMed]
  16. L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
    [Crossref]
  17. L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.) 47(12), 4411–4420 (2006).
    [Crossref]
  18. R. A. Ramsey and S. C. Sharma, “Switchable holographic gratings formed in polymer-dispersed liquid-crystal cells by use of a He-Ne laser,” Opt. Lett. 30(6), 592–594 (2005).
    [Crossref] [PubMed]
  19. R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
    [Crossref]
  20. W. C. Su, C. Y. Chen, and Y. F. Wang, “Stereogram implemented with a holographic image splitter,” Opt. Express 19(10), 9942–9949 (2011).
    [Crossref] [PubMed]
  21. Q. L. Deng, W. C. Su, C. Y. Chen, B. S. Lin, and H. W. Ho, “Full color image splitter based on holographic optical elements for stereogram application,” J. Disp. Technol. 9(8), 607–612 (2013).
    [Crossref]
  22. J. C. Liou, C. F. Yang, and F. H. Chen, “Dynamic LED backlight 2D/3D switchable autostereoscopic multi-view display,” J. Disp. Technol. 10(8), 629–634 (2014).
    [Crossref]
  23. D. Liang, J. Y. Luo, W. X. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
    [Crossref]
  24. W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35(24), 4127–4129 (2010).
    [Crossref] [PubMed]
  25. C. H. Chen, Y. P. Huang, S. C. Chuang, C. L. Wu, H. P. D. Shieh, W. Mphepö, C. T. Hsieh, and S. C. Hsu, “Liquid crystal panel for high efficiency barrier type autostereoscopic three-dimensional displays,” Appl. Opt. 48(18), 3446–3454 (2009).
    [Crossref] [PubMed]
  26. P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley & Sons, 1993).

2015 (1)

L. J. Liu, L. Xuan, G. Y. Zhang, M. H. Liu, L. F. Hu, Y. G. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

2014 (3)

J. C. Liou, C. F. Yang, and F. H. Chen, “Dynamic LED backlight 2D/3D switchable autostereoscopic multi-view display,” J. Disp. Technol. 10(8), 629–634 (2014).
[Crossref]

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

P. C. Wu, E. R. Yeh, V. Y. Zyryanov, and W. Lee, “Spatial and electrical switching of defect modes in a photonic bandgap device with a polymer-dispersed liquid crystal defect layer,” Opt. Express 22(17), 20278–20283 (2014).
[Crossref] [PubMed]

2013 (3)

G. Zito and S. Pissadakis, “Holographic polymer-dispersed liquid crystal Bragg grating integrated inside a solid core photonic crystal fiber,” Opt. Lett. 38(17), 3253–3256 (2013).
[Crossref] [PubMed]

S. Bronnikov, S. Kostromin, and V. Zuev, “Polymer-dispersed liquid crystals: progress in preparation, investigation, and application,” J. Macromol. Sci. B 52(12), 1718–1735 (2013).
[Crossref]

Q. L. Deng, W. C. Su, C. Y. Chen, B. S. Lin, and H. W. Ho, “Full color image splitter based on holographic optical elements for stereogram application,” J. Disp. Technol. 9(8), 607–612 (2013).
[Crossref]

2012 (2)

D. Liang, J. Y. Luo, W. X. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
[Crossref]

M. S. Li, A. Y. Fuh, J. H. Liu, and S. T. Wu, “Bichromatic optical switch of diffractive light from a BCT photonic crystal based on an azo component-doped HPDLC,” Opt. Express 20(23), 25545–25553 (2012).
[Crossref] [PubMed]

2011 (2)

2010 (2)

W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35(24), 4127–4129 (2010).
[Crossref] [PubMed]

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[Crossref]

2009 (1)

2008 (1)

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. Optoelectron. 2008, 1–52 (2008).
[Crossref]

2007 (1)

2006 (3)

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.) 47(12), 4411–4420 (2006).
[Crossref]

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
[Crossref]

2005 (1)

2004 (2)

A. Y. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys. 96(10), 5402–5404 (2004).
[Crossref]

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[Crossref]

2003 (2)

L. Petti, P. Mormile, and W. J. Blau, “Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals,” Opt. Lasers Eng. 39(3), 369–377 (2003).
[Crossref]

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

2000 (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Blau, W. J.

L. Petti, P. Mormile, and W. J. Blau, “Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals,” Opt. Lasers Eng. 39(3), 369–377 (2003).
[Crossref]

Brandelik, D. M.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

Bronnikov, S.

S. Bronnikov, S. Kostromin, and V. Zuev, “Polymer-dispersed liquid crystals: progress in preparation, investigation, and application,” J. Macromol. Sci. B 52(12), 1718–1735 (2013).
[Crossref]

Brown, D. P.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.) 47(12), 4411–4420 (2006).
[Crossref]

Bunning, T. J.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.) 47(12), 4411–4420 (2006).
[Crossref]

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Chandra, S.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

Chen, C. H.

Chen, C. Y.

Q. L. Deng, W. C. Su, C. Y. Chen, B. S. Lin, and H. W. Ho, “Full color image splitter based on holographic optical elements for stereogram application,” J. Disp. Technol. 9(8), 607–612 (2013).
[Crossref]

W. C. Su, C. Y. Chen, and Y. F. Wang, “Stereogram implemented with a holographic image splitter,” Opt. Express 19(10), 9942–9949 (2011).
[Crossref] [PubMed]

Chen, F. H.

J. C. Liou, C. F. Yang, and F. H. Chen, “Dynamic LED backlight 2D/3D switchable autostereoscopic multi-view display,” J. Disp. Technol. 10(8), 629–634 (2014).
[Crossref]

Chen, N.

Choi, H. J.

Chuang, S. C.

Crawford, G. P.

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[Crossref]

Deng, Q. L.

Q. L. Deng, W. C. Su, C. Y. Chen, B. S. Lin, and H. W. Ho, “Full color image splitter based on holographic optical elements for stereogram application,” J. Disp. Technol. 9(8), 607–612 (2013).
[Crossref]

Diao, Z. H.

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

Fontecchio, A. K.

Fox, A. E.

Fuh, A. Y.

M. S. Li, A. Y. Fuh, J. H. Liu, and S. T. Wu, “Bichromatic optical switch of diffractive light from a BCT photonic crystal based on an azo component-doped HPDLC,” Opt. Express 20(23), 25545–25553 (2012).
[Crossref] [PubMed]

A. Y. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys. 96(10), 5402–5404 (2004).
[Crossref]

Hahn, J.

Ho, H. W.

Q. L. Deng, W. C. Su, C. Y. Chen, B. S. Lin, and H. W. Ho, “Full color image splitter based on holographic optical elements for stereogram application,” J. Disp. Technol. 9(8), 607–612 (2013).
[Crossref]

Hong, J.

Hsieh, C. T.

Hsu, S. C.

Hu, L. F.

L. J. Liu, L. Xuan, G. Y. Zhang, M. H. Liu, L. F. Hu, Y. G. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Huang, W. B.

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

Huang, Y. P.

Kang, H.

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[Crossref]

Kim, H.

Kim, Y.

Kostromin, S.

S. Bronnikov, S. Kostromin, and V. Zuev, “Polymer-dispersed liquid crystals: progress in preparation, investigation, and application,” J. Macromol. Sci. B 52(12), 1718–1735 (2013).
[Crossref]

Lee, B.

Lee, W.

Li, D. H.

D. Liang, J. Y. Luo, W. X. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
[Crossref]

W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35(24), 4127–4129 (2010).
[Crossref] [PubMed]

Li, M. S.

Liang, D.

D. Liang, J. Y. Luo, W. X. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
[Crossref]

Lin, B. S.

Q. L. Deng, W. C. Su, C. Y. Chen, B. S. Lin, and H. W. Ho, “Full color image splitter based on holographic optical elements for stereogram application,” J. Disp. Technol. 9(8), 607–612 (2013).
[Crossref]

Lin, T. H.

A. Y. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys. 96(10), 5402–5404 (2004).
[Crossref]

Liou, J. C.

J. C. Liou, C. F. Yang, and F. H. Chen, “Dynamic LED backlight 2D/3D switchable autostereoscopic multi-view display,” J. Disp. Technol. 10(8), 629–634 (2014).
[Crossref]

Liu, J. H.

Liu, L. J.

L. J. Liu, L. Xuan, G. Y. Zhang, M. H. Liu, L. F. Hu, Y. G. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Liu, M. H.

L. J. Liu, L. Xuan, G. Y. Zhang, M. H. Liu, L. F. Hu, Y. G. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Liu, Y. G.

L. J. Liu, L. Xuan, G. Y. Zhang, M. H. Liu, L. F. Hu, Y. G. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

Liu, Y. J.

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. Optoelectron. 2008, 1–52 (2008).
[Crossref]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

Lloyd, P. F.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.) 47(12), 4411–4420 (2006).
[Crossref]

Luo, J. Y.

D. Liang, J. Y. Luo, W. X. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
[Crossref]

Ma, J.

L. J. Liu, L. Xuan, G. Y. Zhang, M. H. Liu, L. F. Hu, Y. G. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

Min, S. W.

Mormile, P.

L. Petti, P. Mormile, and W. J. Blau, “Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals,” Opt. Lasers Eng. 39(3), 369–377 (2003).
[Crossref]

Mphepö, W.

Mu, Q. Q.

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

Natarajan, L. V.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.) 47(12), 4411–4420 (2006).
[Crossref]

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Onural, L.

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[Crossref]

Park, J. H.

Peng, Z. H.

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

Petti, L.

L. Petti, P. Mormile, and W. J. Blau, “Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals,” Opt. Lasers Eng. 39(3), 369–377 (2003).
[Crossref]

Pissadakis, S.

Qi, J.

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[Crossref]

Rai, K.

Ramsey, R. A.

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
[Crossref]

R. A. Ramsey and S. C. Sharma, “Switchable holographic gratings formed in polymer-dispersed liquid-crystal cells by use of a He-Ne laser,” Opt. Lett. 30(6), 592–594 (2005).
[Crossref] [PubMed]

Sharma, S. C.

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
[Crossref]

R. A. Ramsey and S. C. Sharma, “Switchable holographic gratings formed in polymer-dispersed liquid-crystal cells by use of a He-Ne laser,” Opt. Lett. 30(6), 592–594 (2005).
[Crossref] [PubMed]

Shepherd, C. K.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

Shieh, H. P. D.

Su, W. C.

Q. L. Deng, W. C. Su, C. Y. Chen, B. S. Lin, and H. W. Ho, “Full color image splitter based on holographic optical elements for stereogram application,” J. Disp. Technol. 9(8), 607–612 (2013).
[Crossref]

W. C. Su, C. Y. Chen, and Y. F. Wang, “Stereogram implemented with a holographic image splitter,” Opt. Express 19(10), 9942–9949 (2011).
[Crossref] [PubMed]

Sun, X. W.

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. Optoelectron. 2008, 1–52 (2008).
[Crossref]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

Sutherland, R. L.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.) 47(12), 4411–4420 (2006).
[Crossref]

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Tomlin, D.

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

Tondiglia, V. P.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.) 47(12), 4411–4420 (2006).
[Crossref]

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Vaghela, K.

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
[Crossref]

Wang, A. H.

Wang, Q. H.

D. Liang, J. Y. Luo, W. X. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
[Crossref]

W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35(24), 4127–4129 (2010).
[Crossref] [PubMed]

Wang, Y. F.

Wofford, J. M.

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.) 47(12), 4411–4420 (2006).
[Crossref]

Wu, C. L.

Wu, P. C.

Wu, S. T.

Xuan, L.

L. J. Liu, L. Xuan, G. Y. Zhang, M. H. Liu, L. F. Hu, Y. G. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

Yang, C. F.

J. C. Liou, C. F. Yang, and F. H. Chen, “Dynamic LED backlight 2D/3D switchable autostereoscopic multi-view display,” J. Disp. Technol. 10(8), 629–634 (2014).
[Crossref]

Yaras, F.

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[Crossref]

Yeh, E. R.

Zhang, G. Y.

L. J. Liu, L. Xuan, G. Y. Zhang, M. H. Liu, L. F. Hu, Y. G. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Zhao, W. X.

D. Liang, J. Y. Luo, W. X. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
[Crossref]

W. X. Zhao, Q. H. Wang, A. H. Wang, and D. H. Li, “Autostereoscopic display based on two-layer lenticular lenses,” Opt. Lett. 35(24), 4127–4129 (2010).
[Crossref] [PubMed]

Zito, G.

Zuev, V.

S. Bronnikov, S. Kostromin, and V. Zuev, “Polymer-dispersed liquid crystals: progress in preparation, investigation, and application,” J. Macromol. Sci. B 52(12), 1718–1735 (2013).
[Crossref]

Zyryanov, V. Y.

Adv. Optoelectron. (1)

Y. J. Liu and X. W. Sun, “Holographic polymer-dispersed liquid crystals: materials, formation, and applications,” Adv. Optoelectron. 2008, 1–52 (2008).
[Crossref]

Annu. Rev. Mater. Sci. (1)

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, and R. L. Sutherland, “Holographic polymer-dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30(1), 83–115 (2000).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

R. A. Ramsey, S. C. Sharma, and K. Vaghela, “Holographically formed Bragg reflection gratings recorded in polymer-dispersed liquid crystal cells using a He-Ne laser,” Appl. Phys. Lett. 88(5), 051121 (2006).
[Crossref]

Y. J. Liu and X. W. Sun, “Electrically tunable two-dimensional holographic photonic crystal fabricated by a single diffractive element,” Appl. Phys. Lett. 89(17), 171101 (2006).
[Crossref]

Chem. Mater. (1)

L. V. Natarajan, C. K. Shepherd, D. M. Brandelik, R. L. Sutherland, S. Chandra, V. P. Tondiglia, D. Tomlin, and T. J. Bunning, “Switchable holographic polymer-dispersed liquid crystal reflection gratings based on thiol-ene photopolymerization,” Chem. Mater. 15(12), 2477–2484 (2003).
[Crossref]

Displays (1)

J. Qi and G. P. Crawford, “Holographically formed polymer dispersed liquid crystal displays,” Displays 25(5), 177–186 (2004).
[Crossref]

J. Appl. Phys. (1)

A. Y. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys. 96(10), 5402–5404 (2004).
[Crossref]

J. Disp. Technol. (4)

F. Yaras, H. Kang, and L. Onural, “State of the art in holographic displays: a survey,” J. Disp. Technol. 6(10), 443–454 (2010).
[Crossref]

Q. L. Deng, W. C. Su, C. Y. Chen, B. S. Lin, and H. W. Ho, “Full color image splitter based on holographic optical elements for stereogram application,” J. Disp. Technol. 9(8), 607–612 (2013).
[Crossref]

J. C. Liou, C. F. Yang, and F. H. Chen, “Dynamic LED backlight 2D/3D switchable autostereoscopic multi-view display,” J. Disp. Technol. 10(8), 629–634 (2014).
[Crossref]

D. Liang, J. Y. Luo, W. X. Zhao, D. H. Li, and Q. H. Wang, “2D/3D switchable autostereoscopic display based on polymer-stabilized blue-phase liquid crystal lens,” J. Disp. Technol. 8(10), 609–612 (2012).
[Crossref]

J. Macromol. Sci. B (1)

S. Bronnikov, S. Kostromin, and V. Zuev, “Polymer-dispersed liquid crystals: progress in preparation, investigation, and application,” J. Macromol. Sci. B 52(12), 1718–1735 (2013).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

L. J. Liu, L. Xuan, G. Y. Zhang, M. H. Liu, L. F. Hu, Y. G. Liu, and J. Ma, “Enhancement of pump efficiency for an organic distributed feedback laser based on a holographic polymer dispersed liquid crystal as an external light feedback layer,” J. Mater. Chem. C Mater. Opt. Electron. Devices 3(21), 5566–5572 (2015).
[Crossref]

Liq. Cryst. (1)

Z. H. Diao, W. B. Huang, Z. H. Peng, Q. Q. Mu, Y. G. Liu, J. Ma, and L. Xuan, “Anisotropic waveguide theory for electrically tunable distributed feedback laser from dye-doped holographic polymer dispersed liquid crystal,” Liq. Cryst. 41(2), 239–246 (2014).
[Crossref]

Opt. Express (3)

Opt. Lasers Eng. (1)

L. Petti, P. Mormile, and W. J. Blau, “Fast electro-optical switching and high contrast ratio in epoxy-based polymer dispersed liquid crystals,” Opt. Lasers Eng. 39(3), 369–377 (2003).
[Crossref]

Opt. Lett. (3)

Polymer (Guildf.) (1)

L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, and T. J. Bunning, “Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization,” Polymer (Guildf.) 47(12), 4411–4420 (2006).
[Crossref]

Other (1)

P. Yeh, Introduction to Photorefractive Nonlinear Optics (John Wiley & Sons, 1993).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 A schematic illustration of experimental setup for fabricating tri-color composite H-PDLC gratings with three laser sources with output wavelengths of 632.8nm, 532nm and 441.6nm, respectively.
Fig. 2
Fig. 2 The experimentally measured transmission spectra of two photoinitiators: RB and MB. (a) two photoinitiators were within pure water; (b) two photoinitiators were within PDLC material.
Fig. 3
Fig. 3 AFM images and data of three grating samples: (a) red grating; (b) green grating; and (c) blue grating.
Fig. 4
Fig. 4 (a) Measured diffraction efficiency as a function of exposure time, and (b) measured maximum diffraction efficiency as a function of bias voltage.
Fig. 5
Fig. 5 An illustration of applying tri-color composite H-PDLC grating to 3D color autostereoscopic display.
Fig. 6
Fig. 6 An illustration of experimental setup used to fabricate tri-color composite H-PDLC grating suitable for 3D color autostereoscopic display.
Fig. 7
Fig. 7 (a) Original left and right color pixels and (b) diffracted left and right color pixels.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Λ= λ 2sin( θ 2 ) ,
θ R =arcsin( λ R Λ G ),
θ G =arcsin( λ G Λ G ),
θ B =arcsin( λ B Λ G ),

Metrics