Abstract

We discuss hydrogen sensors based on fiber Bragg gratings (FBGs) micro-machined by femtosecond laser to form microgrooves and sputtered with Pd/Ag composite film. The atomic ratio of the two metals is controlled at Pd:Ag = 3:1. At room temperature, the hydrogen sensitivity of the sensor probe micro-machined by 75 mW laser power and sputtered with 520 nm of Pd/Ag film is 16.5 pm/%H. Comparably, the standard FBG hydrogen sensitivity becomes 2.5 pm/%H towards the same 4% hydrogen concentration. At an ambient temperature of 35°C, the processed sensor head has a dramatic rise in hydrogen sensitivity. Besides, the sensor shows good response and repeatability during hydrogen concentration test.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microstructured FBG hydrogen sensor based on Pt-loaded WO3

Xian Zhou, Yutang Dai, Joseph Muna Karanja, Fufei Liu, and Minghong Yang
Opt. Express 25(8) 8777-8786 (2017)

Ultra-high sensitive optical fiber hydrogen sensor using self-referenced demodulation method and WO3-Pd2Pt-Pt composite film

Jixiang Dai, Wen Peng, Gaopeng Wang, Feng Xiang, Yuhuan Qin, Min Wang, Yutang Dai, Minghong Yang, Hui Deng, and Pengcheng Zhang
Opt. Express 25(3) 2009-2015 (2017)

Fiber optic hydrogen sensor based on an etched Bragg grating coated with palladium

L. Coelho, J. M. M. M. de Almeida, J. L. Santos, and D. Viegas
Appl. Opt. 54(35) 10342-10348 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190, 657–663 (2014).
    [Crossref]
  2. C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16(21), 16854–16859 (2008).
    [Crossref] [PubMed]
  3. J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “In-Line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers,” IEEE Sens. J. 3(4), 533–537 (2003).
    [Crossref]
  4. D. Luna-Moreno and D. Monzo’n-Herna’ndez, “Effect of the Pd–Au thin film thickness uniformity on the performance of an optical fiber hydrogen sensor,” Appl. Surf. Sci. 253(21), 8615–8619 (2007).
    [Crossref]
  5. D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
    [Crossref]
  6. B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
    [Crossref]
  7. M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
    [Crossref]
  8. A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
    [Crossref]
  9. J. Dai, M. Yang, X. Yu, and H. Lu, “Optical hydrogen sensor based on etched fiber Bragg grating sputtered with Pd/Ag composite film,” Opt. Fiber Technol. 19(1), 26–30 (2013).
    [Crossref]
  10. J. Villatoro, A. Diez, J. L. Cruz, and M. V. Aiidrts, “Highly sensitive optical hydrogen sensor using circular Pd-coated single mode tapered fibre,” Electron. Lett. 37(16), 1011–1012 (2001).
    [Crossref]
  11. M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express 17(23), 20777–20782 (2009).
    [Crossref] [PubMed]
  12. C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
    [Crossref]
  13. J. Dai, M. Yang, Y. Chen, K. Cao, H. Liao, and P. Zhang, “Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials,” Opt. Express 19(7), 6141–6148 (2011).
    [Crossref] [PubMed]
  14. J. Dai, M. Yang, X. Li, H. Liu, and X. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Fiber Technol. 17(3), 210–213 (2011).
    [Crossref]
  15. J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
    [Crossref]
  16. A. Zoubir, I. Shah, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).
  17. K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber bragg grating hydrogen sensor based on evanescent field interaction with palladium thin film transducer,” Opt. Lasers Eng. 47(10), 1018–1022 (2009).
    [Crossref]
  18. M. Aleixandrea, P. Corredera, M. L. Hernanz, I. Sayago, M. C. Horrillo, and J. Gutierrez-Monreal, “Study of a palladium coated Bragg grating sensor to detect and measure low hydrogen concentrations,” in 6th Spanish Conference on Electron Devices (2007), pp. 223–225.
    [Crossref]
  19. J. B. Hunter, “A new hydrogen purification process: commercial development of palladium alloy diffusion cells,” Platin. Met. Rev. 4, 130–131 (1960).
  20. M. Yang and J. Dai, “Review on optical fiber sensors with sensitive thin films,” Photonic Sensors 2(1), 14–28 (2012).
    [Crossref]
  21. T. Hübert, L. Boon-Brett, G. Black, and U. Banacha, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–357 (2011).
    [Crossref]
  22. B. McCool, G. Xomeritakis, and Y. S. Lin, “Composition control and hydrogen permeation characteristics of sputter deposited palladium-silver membranes,” J. Membr. Sci. 161(1-2), 67–76 (1999).
    [Crossref]

2014 (1)

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190, 657–663 (2014).
[Crossref]

2013 (1)

J. Dai, M. Yang, X. Yu, and H. Lu, “Optical hydrogen sensor based on etched fiber Bragg grating sputtered with Pd/Ag composite film,” Opt. Fiber Technol. 19(1), 26–30 (2013).
[Crossref]

2012 (2)

M. Yang and J. Dai, “Review on optical fiber sensors with sensitive thin films,” Photonic Sensors 2(1), 14–28 (2012).
[Crossref]

J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
[Crossref]

2011 (3)

T. Hübert, L. Boon-Brett, G. Black, and U. Banacha, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–357 (2011).
[Crossref]

J. Dai, M. Yang, X. Li, H. Liu, and X. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Fiber Technol. 17(3), 210–213 (2011).
[Crossref]

J. Dai, M. Yang, Y. Chen, K. Cao, H. Liao, and P. Zhang, “Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials,” Opt. Express 19(7), 6141–6148 (2011).
[Crossref] [PubMed]

2009 (3)

M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express 17(23), 20777–20782 (2009).
[Crossref] [PubMed]

D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[Crossref]

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber bragg grating hydrogen sensor based on evanescent field interaction with palladium thin film transducer,” Opt. Lasers Eng. 47(10), 1018–1022 (2009).
[Crossref]

2008 (2)

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[Crossref]

C. Caucheteur, M. Debliquy, D. Lahem, and P. Megret, “Hybrid fiber gratings coated with a catalytic sensitive layer for hydrogen sensing in air,” Opt. Express 16(21), 16854–16859 (2008).
[Crossref] [PubMed]

2007 (1)

D. Luna-Moreno and D. Monzo’n-Herna’ndez, “Effect of the Pd–Au thin film thickness uniformity on the performance of an optical fiber hydrogen sensor,” Appl. Surf. Sci. 253(21), 8615–8619 (2007).
[Crossref]

2006 (1)

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
[Crossref]

2003 (2)

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “In-Line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers,” IEEE Sens. J. 3(4), 533–537 (2003).
[Crossref]

A. Zoubir, I. Shah, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

2001 (1)

J. Villatoro, A. Diez, J. L. Cruz, and M. V. Aiidrts, “Highly sensitive optical hydrogen sensor using circular Pd-coated single mode tapered fibre,” Electron. Lett. 37(16), 1011–1012 (2001).
[Crossref]

1999 (3)

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[Crossref]

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[Crossref]

B. McCool, G. Xomeritakis, and Y. S. Lin, “Composition control and hydrogen permeation characteristics of sputter deposited palladium-silver membranes,” J. Membr. Sci. 161(1-2), 67–76 (1999).
[Crossref]

1960 (1)

J. B. Hunter, “A new hydrogen purification process: commercial development of palladium alloy diffusion cells,” Platin. Met. Rev. 4, 130–131 (1960).

Aiidrts, M. V.

J. Villatoro, A. Diez, J. L. Cruz, and M. V. Aiidrts, “Highly sensitive optical hydrogen sensor using circular Pd-coated single mode tapered fibre,” Electron. Lett. 37(16), 1011–1012 (2001).
[Crossref]

Aleixandrea, M.

M. Aleixandrea, P. Corredera, M. L. Hernanz, I. Sayago, M. C. Horrillo, and J. Gutierrez-Monreal, “Study of a palladium coated Bragg grating sensor to detect and measure low hydrogen concentrations,” in 6th Spanish Conference on Electron Devices (2007), pp. 223–225.
[Crossref]

Andrés, M. V.

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “In-Line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers,” IEEE Sens. J. 3(4), 533–537 (2003).
[Crossref]

Banacha, U.

T. Hübert, L. Boon-Brett, G. Black, and U. Banacha, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–357 (2011).
[Crossref]

Black, G.

T. Hübert, L. Boon-Brett, G. Black, and U. Banacha, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–357 (2011).
[Crossref]

Boon-Brett, L.

T. Hübert, L. Boon-Brett, G. Black, and U. Banacha, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–357 (2011).
[Crossref]

Cao, K.

J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
[Crossref]

J. Dai, M. Yang, Y. Chen, K. Cao, H. Liao, and P. Zhang, “Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials,” Opt. Express 19(7), 6141–6148 (2011).
[Crossref] [PubMed]

Caucheteur, C.

Chen, H. W.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[Crossref]

Chen, Y.

Corredera, P.

M. Aleixandrea, P. Corredera, M. L. Hernanz, I. Sayago, M. C. Horrillo, and J. Gutierrez-Monreal, “Study of a palladium coated Bragg grating sensor to detect and measure low hydrogen concentrations,” in 6th Spanish Conference on Electron Devices (2007), pp. 223–225.
[Crossref]

Cruz, J. L.

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “In-Line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers,” IEEE Sens. J. 3(4), 533–537 (2003).
[Crossref]

J. Villatoro, A. Diez, J. L. Cruz, and M. V. Aiidrts, “Highly sensitive optical hydrogen sensor using circular Pd-coated single mode tapered fibre,” Electron. Lett. 37(16), 1011–1012 (2001).
[Crossref]

Dai, J.

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190, 657–663 (2014).
[Crossref]

J. Dai, M. Yang, X. Yu, and H. Lu, “Optical hydrogen sensor based on etched fiber Bragg grating sputtered with Pd/Ag composite film,” Opt. Fiber Technol. 19(1), 26–30 (2013).
[Crossref]

J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
[Crossref]

M. Yang and J. Dai, “Review on optical fiber sensors with sensitive thin films,” Photonic Sensors 2(1), 14–28 (2012).
[Crossref]

J. Dai, M. Yang, X. Li, H. Liu, and X. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Fiber Technol. 17(3), 210–213 (2011).
[Crossref]

J. Dai, M. Yang, Y. Chen, K. Cao, H. Liao, and P. Zhang, “Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials,” Opt. Express 19(7), 6141–6148 (2011).
[Crossref] [PubMed]

M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express 17(23), 20777–20782 (2009).
[Crossref] [PubMed]

Debliquy, M.

Diez, A.

J. Villatoro, A. Diez, J. L. Cruz, and M. V. Aiidrts, “Highly sensitive optical hydrogen sensor using circular Pd-coated single mode tapered fibre,” Electron. Lett. 37(16), 1011–1012 (2001).
[Crossref]

Díez, A.

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “In-Line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers,” IEEE Sens. J. 3(4), 533–537 (2003).
[Crossref]

Ecke, W.

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber bragg grating hydrogen sensor based on evanescent field interaction with palladium thin film transducer,” Opt. Lasers Eng. 47(10), 1018–1022 (2009).
[Crossref]

Gutierrez-Monreal, J.

M. Aleixandrea, P. Corredera, M. L. Hernanz, I. Sayago, M. C. Horrillo, and J. Gutierrez-Monreal, “Study of a palladium coated Bragg grating sensor to detect and measure low hydrogen concentrations,” in 6th Spanish Conference on Electron Devices (2007), pp. 223–225.
[Crossref]

Hernanz, M. L.

M. Aleixandrea, P. Corredera, M. L. Hernanz, I. Sayago, M. C. Horrillo, and J. Gutierrez-Monreal, “Study of a palladium coated Bragg grating sensor to detect and measure low hydrogen concentrations,” in 6th Spanish Conference on Electron Devices (2007), pp. 223–225.
[Crossref]

Horrillo, M. C.

M. Aleixandrea, P. Corredera, M. L. Hernanz, I. Sayago, M. C. Horrillo, and J. Gutierrez-Monreal, “Study of a palladium coated Bragg grating sensor to detect and measure low hydrogen concentrations,” in 6th Spanish Conference on Electron Devices (2007), pp. 223–225.
[Crossref]

Hübert, T.

T. Hübert, L. Boon-Brett, G. Black, and U. Banacha, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–357 (2011).
[Crossref]

Hunter, J. B.

J. B. Hunter, “A new hydrogen purification process: commercial development of palladium alloy diffusion cells,” Platin. Met. Rev. 4, 130–131 (1960).

Jiang, D.

Jyu, S. S.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[Crossref]

Kazemi, A.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[Crossref]

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[Crossref]

Lahem, D.

Li, X.

J. Dai, M. Yang, X. Li, H. Liu, and X. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Fiber Technol. 17(3), 210–213 (2011).
[Crossref]

Li, Z.

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190, 657–663 (2014).
[Crossref]

Liao, H.

Liao, J.

J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
[Crossref]

Lin, S. W.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[Crossref]

Lin, Y. S.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[Crossref]

B. McCool, G. Xomeritakis, and Y. S. Lin, “Composition control and hydrogen permeation characteristics of sputter deposited palladium-silver membranes,” J. Membr. Sci. 161(1-2), 67–76 (1999).
[Crossref]

Liu, H.

J. Dai, M. Yang, X. Li, H. Liu, and X. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Fiber Technol. 17(3), 210–213 (2011).
[Crossref]

Liu, W. F.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[Crossref]

Lu, H.

J. Dai, M. Yang, X. Yu, and H. Lu, “Optical hydrogen sensor based on etched fiber Bragg grating sputtered with Pd/Ag composite film,” Opt. Fiber Technol. 19(1), 26–30 (2013).
[Crossref]

Luna-Moreno, D.

D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[Crossref]

D. Luna-Moreno and D. Monzo’n-Herna’ndez, “Effect of the Pd–Au thin film thickness uniformity on the performance of an optical fiber hydrogen sensor,” Appl. Surf. Sci. 253(21), 8615–8619 (2007).
[Crossref]

Marin, E.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
[Crossref]

Martínez-Escobar, D.

D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[Crossref]

McCool, B.

B. McCool, G. Xomeritakis, and Y. S. Lin, “Composition control and hydrogen permeation characteristics of sputter deposited palladium-silver membranes,” J. Membr. Sci. 161(1-2), 67–76 (1999).
[Crossref]

Megret, P.

Monzo’n-Herna’ndez, D.

D. Luna-Moreno and D. Monzo’n-Herna’ndez, “Effect of the Pd–Au thin film thickness uniformity on the performance of an optical fiber hydrogen sensor,” Appl. Surf. Sci. 253(21), 8615–8619 (2007).
[Crossref]

Monzón-Hernández, D.

D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[Crossref]

Petrick, R.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[Crossref]

Richardson, K.

A. Zoubir, I. Shah, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Richardson, M.

A. Zoubir, I. Shah, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Sayago, I.

M. Aleixandrea, P. Corredera, M. L. Hernanz, I. Sayago, M. C. Horrillo, and J. Gutierrez-Monreal, “Study of a palladium coated Bragg grating sensor to detect and measure low hydrogen concentrations,” in 6th Spanish Conference on Electron Devices (2007), pp. 223–225.
[Crossref]

Schroeder, K.

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber bragg grating hydrogen sensor based on evanescent field interaction with palladium thin film transducer,” Opt. Lasers Eng. 47(10), 1018–1022 (2009).
[Crossref]

Shah, I.

A. Zoubir, I. Shah, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Sutapun, B.

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[Crossref]

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[Crossref]

Tabib-Azar, M.

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[Crossref]

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[Crossref]

Tien, C. L.

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[Crossref]

Tong, X.

J. Dai, M. Yang, X. Li, H. Liu, and X. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Fiber Technol. 17(3), 210–213 (2011).
[Crossref]

Trouillet, A.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
[Crossref]

Veillas, C.

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
[Crossref]

Villatoro, J.

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “In-Line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers,” IEEE Sens. J. 3(4), 533–537 (2003).
[Crossref]

J. Villatoro, A. Diez, J. L. Cruz, and M. V. Aiidrts, “Highly sensitive optical hydrogen sensor using circular Pd-coated single mode tapered fibre,” Electron. Lett. 37(16), 1011–1012 (2001).
[Crossref]

Wang, G.

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190, 657–663 (2014).
[Crossref]

Wang, Y.

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190, 657–663 (2014).
[Crossref]

Willsch, R.

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber bragg grating hydrogen sensor based on evanescent field interaction with palladium thin film transducer,” Opt. Lasers Eng. 47(10), 1018–1022 (2009).
[Crossref]

Xomeritakis, G.

B. McCool, G. Xomeritakis, and Y. S. Lin, “Composition control and hydrogen permeation characteristics of sputter deposited palladium-silver membranes,” J. Membr. Sci. 161(1-2), 67–76 (1999).
[Crossref]

Yang, M.

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190, 657–663 (2014).
[Crossref]

J. Dai, M. Yang, X. Yu, and H. Lu, “Optical hydrogen sensor based on etched fiber Bragg grating sputtered with Pd/Ag composite film,” Opt. Fiber Technol. 19(1), 26–30 (2013).
[Crossref]

M. Yang and J. Dai, “Review on optical fiber sensors with sensitive thin films,” Photonic Sensors 2(1), 14–28 (2012).
[Crossref]

J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
[Crossref]

J. Dai, M. Yang, X. Li, H. Liu, and X. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Fiber Technol. 17(3), 210–213 (2011).
[Crossref]

J. Dai, M. Yang, Y. Chen, K. Cao, H. Liao, and P. Zhang, “Side-polished fiber Bragg grating hydrogen sensor with WO3-Pd composite film as sensing materials,” Opt. Express 19(7), 6141–6148 (2011).
[Crossref] [PubMed]

M. Yang, J. Dai, C. Zhou, and D. Jiang, “Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials,” Opt. Express 17(23), 20777–20782 (2009).
[Crossref] [PubMed]

Yang, Z.

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190, 657–663 (2014).
[Crossref]

Yu, X.

J. Dai, M. Yang, X. Yu, and H. Lu, “Optical hydrogen sensor based on etched fiber Bragg grating sputtered with Pd/Ag composite film,” Opt. Fiber Technol. 19(1), 26–30 (2013).
[Crossref]

J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
[Crossref]

Zhang, P.

Zhang, Y.

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190, 657–663 (2014).
[Crossref]

Zhou, C.

Zhuang, Z.

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190, 657–663 (2014).
[Crossref]

Zoubir, A.

A. Zoubir, I. Shah, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Appl. Phys., A Mater. Sci. Process. (1)

A. Zoubir, I. Shah, K. Richardson, and M. Richardson, “Practical uses of femtosecond laser micro-materials processing,” Appl. Phys., A Mater. Sci. Process. 77, 311–315 (2003).

Appl. Surf. Sci. (1)

D. Luna-Moreno and D. Monzo’n-Herna’ndez, “Effect of the Pd–Au thin film thickness uniformity on the performance of an optical fiber hydrogen sensor,” Appl. Surf. Sci. 253(21), 8615–8619 (2007).
[Crossref]

Electron. Lett. (1)

J. Villatoro, A. Diez, J. L. Cruz, and M. V. Aiidrts, “Highly sensitive optical hydrogen sensor using circular Pd-coated single mode tapered fibre,” Electron. Lett. 37(16), 1011–1012 (2001).
[Crossref]

IEEE Sens. J. (1)

J. Villatoro, A. Díez, J. L. Cruz, and M. V. Andrés, “In-Line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers,” IEEE Sens. J. 3(4), 533–537 (2003).
[Crossref]

J. Membr. Sci. (1)

B. McCool, G. Xomeritakis, and Y. S. Lin, “Composition control and hydrogen permeation characteristics of sputter deposited palladium-silver membranes,” J. Membr. Sci. 161(1-2), 67–76 (1999).
[Crossref]

Meas. Sci. Technol. (1)

A. Trouillet, E. Marin, and C. Veillas, “Fibre gratings for hydrogen sensing,” Meas. Sci. Technol. 17(5), 1124–1128 (2006).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (2)

J. Dai, M. Yang, X. Li, H. Liu, and X. Tong, “Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating,” Opt. Fiber Technol. 17(3), 210–213 (2011).
[Crossref]

J. Dai, M. Yang, X. Yu, and H. Lu, “Optical hydrogen sensor based on etched fiber Bragg grating sputtered with Pd/Ag composite film,” Opt. Fiber Technol. 19(1), 26–30 (2013).
[Crossref]

Opt. Lasers Eng. (1)

K. Schroeder, W. Ecke, and R. Willsch, “Optical fiber bragg grating hydrogen sensor based on evanescent field interaction with palladium thin film transducer,” Opt. Lasers Eng. 47(10), 1018–1022 (2009).
[Crossref]

Photonic Sensors (1)

M. Yang and J. Dai, “Review on optical fiber sensors with sensitive thin films,” Photonic Sensors 2(1), 14–28 (2012).
[Crossref]

Platin. Met. Rev. (1)

J. B. Hunter, “A new hydrogen purification process: commercial development of palladium alloy diffusion cells,” Platin. Met. Rev. 4, 130–131 (1960).

Sens. Actuators B Chem. (6)

J. Dai, M. Yang, X. Yu, K. Cao, and J. Liao, “Greatly etched fiber Bragg grating hydrogen sensor with Pd/Ni composite film as sensing material,” Sens. Actuators B Chem. 174, 253–257 (2012).
[Crossref]

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang, G. Wang, Y. Zhang, and Z. Zhuang, “Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating,” Sens. Actuators B Chem. 190, 657–663 (2014).
[Crossref]

D. Monzón-Hernández, D. Luna-Moreno, and D. Martínez-Escobar, “Fast response fiber optic hydrogen sensor based on palladium and gold nano-layers,” Sens. Actuators B Chem. 136(2), 562–566 (2009).
[Crossref]

B. Sutapun, M. Tabib-Azar, and A. Kazemi, “Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing,” Sens. Actuators B Chem. 60(1), 27–34 (1999).
[Crossref]

M. Tabib-Azar, B. Sutapun, R. Petrick, and A. Kazemi, “Highly sensitive hydrogen sensors using palladium coated fiber optics with exposed cores and evanescent field interactions,” Sens. Actuators B Chem. 56(1-2), 158–163 (1999).
[Crossref]

T. Hübert, L. Boon-Brett, G. Black, and U. Banacha, “Hydrogen sensors – A review,” Sens. Actuators B Chem. 157(2), 329–357 (2011).
[Crossref]

Thin Solid Films (1)

C. L. Tien, H. W. Chen, W. F. Liu, S. S. Jyu, S. W. Lin, and Y. S. Lin, “Hydrogen sensor based on side-polished fiber Bragg gratings coated with thin palladium film,” Thin Solid Films 516(16), 5360–5363 (2008).
[Crossref]

Other (1)

M. Aleixandrea, P. Corredera, M. L. Hernanz, I. Sayago, M. C. Horrillo, and J. Gutierrez-Monreal, “Study of a palladium coated Bragg grating sensor to detect and measure low hydrogen concentrations,” in 6th Spanish Conference on Electron Devices (2007), pp. 223–225.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Profile face diagram of the proposed sensor probe (b) side diagram showing the micro-groove.
Fig. 2
Fig. 2 SEM figure of Pd/Ag thin film (~560 nm thick) deposited onto a micro-structured FBG SMF-28 fiber.
Fig. 3
Fig. 3 Schematic configuration of the femtosecond laser micro-machining system.
Fig. 4
Fig. 4 Elemental composition of the composite thin film.
Fig. 5
Fig. 5 Hydrogen gas sensor characterization kit.
Fig. 6
Fig. 6 Three cycles of hydrogen response of micro-structured FBG and coated with 520 nm Pd/Ag composite film performed at 25 C.
Fig. 7
Fig. 7 Figures 7(i) and 7(ii) shows cycles of sensor head coated with 520-nm of Pd/Ag composite film under different hydrogen concentrations and at ambient temperature of 25 °C and 35 °C respectively.
Fig. 8
Fig. 8 Effect of varying number of microgrooves on sensor performance of 520 nm Pd/Ag composite film sensor probe.
Fig. 9
Fig. 9 Figures 9(a) and 9(b) shows wavelength shift of sensors fabricated with varying laser pulse power, Pd/Ag composite film thickness and at different temperature of 25°C and 35°C respectively.

Tables (1)

Tables Icon

Table 1 The dimensions of laser ablated micro-grooves at constant 1.4 µm/s translation speed.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

A 1 = π D 2 4
A 2 = π D 2 4 n( π w 2 8 + e w 2 e+ w 2 D 2 4 x 2 dxw( D 2 4 e 2 h+ w 2 ) )
e w 2 e+ w 2 D 2 4 x 2 dx=2 0 w 2 D 2 4 x 2 dx= w 4 D 2 w 2 + D 2 4 arcsin( w D )
A 2 = π D 2 4 n( w 2 2 ( π 4 1 )w( D 4 h )+ D 2 4 arcsin( w D ) )
χ=( π 4 1 ), γ=( D 4 h ), δ=( w D )
A 2 = π D 2 4 n( w 2 2 χwγ+ D 2 4 arcsinδ )
ε= F a E A 2 = F a E[ π D 2 4 n( w 2 2 χwγ+ D 2 4 arcsinδ ) ]
Δλ F a [ π D 2 4 n( w 2 2 χwγ+ D 2 4 arcsinδ ) ] ( 1 P e ) λ B
R= Δλ Δ λ s F a 4 F as π D 2 [ π D 2 4 n( w 2 2 χwγ+ D 2 4 arcsinδ ) ]

Metrics