Abstract

We report on the realization of adiabatic light transfer in lithium niobate (LiNbO3) waveguides. This peculiar adiabatic tunneling scheme was implemented in a three-waveguide coupling configuration with the intermediate waveguide being inclined with respect to the outer waveguides to facilitate the adiabatic passage process. We have investigated and determined the adiabatic conditions of the LiNbO3 device in terms of the structure configuration of the waveguide system and found optimal structure parameters by both simulation and experimental approaches. Broadband adiabatic couplings of bandwidth ~456 and 185 nm and peak coupling efficiencies of >0.96 have been obtained with a 2-cm long device for TE- and TM-polarized fundamental modes, respectively. Longer (5 cm) devices were also studied and found to be useful in increasing the adiabaticity of the device, especially for the TM-polarized mode.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Broadband on-chip polarization mode splitters in lithium niobate integrated adiabatic couplers

Hung-Pin Chung, Chieh-Hsun Lee, Kuang-Hsu Huang, Sung-Lin Yang, Kai Wang, Alexander S. Solntsev, Andrey A. Sukhorukov, Frank Setzpfandt, and Yen-Hung Chen
Opt. Express 27(2) 1632-1645 (2019)

Mode control and mode conversion in nonlinear aluminum nitride waveguides

Matthias Stegmaier and Wolfram H.P. Pernice
Opt. Express 21(22) 26742-26761 (2013)

Photon pair generation and pump filtering in nonlinear adiabatic waveguiding structures

Che Wen Wu, Alexander S. Solntsev, Dragomir N. Neshev, and Andrey A. Sukhorukov
Opt. Lett. 39(4) 953-956 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. V. Schmidt and R. C. Alferness, “Directional coupler switches, modulators, and filters using alternating Δβ techniques,” IEEE Trans. Circ. Syst. 26(12), 1099–1108 (1979).
    [Crossref]
  2. G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
    [Crossref]
  3. K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
    [Crossref]
  4. E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258(1), 30–34 (2006).
    [Crossref]
  5. A. Salandrino, K. Makris, D. N. Christodoulides, Y. Lahini, Y. Silberberg, and R. Morandotti, “Analysis of a three-core adiabatic directional coupler,” Opt. Commun. 282(23), 4524–4526 (2009).
    [Crossref]
  6. S. Y. Tseng and Y. W. Jhang, “Fast and robust beam coupling in a three waveguide directional coupler,” IEEE Photonics Technol. Lett. 25(24), 2478–2481 (2013).
    [Crossref]
  7. S. Longhi, “Adiabatic passage of light in coupled optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 026607 (2006).
    [Crossref] [PubMed]
  8. C. W. Wu, A. S. Solntsev, D. N. Neshev, and A. A. Sukhorukov, “Photon pair generation and pump filtering in nonlinear adiabatic waveguiding structures,” Opt. Lett. 39(4), 953–956 (2014).
    [Crossref] [PubMed]
  9. Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of nonlinearity on adiabatic evolution of light,” Phys. Rev. Lett. 101(19), 193901 (2008).
    [Crossref] [PubMed]
  10. S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76(20), 201101 (2007).
    [Crossref]
  11. F. Dreisow, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Adiabatic transfer of light via a continuum in optical waveguides,” Opt. Lett. 34(16), 2405–2407 (2009).
    [Crossref] [PubMed]
  12. C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, “Broadband adiabatic light transfer in optically induced waveguide arrays,” Phys. Rev. A 87(1), 013806 (2013).
  13. C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, “Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter,” Opt. Express 15(5), 2548–2554 (2007).
    [Crossref] [PubMed]
  14. R. C. Alferness, R. V. Schmidt, and E. H. Turner, “Characteristics of Ti-diffused lithium niobate optical directional couplers,” Appl. Opt. 18(23), 4012–4016 (1979).
    [Crossref] [PubMed]
  15. W. K. Burns, P. H. Klein, E. J. West, and L. E. Plew, “Ti diffusion in Ti : LiNbO3 planar and channel optical waveguides,” J. Appl. Phys. 50(10), 6175–6182 (1979).
    [Crossref]
  16. S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
    [Crossref]
  17. J. Van Roey, J. van der Donk, and P. E. Lagasse, “Beam-propagation method: analysis and assessment,” J. Opt. Soc. Am. 71(7), 803–810 (1981).
    [Crossref]
  18. H. Li, F. Zhou, X. Zhang, and W. Ji, “Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photon absorption,” Appl. Phys. B 64(6), 659–662 (1997).
    [Crossref]
  19. R. C. Alferness and J. J. Veselka, “Simultaneous modulation and wavelength multiplexing with a tunable Ti:LiNbO3 directional coupler filter,” Electron. Lett. 21(11), 466–467 (1985).
    [Crossref]

2014 (1)

2013 (2)

S. Y. Tseng and Y. W. Jhang, “Fast and robust beam coupling in a three waveguide directional coupler,” IEEE Photonics Technol. Lett. 25(24), 2478–2481 (2013).
[Crossref]

C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, “Broadband adiabatic light transfer in optically induced waveguide arrays,” Phys. Rev. A 87(1), 013806 (2013).

2009 (2)

A. Salandrino, K. Makris, D. N. Christodoulides, Y. Lahini, Y. Silberberg, and R. Morandotti, “Analysis of a three-core adiabatic directional coupler,” Opt. Commun. 282(23), 4524–4526 (2009).
[Crossref]

F. Dreisow, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Adiabatic transfer of light via a continuum in optical waveguides,” Opt. Lett. 34(16), 2405–2407 (2009).
[Crossref] [PubMed]

2008 (2)

Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of nonlinearity on adiabatic evolution of light,” Phys. Rev. Lett. 101(19), 193901 (2008).
[Crossref] [PubMed]

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

2007 (2)

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76(20), 201101 (2007).
[Crossref]

C. Y. Huang, C. H. Lin, Y. H. Chen, and Y. C. Huang, “Electro-optic Ti:PPLN waveguide as efficient optical wavelength filter and polarization mode converter,” Opt. Express 15(5), 2548–2554 (2007).
[Crossref] [PubMed]

2006 (2)

S. Longhi, “Adiabatic passage of light in coupled optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 026607 (2006).
[Crossref] [PubMed]

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258(1), 30–34 (2006).
[Crossref]

1998 (1)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
[Crossref]

1997 (1)

H. Li, F. Zhou, X. Zhang, and W. Ji, “Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photon absorption,” Appl. Phys. B 64(6), 659–662 (1997).
[Crossref]

1987 (1)

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

1985 (1)

R. C. Alferness and J. J. Veselka, “Simultaneous modulation and wavelength multiplexing with a tunable Ti:LiNbO3 directional coupler filter,” Electron. Lett. 21(11), 466–467 (1985).
[Crossref]

1981 (1)

1979 (3)

R. C. Alferness, R. V. Schmidt, and E. H. Turner, “Characteristics of Ti-diffused lithium niobate optical directional couplers,” Appl. Opt. 18(23), 4012–4016 (1979).
[Crossref] [PubMed]

W. K. Burns, P. H. Klein, E. J. West, and L. E. Plew, “Ti diffusion in Ti : LiNbO3 planar and channel optical waveguides,” J. Appl. Phys. 50(10), 6175–6182 (1979).
[Crossref]

R. V. Schmidt and R. C. Alferness, “Directional coupler switches, modulators, and filters using alternating Δβ techniques,” IEEE Trans. Circ. Syst. 26(12), 1099–1108 (1979).
[Crossref]

Alferness, R. C.

R. C. Alferness and J. J. Veselka, “Simultaneous modulation and wavelength multiplexing with a tunable Ti:LiNbO3 directional coupler filter,” Electron. Lett. 21(11), 466–467 (1985).
[Crossref]

R. C. Alferness, R. V. Schmidt, and E. H. Turner, “Characteristics of Ti-diffused lithium niobate optical directional couplers,” Appl. Opt. 18(23), 4012–4016 (1979).
[Crossref] [PubMed]

R. V. Schmidt and R. C. Alferness, “Directional coupler switches, modulators, and filters using alternating Δβ techniques,” IEEE Trans. Circ. Syst. 26(12), 1099–1108 (1979).
[Crossref]

Bergmann, K.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
[Crossref]

Burns, W. K.

W. K. Burns, P. H. Klein, E. J. West, and L. E. Plew, “Ti diffusion in Ti : LiNbO3 planar and channel optical waveguides,” J. Appl. Phys. 50(10), 6175–6182 (1979).
[Crossref]

Carenco, A.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Chen, Y. H.

Christodoulides, D. N.

A. Salandrino, K. Makris, D. N. Christodoulides, Y. Lahini, Y. Silberberg, and R. Morandotti, “Analysis of a three-core adiabatic directional coupler,” Opt. Commun. 282(23), 4524–4526 (2009).
[Crossref]

Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of nonlinearity on adiabatic evolution of light,” Phys. Rev. Lett. 101(19), 193901 (2008).
[Crossref] [PubMed]

Ciret, C.

C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, “Broadband adiabatic light transfer in optically induced waveguide arrays,” Phys. Rev. A 87(1), 013806 (2013).

Coda, V.

C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, “Broadband adiabatic light transfer in optically induced waveguide arrays,” Phys. Rev. A 87(1), 013806 (2013).

Coppa, A.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

Daguet, C.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Della Valle, G.

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76(20), 201101 (2007).
[Crossref]

Dreisow, F.

Fernandez, T. T.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

Foglietti, V.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

Fouchet, S.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Guglielmi, R.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Heinrich, M.

Huang, C. Y.

Huang, Y. C.

Jhang, Y. W.

S. Y. Tseng and Y. W. Jhang, “Fast and robust beam coupling in a three waveguide directional coupler,” IEEE Photonics Technol. Lett. 25(24), 2478–2481 (2013).
[Crossref]

Ji, W.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photon absorption,” Appl. Phys. B 64(6), 659–662 (1997).
[Crossref]

Keil, R.

Klein, P. H.

W. K. Burns, P. H. Klein, E. J. West, and L. E. Plew, “Ti diffusion in Ti : LiNbO3 planar and channel optical waveguides,” J. Appl. Phys. 50(10), 6175–6182 (1979).
[Crossref]

Lagasse, P. E.

Lahini, Y.

A. Salandrino, K. Makris, D. N. Christodoulides, Y. Lahini, Y. Silberberg, and R. Morandotti, “Analysis of a three-core adiabatic directional coupler,” Opt. Commun. 282(23), 4524–4526 (2009).
[Crossref]

Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of nonlinearity on adiabatic evolution of light,” Phys. Rev. Lett. 101(19), 193901 (2008).
[Crossref] [PubMed]

Laporta, P.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76(20), 201101 (2007).
[Crossref]

Li, H.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photon absorption,” Appl. Phys. B 64(6), 659–662 (1997).
[Crossref]

Lin, C. H.

Longhi, S.

F. Dreisow, A. Szameit, M. Heinrich, R. Keil, S. Nolte, A. Tünnermann, and S. Longhi, “Adiabatic transfer of light via a continuum in optical waveguides,” Opt. Lett. 34(16), 2405–2407 (2009).
[Crossref] [PubMed]

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76(20), 201101 (2007).
[Crossref]

S. Longhi, “Adiabatic passage of light in coupled optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 026607 (2006).
[Crossref] [PubMed]

Makris, K.

A. Salandrino, K. Makris, D. N. Christodoulides, Y. Lahini, Y. Silberberg, and R. Morandotti, “Analysis of a three-core adiabatic directional coupler,” Opt. Commun. 282(23), 4524–4526 (2009).
[Crossref]

Montemezzani, G.

C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, “Broadband adiabatic light transfer in optically induced waveguide arrays,” Phys. Rev. A 87(1), 013806 (2013).

Morandotti, R.

A. Salandrino, K. Makris, D. N. Christodoulides, Y. Lahini, Y. Silberberg, and R. Morandotti, “Analysis of a three-core adiabatic directional coupler,” Opt. Commun. 282(23), 4524–4526 (2009).
[Crossref]

Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of nonlinearity on adiabatic evolution of light,” Phys. Rev. Lett. 101(19), 193901 (2008).
[Crossref] [PubMed]

Neshev, D. N.

C. W. Wu, A. S. Solntsev, D. N. Neshev, and A. A. Sukhorukov, “Photon pair generation and pump filtering in nonlinear adiabatic waveguiding structures,” Opt. Lett. 39(4), 953–956 (2014).
[Crossref] [PubMed]

C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, “Broadband adiabatic light transfer in optically induced waveguide arrays,” Phys. Rev. A 87(1), 013806 (2013).

Nolte, S.

Ornigotti, M.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76(20), 201101 (2007).
[Crossref]

Paspalakis, E.

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258(1), 30–34 (2006).
[Crossref]

Plew, L. E.

W. K. Burns, P. H. Klein, E. J. West, and L. E. Plew, “Ti diffusion in Ti : LiNbO3 planar and channel optical waveguides,” J. Appl. Phys. 50(10), 6175–6182 (1979).
[Crossref]

Pozzi, F.

Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of nonlinearity on adiabatic evolution of light,” Phys. Rev. Lett. 101(19), 193901 (2008).
[Crossref] [PubMed]

Rangelov, A. A.

C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, “Broadband adiabatic light transfer in optically induced waveguide arrays,” Phys. Rev. A 87(1), 013806 (2013).

Riviere, L.

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

Salandrino, A.

A. Salandrino, K. Makris, D. N. Christodoulides, Y. Lahini, Y. Silberberg, and R. Morandotti, “Analysis of a three-core adiabatic directional coupler,” Opt. Commun. 282(23), 4524–4526 (2009).
[Crossref]

Schmidt, R. V.

R. V. Schmidt and R. C. Alferness, “Directional coupler switches, modulators, and filters using alternating Δβ techniques,” IEEE Trans. Circ. Syst. 26(12), 1099–1108 (1979).
[Crossref]

R. C. Alferness, R. V. Schmidt, and E. H. Turner, “Characteristics of Ti-diffused lithium niobate optical directional couplers,” Appl. Opt. 18(23), 4012–4016 (1979).
[Crossref] [PubMed]

Shore, B. W.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
[Crossref]

Silberberg, Y.

A. Salandrino, K. Makris, D. N. Christodoulides, Y. Lahini, Y. Silberberg, and R. Morandotti, “Analysis of a three-core adiabatic directional coupler,” Opt. Commun. 282(23), 4524–4526 (2009).
[Crossref]

Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of nonlinearity on adiabatic evolution of light,” Phys. Rev. Lett. 101(19), 193901 (2008).
[Crossref] [PubMed]

Solntsev, A. S.

Sorel, M.

Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of nonlinearity on adiabatic evolution of light,” Phys. Rev. Lett. 101(19), 193901 (2008).
[Crossref] [PubMed]

Sukhorukov, A. A.

Szameit, A.

Theuer, H.

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
[Crossref]

Tseng, S. Y.

S. Y. Tseng and Y. W. Jhang, “Fast and robust beam coupling in a three waveguide directional coupler,” IEEE Photonics Technol. Lett. 25(24), 2478–2481 (2013).
[Crossref]

Tünnermann, A.

Turner, E. H.

Valle, G. D.

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

van der Donk, J.

Van Roey, J.

Veselka, J. J.

R. C. Alferness and J. J. Veselka, “Simultaneous modulation and wavelength multiplexing with a tunable Ti:LiNbO3 directional coupler filter,” Electron. Lett. 21(11), 466–467 (1985).
[Crossref]

West, E. J.

W. K. Burns, P. H. Klein, E. J. West, and L. E. Plew, “Ti diffusion in Ti : LiNbO3 planar and channel optical waveguides,” J. Appl. Phys. 50(10), 6175–6182 (1979).
[Crossref]

Wu, C. W.

Zhang, X.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photon absorption,” Appl. Phys. B 64(6), 659–662 (1997).
[Crossref]

Zhou, F.

H. Li, F. Zhou, X. Zhang, and W. Ji, “Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photon absorption,” Appl. Phys. B 64(6), 659–662 (1997).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

H. Li, F. Zhou, X. Zhang, and W. Ji, “Picosecond Z-scan study of bound electronic Kerr effect in LiNbO3 crystal associated with two-photon absorption,” Appl. Phys. B 64(6), 659–662 (1997).
[Crossref]

Appl. Phys. Lett. (1)

G. D. Valle, M. Ornigotti, T. T. Fernandez, P. Laporta, S. Longhi, A. Coppa, and V. Foglietti, “Adiabatic light transfer via dressed states in optical waveguide arrays,” Appl. Phys. Lett. 92(1), 011106 (2008).
[Crossref]

Electron. Lett. (1)

R. C. Alferness and J. J. Veselka, “Simultaneous modulation and wavelength multiplexing with a tunable Ti:LiNbO3 directional coupler filter,” Electron. Lett. 21(11), 466–467 (1985).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. Y. Tseng and Y. W. Jhang, “Fast and robust beam coupling in a three waveguide directional coupler,” IEEE Photonics Technol. Lett. 25(24), 2478–2481 (2013).
[Crossref]

IEEE Trans. Circ. Syst. (1)

R. V. Schmidt and R. C. Alferness, “Directional coupler switches, modulators, and filters using alternating Δβ techniques,” IEEE Trans. Circ. Syst. 26(12), 1099–1108 (1979).
[Crossref]

J. Appl. Phys. (1)

W. K. Burns, P. H. Klein, E. J. West, and L. E. Plew, “Ti diffusion in Ti : LiNbO3 planar and channel optical waveguides,” J. Appl. Phys. 50(10), 6175–6182 (1979).
[Crossref]

J. Lightwave Technol. (1)

S. Fouchet, A. Carenco, C. Daguet, R. Guglielmi, and L. Riviere, “Wavelength dispersion of Ti induced refractive index change in LiNbO3 as a function of diffusion parameters,” J. Lightwave Technol. 5(5), 700–708 (1987).
[Crossref]

J. Opt. Soc. Am. (1)

Opt. Commun. (2)

E. Paspalakis, “Adiabatic three-waveguide directional coupler,” Opt. Commun. 258(1), 30–34 (2006).
[Crossref]

A. Salandrino, K. Makris, D. N. Christodoulides, Y. Lahini, Y. Silberberg, and R. Morandotti, “Analysis of a three-core adiabatic directional coupler,” Opt. Commun. 282(23), 4524–4526 (2009).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. A (1)

C. Ciret, V. Coda, A. A. Rangelov, D. N. Neshev, and G. Montemezzani, “Broadband adiabatic light transfer in optically induced waveguide arrays,” Phys. Rev. A 87(1), 013806 (2013).

Phys. Rev. B (1)

S. Longhi, G. Della Valle, M. Ornigotti, and P. Laporta, “Coherent tunneling by adiabatic passage in an optical waveguide system,” Phys. Rev. B 76(20), 201101 (2007).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. Longhi, “Adiabatic passage of light in coupled optical waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 73(2), 026607 (2006).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Effect of nonlinearity on adiabatic evolution of light,” Phys. Rev. Lett. 101(19), 193901 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

K. Bergmann, H. Theuer, and B. W. Shore, “Coherent population transfer among quantum states of atoms and molecules,” Rev. Mod. Phys. 70(3), 1003–1025 (1998).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic geometry of a three-waveguide adiabatic coupling system in a z-cut LiNbO3. (b) Calculated coupling coefficients κab, κbc, and κac as a function of the wave propagation distance (along x) for the scheme with structure design parameters #2 for a TE-polarized 1550-nm fundamental mode. (c) and (d) are simulated evolutions of wave intensity in the schemes with structure design parameters #2 and #7 along the propagation distance for TE-polarized 1550-nm fundamental modes initially excited in waveguide a, respectively (The insets show the corresponding evolutions of wave intensity in x-y plane in 2D color map).
Fig. 2
Fig. 2 Schematic arrangement of the measurement setup.
Fig. 3
Fig. 3 Measured and simulated coupling efficiencies as a function of excitation wavelength for (a) structure design #2 and #6 with TE mode excitation and for (b) structure design #1 and #2 with TM mode excitation.
Fig. 4
Fig. 4 Captured output mode intensity profiles from the adiabatic DC with the structure design #2 at several different excitation wavelengths. (a) Results for the TE-mode excitation. (b) Results for TM-mode excitation.
Fig. 5
Fig. 5 (a) Measured normalized output powers from the waveguides a and b of the adiabatic DC with the structure design #2 in an inverted injection scheme as a function of the wavelength (TE-mode excitation). (b) Corresponding output mode intensity profiles at several different excitation wavelengths.
Fig. 6
Fig. 6 Calculated normalized output powers from the three output ports of the LiNbO3 adiabatic DC with the structure design #2 versus the waveguide depth for the default and inverted injection schemes with a TE-polarized 1550 nm wave.
Fig. 7
Fig. 7 Calculated normalized output powers from the three output ports of the LiNbO3 adiabatic DCs with the structure design #2, #7, and #8 as a function of wavelength over 700-1900 nm. Measured data at 974, 1064, and 1495-1640 nm for design #2 are also plotted for comparison. (a) Design #2 (2 cm long device) with TE mode excitation. (b) Design #2 (2 cm long device) with TM mode excitation. (c) Design #7 (5 cm long device) with TE mode excitation. (d) Design #8 (5 cm long device) with TM mode excitation.

Tables (1)

Tables Icon

Table 1 Calculated adiabatic condition parameters for several different structure parameters for both polarizations modes at 1550 nm

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

κ ab (x)= π 2 l c,ab (x) = π 2 l c0 e S ab (x)/r = κ 0 e αx , κ bc (x)= π 2 l c,bc (x) = π 2 l c0 e S bc (x)/r = κ 0 e αx , κ ac = π 2 l c,ac = π 2 l c0 e S ac /r ,
γ=α/ κ 0 =ΔS/ κ 0 rL<<1.
κ ac ~0and κ ab (L/2)< κ bc (L/2)(orξ= κ ab (L/2)/ κ bc (L/2)<1).

Metrics