Abstract

A new type of very compact optical element for a near-eye display (NED) that uses a pair of microlens arrays (MLAs) is presented. The MLA pair works in conjunction to form a magnifier (collimator). The purpose of this is to aid in the accommodation of the eye on a head-up display that is positioned within several centimeters from the eye; the MLA pair collimates the light rays departing from the display thereby generating a virtual image of the display at optical infinity. By using the MLA pair, we are able to make a collimator that retains a thin profile of about 2 mm in thickness with a system focal length of about 7 mm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microlens array-based high-gain screen design for direct projection head-up displays

M. Kivanc Hedili, Mark O. Freeman, and Hakan Urey
Appl. Opt. 52(6) 1351-1357 (2013)

Assessment of minimum permissible geometrical parameters of a near-to-eye display

Sergiy Valyukh and Oleksandr Slobodyanyuk
Appl. Opt. 54(21) 6526-6533 (2015)

Compact microlenslet-array-based magnifier

Vesselin Shaoulov, Ricardo Martins, and Jannick P. Rolland
Opt. Lett. 29(7) 709-711 (2004)

References

  • View by:
  • |
  • |
  • |

  1. A. Duane, “Studies in monocular and binocular accommodation, with their clinical application,” Trans. Am. Ophthalmol. Soc. 20, 132–157 (1922).
    [PubMed]
  2. J. Rolland and O. Cakmakci, “Head-worn displays: the future through new eyes,” Opt. Photonics News 20(4), 20–27 (2009).
    [Crossref]
  3. J. Melzer and K. Moffitt, Head-mounted Displays: Designing for the User (McGraw-Hill Professional, 1997), Chap. 6.
  4. D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
    [Crossref]
  5. H. Park, R. Hoskinson, H. Abdollahi, and B. Stoeber, “Compact near-eye display system using a superlens-based microlens array magnifier,” in Proceedings of IEEE Conference on MEMS (IEEE, 2015), pp. 952–955.
    [Crossref]
  6. D. Gabor, “Optical System Composed of Lenticules,” US Patent 2,351,034 A (1944).
  7. C. Hembd-Sölner, R. Stevens, and M. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
    [Crossref]
  8. J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006).
    [Crossref] [PubMed]
  9. J. Duparré, P. Schreiber, and R. Volkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices,” Proc. SPIE 5249, 408–418 (2004).
    [Crossref]
  10. K. Stollberg, A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects,” Opt. Express 17(18), 15747–15759 (2009).
    [Crossref] [PubMed]
  11. V. Shaoulov, R. Martins, and J. P. Rolland, “Compact microlenslet-array-based magnifier,” Opt. Lett. 29(7), 709–711 (2004).
    [Crossref] [PubMed]
  12. R. Hamilton Shepard, “Seidel aberrations of the Gabor superlens,” Appl. Opt. 53(5), 915–922 (2014).
    [Crossref] [PubMed]
  13. N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A, Pure Appl. Opt. 4(4), 351 (2002).
    [Crossref]
  14. C. Chang, S. Yang, L. Huang, and J. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared Phys. Technol. 48(2), 163–173 (2006).
    [Crossref]
  15. J. Schulze, W. Ehrfeld, H. Loewe, A. Michel, and A. Picard, “Contactless embossing of microlenses: a new technology for manufacturing refractive microlenses,” Proc. SPIE 3099, 89–98 (1997).
    [Crossref]
  16. T. Lin, H. Yang, and C. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing,” Microsyst. Technol. 13(11), 1537–1543 (2006).
  17. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
    [Crossref] [PubMed]
  18. Z. Zang, X. Tang, X. Liu, X. Lei, and W. Chen, “Fabrication of high quality and low cost microlenses on a glass substrate by direct printing technique,” Appl. Opt. 53(33), 7868–7871 (2014).
    [Crossref] [PubMed]
  19. C. Lin, H. Yang, and C. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
    [Crossref]
  20. H. Yang, C. Chao, M. Wei, and C. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
    [Crossref]
  21. E. Roy, B. Voisin, J. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: Towards efficient collection of fluorescence light from microarrays,” Micro. Eng. 86(11), 2255–2261 (2009).
    [Crossref]
  22. P. Nussbaum, R. Völkel, H. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
    [Crossref]
  23. L. Sikos, Web Standards: Mastering HTML5, CSS3, and XML, 2nd ed. (Apress, 2014), p. 359.

2014 (2)

2013 (1)

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

2010 (1)

2009 (3)

K. Stollberg, A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects,” Opt. Express 17(18), 15747–15759 (2009).
[Crossref] [PubMed]

E. Roy, B. Voisin, J. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: Towards efficient collection of fluorescence light from microarrays,” Micro. Eng. 86(11), 2255–2261 (2009).
[Crossref]

J. Rolland and O. Cakmakci, “Head-worn displays: the future through new eyes,” Opt. Photonics News 20(4), 20–27 (2009).
[Crossref]

2006 (3)

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006).
[Crossref] [PubMed]

C. Chang, S. Yang, L. Huang, and J. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared Phys. Technol. 48(2), 163–173 (2006).
[Crossref]

T. Lin, H. Yang, and C. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing,” Microsyst. Technol. 13(11), 1537–1543 (2006).

2004 (3)

H. Yang, C. Chao, M. Wei, and C. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

V. Shaoulov, R. Martins, and J. P. Rolland, “Compact microlenslet-array-based magnifier,” Opt. Lett. 29(7), 709–711 (2004).
[Crossref] [PubMed]

J. Duparré, P. Schreiber, and R. Volkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices,” Proc. SPIE 5249, 408–418 (2004).
[Crossref]

2003 (1)

C. Lin, H. Yang, and C. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[Crossref]

2002 (1)

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A, Pure Appl. Opt. 4(4), 351 (2002).
[Crossref]

1999 (1)

C. Hembd-Sölner, R. Stevens, and M. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
[Crossref]

1997 (2)

J. Schulze, W. Ehrfeld, H. Loewe, A. Michel, and A. Picard, “Contactless embossing of microlenses: a new technology for manufacturing refractive microlenses,” Proc. SPIE 3099, 89–98 (1997).
[Crossref]

P. Nussbaum, R. Völkel, H. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

1922 (1)

A. Duane, “Studies in monocular and binocular accommodation, with their clinical application,” Trans. Am. Ophthalmol. Soc. 20, 132–157 (1922).
[PubMed]

Abdollahi, H.

H. Park, R. Hoskinson, H. Abdollahi, and B. Stoeber, “Compact near-eye display system using a superlens-based microlens array magnifier,” in Proceedings of IEEE Conference on MEMS (IEEE, 2015), pp. 952–955.
[Crossref]

Bian, H.

Boudreau, D.

E. Roy, B. Voisin, J. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: Towards efficient collection of fluorescence light from microarrays,” Micro. Eng. 86(11), 2255–2261 (2009).
[Crossref]

Bräuer, A.

Brückner, A.

Cakmakci, O.

J. Rolland and O. Cakmakci, “Head-worn displays: the future through new eyes,” Opt. Photonics News 20(4), 20–27 (2009).
[Crossref]

Chang, C.

C. Chang, S. Yang, L. Huang, and J. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared Phys. Technol. 48(2), 163–173 (2006).
[Crossref]

Chang, J.

C. Chang, S. Yang, L. Huang, and J. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared Phys. Technol. 48(2), 163–173 (2006).
[Crossref]

Chao, C.

T. Lin, H. Yang, and C. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing,” Microsyst. Technol. 13(11), 1537–1543 (2006).

H. Yang, C. Chao, M. Wei, and C. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

C. Lin, H. Yang, and C. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[Crossref]

Chen, F.

Chen, W.

Dannberg, P.

Duane, A.

A. Duane, “Studies in monocular and binocular accommodation, with their clinical application,” Trans. Am. Ophthalmol. Soc. 20, 132–157 (1922).
[PubMed]

Duparré, J.

K. Stollberg, A. Brückner, J. Duparré, P. Dannberg, A. Bräuer, and A. Tünnermann, “The Gabor superlens as an alternative wafer-level camera approach inspired by superposition compound eyes of nocturnal insects,” Opt. Express 17(18), 15747–15759 (2009).
[Crossref] [PubMed]

J. Duparré, P. Schreiber, and R. Volkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices,” Proc. SPIE 5249, 408–418 (2004).
[Crossref]

Duparré, J. W.

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006).
[Crossref] [PubMed]

Ehrfeld, W.

J. Schulze, W. Ehrfeld, H. Loewe, A. Michel, and A. Picard, “Contactless embossing of microlenses: a new technology for manufacturing refractive microlenses,” Proc. SPIE 3099, 89–98 (1997).
[Crossref]

Eisner, M.

P. Nussbaum, R. Völkel, H. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Gravel, J.

E. Roy, B. Voisin, J. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: Towards efficient collection of fluorescence light from microarrays,” Micro. Eng. 86(11), 2255–2261 (2009).
[Crossref]

Hamilton Shepard, R.

Haselbeck, S.

P. Nussbaum, R. Völkel, H. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Hembd-Sölner, C.

C. Hembd-Sölner, R. Stevens, and M. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
[Crossref]

Herzig, H.

P. Nussbaum, R. Völkel, H. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Hoskinson, R.

H. Park, R. Hoskinson, H. Abdollahi, and B. Stoeber, “Compact near-eye display system using a superlens-based microlens array magnifier,” in Proceedings of IEEE Conference on MEMS (IEEE, 2015), pp. 952–955.
[Crossref]

Hou, C.

Hou, X.

Huang, L.

C. Chang, S. Yang, L. Huang, and J. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared Phys. Technol. 48(2), 163–173 (2006).
[Crossref]

Hutley, M.

C. Hembd-Sölner, R. Stevens, and M. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
[Crossref]

Lanman, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

Lei, X.

Liang, W.

Lin, C.

H. Yang, C. Chao, M. Wei, and C. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

C. Lin, H. Yang, and C. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[Crossref]

Lin, T.

T. Lin, H. Yang, and C. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing,” Microsyst. Technol. 13(11), 1537–1543 (2006).

Lindlein, N.

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A, Pure Appl. Opt. 4(4), 351 (2002).
[Crossref]

Liu, H.

Liu, X.

Loewe, H.

J. Schulze, W. Ehrfeld, H. Loewe, A. Michel, and A. Picard, “Contactless embossing of microlenses: a new technology for manufacturing refractive microlenses,” Proc. SPIE 3099, 89–98 (1997).
[Crossref]

Luebke, D.

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

Martins, R.

Michel, A.

J. Schulze, W. Ehrfeld, H. Loewe, A. Michel, and A. Picard, “Contactless embossing of microlenses: a new technology for manufacturing refractive microlenses,” Proc. SPIE 3099, 89–98 (1997).
[Crossref]

Nussbaum, P.

P. Nussbaum, R. Völkel, H. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Park, H.

H. Park, R. Hoskinson, H. Abdollahi, and B. Stoeber, “Compact near-eye display system using a superlens-based microlens array magnifier,” in Proceedings of IEEE Conference on MEMS (IEEE, 2015), pp. 952–955.
[Crossref]

Peytavi, R.

E. Roy, B. Voisin, J. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: Towards efficient collection of fluorescence light from microarrays,” Micro. Eng. 86(11), 2255–2261 (2009).
[Crossref]

Picard, A.

J. Schulze, W. Ehrfeld, H. Loewe, A. Michel, and A. Picard, “Contactless embossing of microlenses: a new technology for manufacturing refractive microlenses,” Proc. SPIE 3099, 89–98 (1997).
[Crossref]

Rolland, J.

J. Rolland and O. Cakmakci, “Head-worn displays: the future through new eyes,” Opt. Photonics News 20(4), 20–27 (2009).
[Crossref]

Rolland, J. P.

Roy, E.

E. Roy, B. Voisin, J. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: Towards efficient collection of fluorescence light from microarrays,” Micro. Eng. 86(11), 2255–2261 (2009).
[Crossref]

Schreiber, P.

J. Duparré, P. Schreiber, and R. Volkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices,” Proc. SPIE 5249, 408–418 (2004).
[Crossref]

Schulze, J.

J. Schulze, W. Ehrfeld, H. Loewe, A. Michel, and A. Picard, “Contactless embossing of microlenses: a new technology for manufacturing refractive microlenses,” Proc. SPIE 3099, 89–98 (1997).
[Crossref]

Shaoulov, V.

Si, J.

Stevens, R.

C. Hembd-Sölner, R. Stevens, and M. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
[Crossref]

Stoeber, B.

H. Park, R. Hoskinson, H. Abdollahi, and B. Stoeber, “Compact near-eye display system using a superlens-based microlens array magnifier,” in Proceedings of IEEE Conference on MEMS (IEEE, 2015), pp. 952–955.
[Crossref]

Stollberg, K.

Tang, X.

Tünnermann, A.

Veres, T.

E. Roy, B. Voisin, J. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: Towards efficient collection of fluorescence light from microarrays,” Micro. Eng. 86(11), 2255–2261 (2009).
[Crossref]

Voisin, B.

E. Roy, B. Voisin, J. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: Towards efficient collection of fluorescence light from microarrays,” Micro. Eng. 86(11), 2255–2261 (2009).
[Crossref]

Volkel, R.

J. Duparré, P. Schreiber, and R. Volkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices,” Proc. SPIE 5249, 408–418 (2004).
[Crossref]

Völkel, R.

P. Nussbaum, R. Völkel, H. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Wang, X.

Wei, M.

H. Yang, C. Chao, M. Wei, and C. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

Wippermann, F. C.

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006).
[Crossref] [PubMed]

Yang, H.

T. Lin, H. Yang, and C. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing,” Microsyst. Technol. 13(11), 1537–1543 (2006).

H. Yang, C. Chao, M. Wei, and C. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

C. Lin, H. Yang, and C. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[Crossref]

Yang, Q.

Yang, S.

C. Chang, S. Yang, L. Huang, and J. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared Phys. Technol. 48(2), 163–173 (2006).
[Crossref]

Zang, Z.

ACM Trans. Graph. (1)

D. Lanman and D. Luebke, “Near-eye light field displays,” ACM Trans. Graph. 32(6), 1–10 (2013).
[Crossref]

Appl. Opt. (2)

Bioinspir. Biomim. (1)

J. W. Duparré and F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006).
[Crossref] [PubMed]

Infrared Phys. Technol. (1)

C. Chang, S. Yang, L. Huang, and J. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared Phys. Technol. 48(2), 163–173 (2006).
[Crossref]

J. Micromech. Microeng. (2)

C. Lin, H. Yang, and C. Chao, “Hexagonal microlens array modeling and fabrication using a thermal reflow process,” J. Micromech. Microeng. 13(5), 775–781 (2003).
[Crossref]

H. Yang, C. Chao, M. Wei, and C. Lin, “High fill-factor microlens array mold insert fabrication using a thermal reflow process,” J. Micromech. Microeng. 14(8), 1197–1204 (2004).
[Crossref]

J. Opt. A, Pure Appl. Opt. (2)

N. Lindlein, “Simulation of micro-optical systems including microlens arrays,” J. Opt. A, Pure Appl. Opt. 4(4), 351 (2002).
[Crossref]

C. Hembd-Sölner, R. Stevens, and M. Hutley, “Imaging properties of the Gabor superlens,” J. Opt. A, Pure Appl. Opt. 1(1), 94–102 (1999).
[Crossref]

Micro. Eng. (1)

E. Roy, B. Voisin, J. Gravel, R. Peytavi, D. Boudreau, and T. Veres, “Microlens array fabrication by enhanced thermal reflow process: Towards efficient collection of fluorescence light from microarrays,” Micro. Eng. 86(11), 2255–2261 (2009).
[Crossref]

Microsyst. Technol. (1)

T. Lin, H. Yang, and C. Chao, “Concave microlens array mold fabrication in photoresist using UV proximity printing,” Microsyst. Technol. 13(11), 1537–1543 (2006).

Opt. Express (2)

Opt. Lett. (1)

Opt. Photonics News (1)

J. Rolland and O. Cakmakci, “Head-worn displays: the future through new eyes,” Opt. Photonics News 20(4), 20–27 (2009).
[Crossref]

Proc. SPIE (2)

J. Duparré, P. Schreiber, and R. Volkel, “Theoretical analysis of an artificial superposition compound eye for application in ultra flat digital image acquisition devices,” Proc. SPIE 5249, 408–418 (2004).
[Crossref]

J. Schulze, W. Ehrfeld, H. Loewe, A. Michel, and A. Picard, “Contactless embossing of microlenses: a new technology for manufacturing refractive microlenses,” Proc. SPIE 3099, 89–98 (1997).
[Crossref]

Pure Appl. Opt. (1)

P. Nussbaum, R. Völkel, H. Herzig, M. Eisner, and S. Haselbeck, “Design, fabrication and testing of microlens arrays for sensors and microsystems,” Pure Appl. Opt. 6(6), 617–636 (1997).
[Crossref]

Trans. Am. Ophthalmol. Soc. (1)

A. Duane, “Studies in monocular and binocular accommodation, with their clinical application,” Trans. Am. Ophthalmol. Soc. 20, 132–157 (1922).
[PubMed]

Other (4)

J. Melzer and K. Moffitt, Head-mounted Displays: Designing for the User (McGraw-Hill Professional, 1997), Chap. 6.

H. Park, R. Hoskinson, H. Abdollahi, and B. Stoeber, “Compact near-eye display system using a superlens-based microlens array magnifier,” in Proceedings of IEEE Conference on MEMS (IEEE, 2015), pp. 952–955.
[Crossref]

D. Gabor, “Optical System Composed of Lenticules,” US Patent 2,351,034 A (1944).

L. Sikos, Web Standards: Mastering HTML5, CSS3, and XML, 2nd ed. (Apress, 2014), p. 359.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1

Ray diagram showing the ray height and ray angle for the input and output rays of the simplified MLA system. The refraction of the rays at the boundaries of the MLA system is arbitrary.

Fig. 2
Fig. 2

The profile view of the MLA system showing the two MLA layers, as well as the variables used in the ray transfer analysis of the superlens.

Fig. 3
Fig. 3

Tradespaces of the MLA magnifier system spanned by f1 and F. (a) Tradespace for p1 with the required FOV (short-dashed line) and eye-relief (long-dashed line) indicated. (b) Tradespace for the volume of each microlens on the mold needed to cast the concave microlens with the corresponding f1, assuming the base diameter of the microlens is equal to p1.

Fig. 4
Fig. 4

Ray-tracing simulation of the MLA magnifier with point sources at different heights on the object plane.

Fig. 5
Fig. 5

3D ray-tracing simulation of the MLA magnifier with an eye model. (a) Overview of the magnifier system including the eye model. (b) Closer look at the rays and the retina plane. (c) Spot diagram at the retina of the system in (a), generated from an axial point source. The ray density of this particular diagram is 200, and the RMS radius of the spot is 270 μm, plotted using default settings.

Fig. 6
Fig. 6

Simulated MTF responses of the MLA magnifier, using an axial point source on the object plane. (a) The best case MTF with only the microlenses considered. (b) The worst case MTF with only the inter-lens gaps considered.

Fig. 7
Fig. 7

Process steps for the fabrication of the concave MLA.

Fig. 8
Fig. 8

Parameters of the photoresist cylinder and the spherical cap.

Fig. 9
Fig. 9

Measurement of the top and bottom diameters of the chamfered cylindrical islands in Solidworks. The numbers inside denote the relative measurements. The actual bottom diameter is 0.216 mm and the pitch is 0.263 mm.

Fig. 10
Fig. 10

The photoresist thickness vs. the spin coater speed in RPM.

Fig. 11
Fig. 11

Pictures of the MLA taken with a stereoscopic microscope. The white scale bars are 1 mm in length. (a) Perspective view of the array of spherical caps on the wafer. (b) Looking down at the cast concave MLA.

Fig. 12
Fig. 12

Virtual model of the test setup mounted on an optical breadboard, consisting of a microdisplay attached on a 3D-printed extension, the assembled MLA magnifier fastened to an XYZ-stage, and a camera mounted on a rail. The inset is the side view of the actual setup.

Fig. 13
Fig. 13

Test patterns with both vertical and horizontal lines each representing a specific resolution. The second left column shows the test pattern images used. The 3rd and the 4th columns from the left show respective magnified images seen through the MLA magnifier.

Fig. 14
Fig. 14

MTF plot of the MLA magnifier from both simulation and measurement. The simulated (Zemax) lines indicate the sagittal plane response using an axial point source. The best Zemax response considers the light rays propagating through only the microlenses. The worst Zemax line considers the light rays propagating through only the gap between the microlenses.

Fig. 15
Fig. 15

Test images of a pug and a palette displayed on the microdisplay. (a,b) The test images seen without the MLA magnifier with camera focused at the display. (c,d) Seen without the MLA magnifier with camera focused at ∞. (e,f) Seen through the MLA magnifier with the camera focused at ∞.

Tables (2)

Tables Icon

Table 1 The MLA Magnifier Parameters for the Compromised Design Option

Tables Icon

Table 2 Zemax Simulation Parameters and Additional MLA Parameters

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

[ h out θ out 1 ]= M sys [ h in θ in 1 ]=[ M 11 M 12 Δh M 21 M 22 Δθ 0 0 1 ][ h in θ in 1 ],
M sys = [ 1 v 0 0 1 0 0 0 1 ] 5 [ 1 0 0 1 f 2 1 N 2 p 2 f 2 0 0 1 ] 4 [ 1 d 0 0 1 0 0 0 1 ] 3 [ 1 0 0 1 f 1 1 N 1 p 1 f 1 0 0 1 ] 2 [ 1 F 0 0 1 0 0 0 1 ] 1 ,
M 12 =F[ d( v f 1 f 2 1 f 1 ) v f 1 v f 2 +1 ],
d( v f 2 1 )+v=0,
Δh= N 1 p 1 f 1 [ d( v f 2 1 )v ] N 2 p 2 v f 2 =0,
M 22 =F( d f 1 f 2 1 f 1 1 f 2 ) d f 2 +1=0,
Δθ= N 1 p 1 ( d f 1 f 2 1 f 1 ) N 2 p 2 f 2 =0.
h out = M 11 h in ,
θ out = M 21 h in ,
M 12 F= ( d f 2 ) f 1 d f 1 f 2 ,
Δh p 2 p 1 = d f 2 f 1 ,
M 22 F= ( d f 2 ) f 1 d f 1 f 2 = M 12 ,
ΔθF= p 2 p 2 p 1 f 1 ,
θ out = d f 1 f 2 f 1 f 2 h in .
d= F f 1 F f 1 + f 2 .
π r 2 t p =π R s t s R s ( R s 2 y 2 )dy .
chamferedcylindervolume=π[ r 2 t p r t p 2 tan( 45 ) + t p 3 3×tan( 45 ) ].

Metrics