Abstract

In this paper we report on the realization of a single-mode Q-switched Nd:YVO4 ring laser at 1342 nm. Unidirectional and single-mode operation of the ring laser is achieved by injection-locking with a continuous wave Nd:YVO4 microchip laser, emitting a single-frequency power of up to 40 mW. The ring laser provides a single-mode power of 13.9 W at 10 kHz pulse repetition frequency with a pulse duration of 18.2 ns and an excellent beam quality (M2 < 1.05). By frequency doubling of the fundamental 1342 nm laser, a power of 8.7 W at 671 nm with a pulse duration of 14.8 ns and a beam propagation factor of M2 < 1.1 is obtained. The 671 nm radiation features a long-term spectral width of 75 MHz.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High peak power hybrid MOPA laser with tunable pulse repetition frequency and pulse duration

Mingming Nie, Qiang Liu, Encai Ji, Xuezhe Cao, Fu Xing, and Mali Gong
Appl. Opt. 56(12) 3457-3461 (2017)

PCSEL pumped coupling optics free Yb:YAG/Cr:YAG microchip laser

Xiaoyang Guo, Shigeki Tokita, Kazuyoshi Hirose, Takahiro Sugiyama, Akiyoshi Watanabe, Kenji Ishizaki, Susumu Noda, Noriaki Miyanaga, and Junji Kawanaka
Appl. Opt. 57(19) 5295-5298 (2018)

References

  • View by:
  • |
  • |
  • |

  1. P. Koch, J. Bartschke, and J. A. L’huillier, “All solid-state 191.7 nm deep-UV light source by seventh harmonic generation of an 888 nm pumped, Q-switched 1342 nm Nd:YVO4 laser with excellent beam quality,” Opt. Express 22, 13648–13658 (2014).
    [Crossref]
  2. S.-B. Dai, N. Zong, F. Yang, S.-J. Zhang, Z.-M. Wang, F.-F. Zhang, W. Tu, L.-Q. Shang, L.-J. Liu, X.-Y. Wang, J.-Y. Zhang, D.-F. Cui, Q.-J. Peng, R.-K. Li, C.-T. Chen, and Z.-Y. Xu, “167.75-nm vacuum-ultraviolet ps laser by eighth-harmonic generation of a 1342-nm Nd:YVO4 amplifier in KBBF,” Opt. Lett. 40, 3268–3271 (2015).
    [Crossref]
  3. F. Lenhardt, C. Schäfer, C. Theobald, M. Nittmann, J. Bartschke, R. Knappe, and J.A. L’huillier, “888 nm pumped 1342 nm Nd:YVO4 oscillator Kerr-lens mode-locked using cascaded second-order nonlinearities,” Appl. Phys. B 106, 5–8 (2012).
    [Crossref]
  4. W. Tu, Y. Chen, N. Zong, K. Liu, Z.-M. Wang, F.-F. Zhang, S.-J. Zhang, F. Yang, L. Yuan, Y. Bo, Q.-J. Peng, D.-F. Cui, and Z.-Y. Xu, “7.6 W 1342 nm passively mode-locked picosecond composite Nd:YVO4/YVO4 laser with a semiconductor saturable absorber mirror,” Appl. Opt. 54, 3389–3392 (2015).
    [Crossref] [PubMed]
  5. A. M. Rodin, M. Grishin, and A. Michailovas, “Picosecond laser with 11 W output power at 1342 nm based on composite multiple doping level Nd:YVO4 crystal,” Opt. Laser Technol. 76, 46–52 (2016).
    [Crossref]
  6. Y. Chen, K. Liu, J. Yang, N. Zong, F. Yang, H.-Y. Xu, W. Tu, Z. Liu, Q.-J. Peng, Y. Bo, D.-F. Cui, and Z.-Y. Xu, “High Energy, High Peak Power 1342-nm Picosecond Nd:YVO4 Regenerative Amplifier,” IEEE J. Quantum Electron. 51, 5100206 (2015).
  7. K. Liu, Y. Chen, F. Li, H. Xu, N. Zong, H. Yuan, L. Yuan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “High peak power 4.7 ns electro-optic cavity dumped TEM00 1342-nm Nd:YVO4 laser,” Appl. Opt. 54, 717–720 (2015).
    [Crossref] [PubMed]
  8. H.-G. Fröhlich and R. Kashyap, “Two methods of apodisation of fibre-Bragg-gratings,” Opt. Commun. 157, 273–281 (1998).
    [Crossref]
  9. U. Eismann, A. Bergschneider, F. Sievers, N. Kretzschmar, C. Salomon, and F. Chevy, “2.1-watts intracavity-frequency-doubled all-solid-state light source at 671 nm for laser cooling of lithium,” Opt. Express 21 (7), 9091–9102 (2013).
    [Crossref] [PubMed]
  10. Y. T. Wang, R. H. Zhang, J. H. Li, and W. J. Li, “Power scaling of single-longitudinal-mode Nd:GdVO4 laser at 1342 nm,” Laser Phys. 25, 065003 (2015).
    [Crossref]
  11. H. Li, Z.-M. Wang, F.-F. Zhang, M.-Q. Wang, J.-J. Li, Y.-L. Mao, L. Yuan, N. Zong, S.-J. Zhang, F. Yang, Y. Bo, C.-Q. Gao, D.-F. Cui, Q.-J. Peng, and Z.-Y. Xu, “Sub-pm linewidth nanosecond Nd:GYSGG laser at 1336.6 nm,” Opt. Lett. 40, 776–779 (2015).
    [Crossref] [PubMed]
  12. L. A. Rahn, “Feedback stabilization of an injection-seeded Nd:YAG laser,” Appl. Opt. 24, 940–942 (1985).
    [Crossref] [PubMed]
  13. R. S. Conroy, A. J. Kemp, G. J. Friel, and B. D. Sinclair, “Microchip Nd:vanadate lasers at 1342 and 671 nm,” Opt. Lett. 22, 1781–1783 (1997).
    [Crossref]
  14. L. McDonagh, R. Wallenstein, R. Knappe, and A. Nebel, “High-efficiency 60 W TEM00 Nd:YVO4 oscillator pumped at 888 nm,” Opt. Lett. 31, 3297–3299 (2006).
    [Crossref] [PubMed]
  15. L. McDonagh, R. Wallenstein, and R. Knappe, “47 W, 6 ns constant pulse duration, high-repetition-rate cavity-dumped Q-switched TEM00 Nd:YVO4 oscillator,” Opt. Lett. 31, 3303–3305 (2006).
    [Crossref] [PubMed]
  16. F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
    [Crossref]

2016 (1)

A. M. Rodin, M. Grishin, and A. Michailovas, “Picosecond laser with 11 W output power at 1342 nm based on composite multiple doping level Nd:YVO4 crystal,” Opt. Laser Technol. 76, 46–52 (2016).
[Crossref]

2015 (6)

Y. Chen, K. Liu, J. Yang, N. Zong, F. Yang, H.-Y. Xu, W. Tu, Z. Liu, Q.-J. Peng, Y. Bo, D.-F. Cui, and Z.-Y. Xu, “High Energy, High Peak Power 1342-nm Picosecond Nd:YVO4 Regenerative Amplifier,” IEEE J. Quantum Electron. 51, 5100206 (2015).

Y. T. Wang, R. H. Zhang, J. H. Li, and W. J. Li, “Power scaling of single-longitudinal-mode Nd:GdVO4 laser at 1342 nm,” Laser Phys. 25, 065003 (2015).
[Crossref]

K. Liu, Y. Chen, F. Li, H. Xu, N. Zong, H. Yuan, L. Yuan, Y. Bo, Q. Peng, D. Cui, and Z. Xu, “High peak power 4.7 ns electro-optic cavity dumped TEM00 1342-nm Nd:YVO4 laser,” Appl. Opt. 54, 717–720 (2015).
[Crossref] [PubMed]

H. Li, Z.-M. Wang, F.-F. Zhang, M.-Q. Wang, J.-J. Li, Y.-L. Mao, L. Yuan, N. Zong, S.-J. Zhang, F. Yang, Y. Bo, C.-Q. Gao, D.-F. Cui, Q.-J. Peng, and Z.-Y. Xu, “Sub-pm linewidth nanosecond Nd:GYSGG laser at 1336.6 nm,” Opt. Lett. 40, 776–779 (2015).
[Crossref] [PubMed]

W. Tu, Y. Chen, N. Zong, K. Liu, Z.-M. Wang, F.-F. Zhang, S.-J. Zhang, F. Yang, L. Yuan, Y. Bo, Q.-J. Peng, D.-F. Cui, and Z.-Y. Xu, “7.6 W 1342 nm passively mode-locked picosecond composite Nd:YVO4/YVO4 laser with a semiconductor saturable absorber mirror,” Appl. Opt. 54, 3389–3392 (2015).
[Crossref] [PubMed]

S.-B. Dai, N. Zong, F. Yang, S.-J. Zhang, Z.-M. Wang, F.-F. Zhang, W. Tu, L.-Q. Shang, L.-J. Liu, X.-Y. Wang, J.-Y. Zhang, D.-F. Cui, Q.-J. Peng, R.-K. Li, C.-T. Chen, and Z.-Y. Xu, “167.75-nm vacuum-ultraviolet ps laser by eighth-harmonic generation of a 1342-nm Nd:YVO4 amplifier in KBBF,” Opt. Lett. 40, 3268–3271 (2015).
[Crossref]

2014 (1)

2013 (1)

2012 (1)

F. Lenhardt, C. Schäfer, C. Theobald, M. Nittmann, J. Bartschke, R. Knappe, and J.A. L’huillier, “888 nm pumped 1342 nm Nd:YVO4 oscillator Kerr-lens mode-locked using cascaded second-order nonlinearities,” Appl. Phys. B 106, 5–8 (2012).
[Crossref]

2009 (1)

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
[Crossref]

2006 (2)

1998 (1)

H.-G. Fröhlich and R. Kashyap, “Two methods of apodisation of fibre-Bragg-gratings,” Opt. Commun. 157, 273–281 (1998).
[Crossref]

1997 (1)

1985 (1)

Bartschke, J.

P. Koch, J. Bartschke, and J. A. L’huillier, “All solid-state 191.7 nm deep-UV light source by seventh harmonic generation of an 888 nm pumped, Q-switched 1342 nm Nd:YVO4 laser with excellent beam quality,” Opt. Express 22, 13648–13658 (2014).
[Crossref]

F. Lenhardt, C. Schäfer, C. Theobald, M. Nittmann, J. Bartschke, R. Knappe, and J.A. L’huillier, “888 nm pumped 1342 nm Nd:YVO4 oscillator Kerr-lens mode-locked using cascaded second-order nonlinearities,” Appl. Phys. B 106, 5–8 (2012).
[Crossref]

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
[Crossref]

Bauer, T.

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
[Crossref]

Bergschneider, A.

Bo, Y.

Chen, C.-T.

Chen, Y.

Chevy, F.

Conroy, R. S.

Cui, D.

Cui, D.-F.

Dai, S.-B.

Eismann, U.

Friel, G. J.

Fröhlich, H.-G.

H.-G. Fröhlich and R. Kashyap, “Two methods of apodisation of fibre-Bragg-gratings,” Opt. Commun. 157, 273–281 (1998).
[Crossref]

Gao, C.-Q.

Grishin, M.

A. M. Rodin, M. Grishin, and A. Michailovas, “Picosecond laser with 11 W output power at 1342 nm based on composite multiple doping level Nd:YVO4 crystal,” Opt. Laser Technol. 76, 46–52 (2016).
[Crossref]

Kashyap, R.

H.-G. Fröhlich and R. Kashyap, “Two methods of apodisation of fibre-Bragg-gratings,” Opt. Commun. 157, 273–281 (1998).
[Crossref]

Kemp, A. J.

Knappe, R.

Koch, P.

Kretzschmar, N.

L’huillier, J. A.

P. Koch, J. Bartschke, and J. A. L’huillier, “All solid-state 191.7 nm deep-UV light source by seventh harmonic generation of an 888 nm pumped, Q-switched 1342 nm Nd:YVO4 laser with excellent beam quality,” Opt. Express 22, 13648–13658 (2014).
[Crossref]

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
[Crossref]

L’huillier, J.A.

F. Lenhardt, C. Schäfer, C. Theobald, M. Nittmann, J. Bartschke, R. Knappe, and J.A. L’huillier, “888 nm pumped 1342 nm Nd:YVO4 oscillator Kerr-lens mode-locked using cascaded second-order nonlinearities,” Appl. Phys. B 106, 5–8 (2012).
[Crossref]

Lenhardt, F.

F. Lenhardt, C. Schäfer, C. Theobald, M. Nittmann, J. Bartschke, R. Knappe, and J.A. L’huillier, “888 nm pumped 1342 nm Nd:YVO4 oscillator Kerr-lens mode-locked using cascaded second-order nonlinearities,” Appl. Phys. B 106, 5–8 (2012).
[Crossref]

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
[Crossref]

Li, F.

Li, H.

Li, J. H.

Y. T. Wang, R. H. Zhang, J. H. Li, and W. J. Li, “Power scaling of single-longitudinal-mode Nd:GdVO4 laser at 1342 nm,” Laser Phys. 25, 065003 (2015).
[Crossref]

Li, J.-J.

Li, R.-K.

Li, W. J.

Y. T. Wang, R. H. Zhang, J. H. Li, and W. J. Li, “Power scaling of single-longitudinal-mode Nd:GdVO4 laser at 1342 nm,” Laser Phys. 25, 065003 (2015).
[Crossref]

Liu, K.

Liu, L.-J.

Liu, Z.

Y. Chen, K. Liu, J. Yang, N. Zong, F. Yang, H.-Y. Xu, W. Tu, Z. Liu, Q.-J. Peng, Y. Bo, D.-F. Cui, and Z.-Y. Xu, “High Energy, High Peak Power 1342-nm Picosecond Nd:YVO4 Regenerative Amplifier,” IEEE J. Quantum Electron. 51, 5100206 (2015).

Mao, Y.-L.

McDonagh, L.

Michailovas, A.

A. M. Rodin, M. Grishin, and A. Michailovas, “Picosecond laser with 11 W output power at 1342 nm based on composite multiple doping level Nd:YVO4 crystal,” Opt. Laser Technol. 76, 46–52 (2016).
[Crossref]

Nebel, A.

Nittmann, M.

F. Lenhardt, C. Schäfer, C. Theobald, M. Nittmann, J. Bartschke, R. Knappe, and J.A. L’huillier, “888 nm pumped 1342 nm Nd:YVO4 oscillator Kerr-lens mode-locked using cascaded second-order nonlinearities,” Appl. Phys. B 106, 5–8 (2012).
[Crossref]

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
[Crossref]

Peng, Q.

Peng, Q.-J.

Rahn, L. A.

Rodin, A. M.

A. M. Rodin, M. Grishin, and A. Michailovas, “Picosecond laser with 11 W output power at 1342 nm based on composite multiple doping level Nd:YVO4 crystal,” Opt. Laser Technol. 76, 46–52 (2016).
[Crossref]

Salomon, C.

Schäfer, C.

F. Lenhardt, C. Schäfer, C. Theobald, M. Nittmann, J. Bartschke, R. Knappe, and J.A. L’huillier, “888 nm pumped 1342 nm Nd:YVO4 oscillator Kerr-lens mode-locked using cascaded second-order nonlinearities,” Appl. Phys. B 106, 5–8 (2012).
[Crossref]

Shang, L.-Q.

Sievers, F.

Sinclair, B. D.

Theobald, C.

F. Lenhardt, C. Schäfer, C. Theobald, M. Nittmann, J. Bartschke, R. Knappe, and J.A. L’huillier, “888 nm pumped 1342 nm Nd:YVO4 oscillator Kerr-lens mode-locked using cascaded second-order nonlinearities,” Appl. Phys. B 106, 5–8 (2012).
[Crossref]

Tu, W.

Wallenstein, R.

Wang, M.-Q.

Wang, X.-Y.

Wang, Y. T.

Y. T. Wang, R. H. Zhang, J. H. Li, and W. J. Li, “Power scaling of single-longitudinal-mode Nd:GdVO4 laser at 1342 nm,” Laser Phys. 25, 065003 (2015).
[Crossref]

Wang, Z.-M.

Xu, H.

Xu, H.-Y.

Y. Chen, K. Liu, J. Yang, N. Zong, F. Yang, H.-Y. Xu, W. Tu, Z. Liu, Q.-J. Peng, Y. Bo, D.-F. Cui, and Z.-Y. Xu, “High Energy, High Peak Power 1342-nm Picosecond Nd:YVO4 Regenerative Amplifier,” IEEE J. Quantum Electron. 51, 5100206 (2015).

Xu, Z.

Xu, Z.-Y.

Yang, F.

Yang, J.

Y. Chen, K. Liu, J. Yang, N. Zong, F. Yang, H.-Y. Xu, W. Tu, Z. Liu, Q.-J. Peng, Y. Bo, D.-F. Cui, and Z.-Y. Xu, “High Energy, High Peak Power 1342-nm Picosecond Nd:YVO4 Regenerative Amplifier,” IEEE J. Quantum Electron. 51, 5100206 (2015).

Yuan, H.

Yuan, L.

Zhang, F.-F.

Zhang, J.-Y.

Zhang, R. H.

Y. T. Wang, R. H. Zhang, J. H. Li, and W. J. Li, “Power scaling of single-longitudinal-mode Nd:GdVO4 laser at 1342 nm,” Laser Phys. 25, 065003 (2015).
[Crossref]

Zhang, S.-J.

Zong, N.

Appl. Opt. (3)

Appl. Phys. B (2)

F. Lenhardt, C. Schäfer, C. Theobald, M. Nittmann, J. Bartschke, R. Knappe, and J.A. L’huillier, “888 nm pumped 1342 nm Nd:YVO4 oscillator Kerr-lens mode-locked using cascaded second-order nonlinearities,” Appl. Phys. B 106, 5–8 (2012).
[Crossref]

F. Lenhardt, M. Nittmann, T. Bauer, J. Bartschke, and J. A. L’huillier, “High-power 888-nm-pumped Nd:YVO4 1342 nm oscillator operating in the TEM00 mode,” Appl. Phys. B 96, 803–807 (2009).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Chen, K. Liu, J. Yang, N. Zong, F. Yang, H.-Y. Xu, W. Tu, Z. Liu, Q.-J. Peng, Y. Bo, D.-F. Cui, and Z.-Y. Xu, “High Energy, High Peak Power 1342-nm Picosecond Nd:YVO4 Regenerative Amplifier,” IEEE J. Quantum Electron. 51, 5100206 (2015).

Laser Phys. (1)

Y. T. Wang, R. H. Zhang, J. H. Li, and W. J. Li, “Power scaling of single-longitudinal-mode Nd:GdVO4 laser at 1342 nm,” Laser Phys. 25, 065003 (2015).
[Crossref]

Opt. Commun. (1)

H.-G. Fröhlich and R. Kashyap, “Two methods of apodisation of fibre-Bragg-gratings,” Opt. Commun. 157, 273–281 (1998).
[Crossref]

Opt. Express (2)

Opt. Laser Technol. (1)

A. M. Rodin, M. Grishin, and A. Michailovas, “Picosecond laser with 11 W output power at 1342 nm based on composite multiple doping level Nd:YVO4 crystal,” Opt. Laser Technol. 76, 46–52 (2016).
[Crossref]

Opt. Lett. (5)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Experimental setup. PD = photodiode, HV = high voltage, HF = high frequency, AOM = acousto-optic modulator, FR = Faraday rotator, TFP = thin-film polarizer. For details see text.
Fig. 2
Fig. 2 (a) Power characteristic of the Nd:YVO4 microchip laser for a microchip temperature of 27.4 °C and 68.4 °C. (b) Spectra of the microchip laser at a pump power of 138 mW for different temperature of the microchip.
Fig. 3
Fig. 3 (a) Power characteristic of the Q-switched ring laser in broadband operation. (b) Reduction of the Q-switch buildup time (BUT) by injection-seeding. The seed power was 33 mW at 1342.221 nm before entering the high-power ring laser through mirror R1. The resonator length of the ring laser was scanned via the voltage of the piezo actuator.
Fig. 4
Fig. 4 (a) Q-switched pulse of the ring laser in single-mode operation. (b) Q-switch pulse of the ring laser in broadband operation, with mode-beating peaks visible. (c) Fast Fourier transformation (FFT) of the single-mode pulse. (d) FFT of the broadband pulse. The FFT of the pulse is a reliable method to optimize the alignment of the seed laser.
Fig. 5
Fig. 5 Dependence of the power in forward direction (black squares) and the residual power emitted against the seed direction (red dots) from (a) the injected seed power and (b) the seed wavelength. The gray dashed line represents the broadband emission wavelength in free running operation.
Fig. 6
Fig. 6 (a) Spectra of the ring laser in broadband operation (black) and injection-locked operation (color). The single-mode spectra were measured for different temperatures of the microchip and therefore different seed wavelengths. (b) M2 measurement and beam profile of the injection-locked ring laser.
Fig. 7
Fig. 7 (a) Power characteristic of the SHG conversion stage. (b) Pulse trace of the second harmonic pulse at a power of 8.7 W at 10 kHz PRF. (c) M2 measurement and beam profile of the second harmonic at a power of 8.7 W.
Fig. 8
Fig. 8 Measurement of the spectral width of the second harmonic with a scanning confocal Fabry-Perot interferometer (FPI) with a free spectral range of 300 MHz. (a) FPI spectrum measured with a single sweep of the FPI. (b) Screenshot of the oscilloscope during a single sweep of the FPI. (c) Screeshot of the oscilloscope with persistence on for a 5 min period.

Metrics