Abstract

Dual-comb interferometry is a particularly compelling technique that relies on the phase coherence of two laser frequency combs for measuring broadband complex spectra. This method is rapidly advancing the field of optical spectroscopy and empowering new applications, from nonlinear microscopy to laser ranging. Up to now, most dual-comb interferometers were based on modelocked lasers, whose repetition rates have restricted the measurement speed to ~kHz. Here we demonstrate a dual-comb interferometer that is based on electrooptic frequency combs and measures consecutive complex spectra at an ultra-high refresh rate of 25 MHz. These results pave the way for novel scientific and metrology applications of frequency comb generators beyond the realm of molecular spectroscopy, where the measurement of ultrabroadband waveforms is of paramount relevance.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optic dual-comb interferometer for high-speed vibrometry

Elena L. Teleanu, Vicente Durán, and Víctor Torres-Company
Opt. Express 25(14) 16427-16436 (2017)

Electro-optic dual-comb interferometry over 40  nm bandwidth

Vicente Durán, Peter A. Andrekson, and Víctor Torres-Company
Opt. Lett. 41(18) 4190-4193 (2016)

High-coherence ultra-broadband bidirectional dual-comb fiber laser

Yoshiaki Nakajima, Yuya Hata, and Kaoru Minoshima
Opt. Express 27(5) 5931-5944 (2019)

References

  • View by:
  • |
  • |
  • |

  1. S. Schiller, “Spectrometry with frequency combs,” Opt. Lett. 27(9), 766–768 (2002).
    [Crossref] [PubMed]
  2. F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
    [Crossref] [PubMed]
  3. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
    [Crossref] [PubMed]
  4. B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
    [Crossref]
  5. A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
    [Crossref]
  6. A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37(4), 638–640 (2012).
    [Crossref] [PubMed]
  7. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
    [Crossref] [PubMed]
  8. F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102(12), 121116 (2013).
    [Crossref]
  9. S. Potvin and J. Genest, “Dual-comb spectroscopy using frequency-doubled combs around 775 nm,” Opt. Express 21(25), 30707–30715 (2013).
    [Crossref] [PubMed]
  10. Z. Zhang, T. Gardiner, and D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38(16), 3148–3150 (2013).
    [Crossref] [PubMed]
  11. G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
    [Crossref] [PubMed]
  12. G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeny, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
    [Crossref]
  13. T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
    [Crossref] [PubMed]
  14. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  15. S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
    [Crossref] [PubMed]
  16. T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
    [Crossref] [PubMed]
  17. S. Boudreau and J. Genest, “Range-resolved vibrometry using a frequency comb in the OSCAT configuration,” Opt. Express 22(7), 8101–8113 (2014).
    [Crossref] [PubMed]
  18. F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34(24), 3875–3877 (2009).
    [Crossref] [PubMed]
  19. I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
    [Crossref]
  20. J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20(20), 21932–21939 (2012).
    [Crossref] [PubMed]
  21. T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
    [Crossref] [PubMed]
  22. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electro-optic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
    [Crossref]
  23. T. Yamamoto, T. Komukai, K. Takada, and A. Suzuki, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43(19), 1040–1042 (2007).
    [Crossref]
  24. T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80 Gb/s highly extinctive electro-optic pulse pattern generator,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
    [Crossref]
  25. A. J. Metcalf, V. Torres-company, D. E. Leaird, S. Member, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 350036 (2013).
    [Crossref]
  26. V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
    [Crossref]
  27. S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultra-high scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
    [Crossref]
  28. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol. 24(6), 2311–2317 (2006).
    [Crossref]
  29. E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
    [Crossref]
  30. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19(23), 22402–22409 (2011).
    [Crossref] [PubMed]
  31. R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
    [Crossref] [PubMed]
  32. K. Beha, D. C. Cole, F. N. Baynes, P. Del’Haye, A. Rolland, T. M. Fortier, F. Quinlan, S. A. Diddams, and S. B. Papp, “Towards self-referencing a 10-GHz electro-optic comb,” ED-1a.3 Mon Proc. CLEO Europe (2015).
  33. D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39(9), 2688–2690 (2014).
    [Crossref] [PubMed]
  34. P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
    [Crossref]
  35. P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23(16), 21149–21158 (2015).
    [Crossref] [PubMed]
  36. G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Arxiv 1505.07213 (2015).
  37. T. Nishikawa, A. Ishizawa, M. Yan, H. Gotoh, T. Hänsch, and N. Picqué, “Broadband Dual-comb Spectroscopy with Cascaded-electro-optic-modulator-based Frequency Combs,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW3G.2.
    [Crossref]
  38. A. Ishizawa, T. Nishikawa, M. Yan, G. Millot, H. Gotoh, T. Hänsch, and N. Picqué, “Optical Frequency Combs of Multi-GHz Line-spacing for Real-time Multi-heterodyne Spectroscopy,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW1G.7.
    [Crossref]
  39. N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
    [Crossref] [PubMed]
  40. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
    [Crossref] [PubMed]
  41. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [Crossref]
  42. V. R. Supradeepa, D. E. Leaird, and A. M. Weiner, “Single shot amplitude and phase characterization of optical arbitrary waveforms,” Opt. Express 17(16), 14434–14443 (2009).
    [Crossref] [PubMed]
  43. N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009).
    [Crossref] [PubMed]
  44. V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Self-referenced characterization of optical frequency combs and arbitrary waveforms using a simple, linear, zero-delay implementation of spectral shearing interferometry,” Opt. Express 18(17), 18171–18179 (2010).
    [Crossref] [PubMed]
  45. N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
    [Crossref]
  46. S. Yamashita and T. Okoshi, “Suppression of Beat Noise from Optical Amplifiers Using Coherent Receivers,” J. Lightwave Technol. 12(6), 1029–1035 (1994).
    [Crossref]
  47. A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset locking,” Electron. Lett. 46(19), 1343–1344 (2010).
    [Crossref]
  48. V. Ataie, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping,” J. Lightwave Technol. 32(4), 840–846 (2014).
    [Crossref]
  49. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref] [PubMed]
  50. C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
    [Crossref] [PubMed]
  51. X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9(4), 23–28 (2015).
    [Crossref]
  52. S. A. Miller, Y. Okawachi, S. Ramelow, K. Luke, A. Dutt, A. Farsi, A. L. Gaeta, and M. Lipson, “Tunable frequency combs based on dual microring resonators,” Opt. Express 23(16), 21527–21540 (2015).
    [Crossref] [PubMed]
  53. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
    [Crossref]

2015 (4)

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23(16), 21149–21158 (2015).
[Crossref] [PubMed]

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9(4), 23–28 (2015).
[Crossref]

S. A. Miller, Y. Okawachi, S. Ramelow, K. Luke, A. Dutt, A. Farsi, A. L. Gaeta, and M. Lipson, “Tunable frequency combs based on dual microring resonators,” Opt. Express 23(16), 21527–21540 (2015).
[Crossref] [PubMed]

2014 (7)

D. A. Long, A. J. Fleisher, K. O. Douglass, S. E. Maxwell, K. Bielska, J. T. Hodges, and D. F. Plusquellic, “Multiheterodyne spectroscopy with optical frequency combs generated from a continuous-wave laser,” Opt. Lett. 39(9), 2688–2690 (2014).
[Crossref] [PubMed]

V. Ataie, E. Myslivets, B. P.-P. Kuo, N. Alic, and S. Radic, “Spectrally equalized frequency comb generation in multistage parametric mixer with nonlinear pulse shaping,” J. Lightwave Technol. 32(4), 840–846 (2014).
[Crossref]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeny, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
[Crossref]

S. Boudreau and J. Genest, “Range-resolved vibrometry using a frequency comb in the OSCAT configuration,” Opt. Express 22(7), 8101–8113 (2014).
[Crossref] [PubMed]

2013 (9)

S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102(12), 121116 (2013).
[Crossref]

S. Potvin and J. Genest, “Dual-comb spectroscopy using frequency-doubled combs around 775 nm,” Opt. Express 21(25), 30707–30715 (2013).
[Crossref] [PubMed]

Z. Zhang, T. Gardiner, and D. T. Reid, “Mid-infrared dual-comb spectroscopy with an optical parametric oscillator,” Opt. Lett. 38(16), 3148–3150 (2013).
[Crossref] [PubMed]

A. J. Metcalf, V. Torres-company, D. E. Leaird, S. Member, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 350036 (2013).
[Crossref]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

2012 (2)

2011 (3)

2010 (7)

V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Self-referenced characterization of optical frequency combs and arbitrary waveforms using a simple, linear, zero-delay implementation of spectral shearing interferometry,” Opt. Express 18(17), 18171–18179 (2010).
[Crossref] [PubMed]

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset locking,” Electron. Lett. 46(19), 1343–1344 (2010).
[Crossref]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[Crossref] [PubMed]

I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

2009 (5)

2008 (2)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

2007 (2)

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

T. Yamamoto, T. Komukai, K. Takada, and A. Suzuki, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43(19), 1040–1042 (2007).
[Crossref]

2006 (1)

2005 (1)

2004 (1)

2002 (1)

2001 (1)

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultra-high scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[Crossref]

1996 (1)

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80 Gb/s highly extinctive electro-optic pulse pattern generator,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[Crossref]

1994 (1)

S. Yamashita and T. Okoshi, “Suppression of Beat Noise from Optical Amplifiers Using Coherent Receivers,” J. Lightwave Technol. 12(6), 1029–1035 (1994).
[Crossref]

1988 (1)

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electro-optic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[Crossref]

Abe, M.

Acedo, P.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23(16), 21149–21158 (2015).
[Crossref] [PubMed]

Alic, N.

Amano, K.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electro-optic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[Crossref]

Aozasa, S.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset locking,” Electron. Lett. 46(19), 1343–1344 (2010).
[Crossref]

Ataie, V.

Baumann, E.

Bernhardt, B.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Bielska, K.

Blaser, S.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

Boudreau, S.

Brehm, M.

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Coddington, I.

G. B. Rieker, F. R. Giorgetta, W. C. Swann, J. Kofler, A. M. Zolot, L. C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeny, P. P. Tans, I. Coddington, and N. R. Newbury, “Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths,” Optica 1(5), 290–298 (2014).
[Crossref]

A. M. Zolot, F. R. Giorgetta, E. Baumann, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz,” Opt. Lett. 37(4), 638–640 (2012).
[Crossref] [PubMed]

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[Crossref] [PubMed]

I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent linear optical sampling at 15 bits of resolution,” Opt. Lett. 34(14), 2153–2155 (2009).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Cromer, C.

Davila-Rodriguez, J.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

Del’Haye, P.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Delfyett, P. J.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

Deschênes, J.-D.

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Douglass, K. O.

Dutt, A.

Faist, J.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

Farsi, A.

Ferdous, F.

Fleisher, A. J.

Fontaine, N. K.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009).
[Crossref] [PubMed]

Fukushima, Y.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electro-optic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[Crossref]

Gaeta, A. L.

Gardiner, T.

Genest, J.

Giorgetta, F. R.

Gohle, C.

Guelachvili, G.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Hamidi, E.

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

Hänsch, T. W.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Heritage, J. P.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009).
[Crossref] [PubMed]

Herr, T.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Hodges, J. T.

Hofer, J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Holzner, S.

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Holzwarth, R.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

F. Keilmann, C. Gohle, and R. Holzwarth, “Time-domain mid-infrared frequency-comb spectrometer,” Opt. Lett. 29(13), 1542–1544 (2004).
[Crossref] [PubMed]

Huang, C.-B.

F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34(24), 3875–3877 (2009).
[Crossref] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Hugi, A.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

Ideguchi, T.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Ishizawa, A.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19(23), 22402–22409 (2011).
[Crossref] [PubMed]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset locking,” Electron. Lett. 46(19), 1343–1344 (2010).
[Crossref]

Jacquet, P.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jacquey, M.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Jalali, B.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Jerez, B.

Jiang, Z.

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Keilmann, F.

Kippenberg, T. J.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Klee, A.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

Kobayashi, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electro-optic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[Crossref]

Kobayashi, Y.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Kofler, J.

Koga, M.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19(23), 22402–22409 (2011).
[Crossref] [PubMed]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset locking,” Electron. Lett. 46(19), 1343–1344 (2010).
[Crossref]

Kolomenskii, A. A.

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102(12), 121116 (2013).
[Crossref]

Komukai, T.

T. Yamamoto, T. Komukai, K. Takada, and A. Suzuki, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43(19), 1040–1042 (2007).
[Crossref]

Kourogi, M.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultra-high scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[Crossref]

Kuo, B. P.-P.

Leaird, D. E.

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9(4), 23–28 (2015).
[Crossref]

A. J. Metcalf, V. Torres-company, D. E. Leaird, S. Member, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 350036 (2013).
[Crossref]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref] [PubMed]

V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Self-referenced characterization of optical frequency combs and arbitrary waveforms using a simple, linear, zero-delay implementation of spectral shearing interferometry,” Opt. Express 18(17), 18171–18179 (2010).
[Crossref] [PubMed]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34(24), 3875–3877 (2009).
[Crossref] [PubMed]

V. R. Supradeepa, D. E. Leaird, and A. M. Weiner, “Single shot amplitude and phase characterization of optical arbitrary waveforms,” Opt. Express 17(16), 14434–14443 (2009).
[Crossref] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Lee, S.-J.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultra-high scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[Crossref]

Levasseur, S.

Lipson, M.

Liu, T.-A.

Liu, Y.

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9(4), 23–28 (2015).
[Crossref]

Long, C. M.

Long, D. A.

Luke, K.

Martin-Mateos, P.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

Martín-Mateos, P.

Masuda, H.

Maxwell, S. E.

Member, S.

A. J. Metcalf, V. Torres-company, D. E. Leaird, S. Member, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 350036 (2013).
[Crossref]

Metcalf, A. J.

A. J. Metcalf, V. Torres-company, D. E. Leaird, S. Member, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 350036 (2013).
[Crossref]

Miller, S. A.

Mizutori, A.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19(23), 22402–22409 (2011).
[Crossref] [PubMed]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset locking,” Electron. Lett. 46(19), 1343–1344 (2010).
[Crossref]

Mohamed, T.

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102(12), 121116 (2013).
[Crossref]

Mori, A.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset locking,” Electron. Lett. 46(19), 1343–1344 (2010).
[Crossref]

Morimoto, A.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electro-optic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[Crossref]

Morioka, T.

Myslivets, E.

Nagatsuma, T.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80 Gb/s highly extinctive electro-optic pulse pattern generator,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[Crossref]

Nakano, H.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19(23), 22402–22409 (2011).
[Crossref] [PubMed]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset locking,” Electron. Lett. 46(19), 1343–1344 (2010).
[Crossref]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N.

I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

Newbury, N. R.

Nicholson, J. W.

Nishikawa, T.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19(23), 22402–22409 (2011).
[Crossref] [PubMed]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset locking,” Electron. Lett. 46(19), 1343–1344 (2010).
[Crossref]

Ohara, T.

Ohtsu, M.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultra-high scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[Crossref]

Okawachi, Y.

Okoshi, T.

S. Yamashita and T. Okoshi, “Suppression of Beat Noise from Optical Amplifiers Using Coherent Receivers,” J. Lightwave Technol. 12(6), 1029–1035 (1994).
[Crossref]

Otsuji, T.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80 Gb/s highly extinctive electro-optic pulse pattern generator,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[Crossref]

Ozawa, A.

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Perilla, C.

Petron, G.

Picqué, N.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

Plusquellic, D. F.

Poisson, A.

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

Posada-Roman, J.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

Potvin, S.

Qi, M.

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9(4), 23–28 (2015).
[Crossref]

Radic, S.

Ramelow, S.

Reid, D. T.

Rieker, G. B.

Roy, J.

Roy, S.

Ruiz-Llata, M.

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

Sano, E.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80 Gb/s highly extinctive electro-optic pulse pattern generator,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[Crossref]

Schiller, S.

Schliesser, A.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
[Crossref] [PubMed]

Schuessler, H. A.

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102(12), 121116 (2013).
[Crossref]

Scott, R. P.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009).
[Crossref] [PubMed]

Sinclair, L. C.

Soares, F. M.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

Sogawa, T.

Solli, D. R.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Strohaber, J.

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102(12), 121116 (2013).
[Crossref]

Sueta, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electro-optic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[Crossref]

Supradeepa, V. R.

Suzuki, A.

T. Yamamoto, T. Komukai, K. Takada, and A. Suzuki, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43(19), 1040–1042 (2007).
[Crossref]

Swann, W.

I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[Crossref] [PubMed]

Swann, W. C.

Sweeny, C.

Takada, A.

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19(23), 22402–22409 (2011).
[Crossref] [PubMed]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset locking,” Electron. Lett. 46(19), 1343–1344 (2010).
[Crossref]

Takada, K.

T. Yamamoto, T. Komukai, K. Takada, and A. Suzuki, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43(19), 1040–1042 (2007).
[Crossref]

Takahashi, H.

Takara, H.

Tans, P. P.

Torres-Company, V.

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

A. J. Metcalf, V. Torres-company, D. E. Leaird, S. Member, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 350036 (2013).
[Crossref]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref] [PubMed]

Udem, T.

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102(12), 121116 (2013).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

van der Weide, D.

Villares, G.

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

Wang, C. Y.

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

Wang, P. H.

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9(4), 23–28 (2015).
[Crossref]

Weiner, A. M.

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9(4), 23–28 (2015).
[Crossref]

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

A. J. Metcalf, V. Torres-company, D. E. Leaird, S. Member, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 350036 (2013).
[Crossref]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref] [PubMed]

V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Self-referenced characterization of optical frequency combs and arbitrary waveforms using a simple, linear, zero-delay implementation of spectral shearing interferometry,” Opt. Express 18(17), 18171–18179 (2010).
[Crossref] [PubMed]

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

F. Ferdous, D. E. Leaird, C.-B. Huang, and A. M. Weiner, “Dual-comb electric-field cross-correlation technique for optical arbitrary waveform characterization,” Opt. Lett. 34(24), 3875–3877 (2009).
[Crossref] [PubMed]

V. R. Supradeepa, D. E. Leaird, and A. M. Weiner, “Single shot amplitude and phase characterization of optical arbitrary waveforms,” Opt. Express 17(16), 14434–14443 (2009).
[Crossref] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Widiyatmoko, B.

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultra-high scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[Crossref]

Williams, C.

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

Wu, R.

Xuan, Y.

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9(4), 23–28 (2015).
[Crossref]

Xue, X.

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9(4), 23–28 (2015).
[Crossref]

Yaita, M.

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80 Gb/s highly extinctive electro-optic pulse pattern generator,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[Crossref]

Yamamoto, T.

T. Yamamoto, T. Komukai, K. Takada, and A. Suzuki, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43(19), 1040–1042 (2007).
[Crossref]

T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol. 24(6), 2311–2317 (2006).
[Crossref]

Yamashita, S.

S. Yamashita and T. Okoshi, “Suppression of Beat Noise from Optical Amplifiers Using Coherent Receivers,” J. Lightwave Technol. 12(6), 1029–1035 (1994).
[Crossref]

Yao, H.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electro-optic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[Crossref]

Yoo, S. J. B.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009).
[Crossref] [PubMed]

Zhang, Z.

Zhou, L.

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

Zhu, F.

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102(12), 121116 (2013).
[Crossref]

Zolot, A. M.

Appl. Phys. Lett. (1)

F. Zhu, T. Mohamed, J. Strohaber, A. A. Kolomenskii, T. Udem, and H. A. Schuessler, “Real-time dual frequency comb spectroscopy in the near infrared,” Appl. Phys. Lett. 102(12), 121116 (2013).
[Crossref]

Electron. Lett. (2)

T. Yamamoto, T. Komukai, K. Takada, and A. Suzuki, “Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating,” Electron. Lett. 43(19), 1040–1042 (2007).
[Crossref]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, S. Aozasa, A. Mori, H. Nakano, A. Takada, and M. Koga, “Octave-spanning frequency comb generated by 250 fs pulse train emitted from 25 GHz externally phase-modulated laser diode for carrier-envelope-offset locking,” Electron. Lett. 46(19), 1343–1344 (2010).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, “Optical pulse compression using high-frequency electro-optic phase modulation,” IEEE J. Quantum Electron. 24(2), 382–387 (1988).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

T. Otsuji, M. Yaita, T. Nagatsuma, and E. Sano, “10-80 Gb/s highly extinctive electro-optic pulse pattern generator,” IEEE J. Sel. Top. Quantum Electron. 2(3), 643–649 (1996).
[Crossref]

A. J. Metcalf, V. Torres-company, D. E. Leaird, S. Member, and A. M. Weiner, “High-power broadly tunable electrooptic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 350036 (2013).
[Crossref]

A. Klee, J. Davila-Rodriguez, C. Williams, and P. J. Delfyett, “Characterization of semiconductor-based optical frequency comb sources using generalized multiheterodyne detection,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1100711 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. Martin-Mateos, M. Ruiz-Llata, J. Posada-Roman, and P. Acedo, “Dual-comb architecture for fast spectroscopic measurements and spectral characterization,” IEEE Photonics Technol. Lett. 27(12), 1309–1312 (2015).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

E. Hamidi, D. E. Leaird, and A. M. Weiner, “Tunable programmable microwave photonic filters based on an optical frequency comb,” IEEE Trans. Microw. Theory Tech. 58(11), 3269–3278 (2010).
[Crossref]

J. Lightwave Technol. (3)

Jpn. J. Appl. Phys. (1)

S.-J. Lee, B. Widiyatmoko, M. Kourogi, and M. Ohtsu, “Ultra-high scanning speed optical coherence tomography using optical frequency comb generators,” Jpn. J. Appl. Phys. 40(Part 2, No. 8B), L878–L880 (2001).
[Crossref]

Laser Photonics Rev. (2)

V. Torres-Company and A. M. Weiner, “Optical frequency comb technology for ultra-broadband radio-frequency photonics,” Laser Photonics Rev. 8(3), 368–393 (2014).
[Crossref]

X. Xue, Y. Xuan, P. H. Wang, Y. Liu, D. E. Leaird, M. Qi, and A. M. Weiner, “Normal-dispersion microcombs enabled by controllable mode interactions,” Laser Photonics Rev. 9(4), 23–28 (2015).
[Crossref]

Nat. Commun. (3)

C. Y. Wang, T. Herr, P. Del’Haye, A. Schliesser, J. Hofer, R. Holzwarth, T. W. Hänsch, N. Picqué, and T. J. Kippenberg, “Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators,” Nat. Commun. 4, 1345 (2013).
[Crossref] [PubMed]

T. Ideguchi, A. Poisson, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Adaptive real-time dual-comb spectroscopy,” Nat. Commun. 5, 3375 (2014).
[Crossref] [PubMed]

G. Villares, A. Hugi, S. Blaser, and J. Faist, “Dual-comb spectroscopy based on quantum-cascade-laser frequency combs,” Nat. Commun. 5, 5192 (2014).
[Crossref] [PubMed]

Nat. Photonics (5)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T. W. Hänsch, and N. Picqué, “Cavity-enhanced dual-comb spectroscopy,” Nat. Photonics 4(1), 55–57 (2010).
[Crossref]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

N. K. Fontaine, R. P. Scott, L. Zhou, F. M. Soares, J. P. Heritage, and S. J. B. Yoo, “Real-time full-field arbitrary optical waveform measurement,” Nat. Photonics 4(4), 248–254 (2010).
[Crossref]

Nature (1)

T. Ideguchi, S. Holzner, B. Bernhardt, G. Guelachvili, N. Picqué, and T. W. Hänsch, “Coherent Raman spectro-imaging with laser frequency combs,” Nature 502(7471), 355–358 (2013).
[Crossref] [PubMed]

Opt. Express (14)

J. Roy, J.-D. Deschênes, S. Potvin, and J. Genest, “Continuous real-time correction and averaging for frequency comb interferometry,” Opt. Express 20(20), 21932–21939 (2012).
[Crossref] [PubMed]

S. Boudreau, S. Levasseur, C. Perilla, S. Roy, and J. Genest, “Chemical detection with hyperspectral lidar using dual frequency combs,” Opt. Express 21(6), 7411–7418 (2013).
[Crossref] [PubMed]

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

S. Boudreau and J. Genest, “Range-resolved vibrometry using a frequency comb in the OSCAT configuration,” Opt. Express 22(7), 8101–8113 (2014).
[Crossref] [PubMed]

A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, “Frequency-comb infrared spectrometer for rapid, remote chemical sensing,” Opt. Express 13(22), 9029–9038 (2005).
[Crossref] [PubMed]

S. Potvin and J. Genest, “Dual-comb spectroscopy using frequency-doubled combs around 775 nm,” Opt. Express 21(25), 30707–30715 (2013).
[Crossref] [PubMed]

A. Ishizawa, T. Nishikawa, A. Mizutori, H. Takara, H. Nakano, T. Sogawa, A. Takada, and M. Koga, “Generation of 120-fs laser pulses at 1-GHz repetition rate derived from continuous wave laser diode,” Opt. Express 19(23), 22402–22409 (2011).
[Crossref] [PubMed]

R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Supercontinuum-based 10-GHz flat-topped optical frequency comb generation,” Opt. Express 21(5), 6045–6052 (2013).
[Crossref] [PubMed]

P. Martín-Mateos, B. Jerez, and P. Acedo, “Dual electro-optic optical frequency combs for multiheterodyne molecular dispersion spectroscopy,” Opt. Express 23(16), 21149–21158 (2015).
[Crossref] [PubMed]

N. R. Newbury, I. Coddington, and W. Swann, “Sensitivity of coherent dual-comb spectroscopy,” Opt. Express 18(8), 7929–7945 (2010).
[Crossref] [PubMed]

V. R. Supradeepa, D. E. Leaird, and A. M. Weiner, “Single shot amplitude and phase characterization of optical arbitrary waveforms,” Opt. Express 17(16), 14434–14443 (2009).
[Crossref] [PubMed]

N. K. Fontaine, R. P. Scott, J. P. Heritage, and S. J. B. Yoo, “Near quantum-limited, single-shot coherent arbitrary optical waveform measurements,” Opt. Express 17(15), 12332–12344 (2009).
[Crossref] [PubMed]

V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Self-referenced characterization of optical frequency combs and arbitrary waveforms using a simple, linear, zero-delay implementation of spectral shearing interferometry,” Opt. Express 18(17), 18171–18179 (2010).
[Crossref] [PubMed]

S. A. Miller, Y. Okawachi, S. Ramelow, K. Luke, A. Dutt, A. Farsi, A. L. Gaeta, and M. Lipson, “Tunable frequency combs based on dual microring resonators,” Opt. Express 23(16), 21527–21540 (2015).
[Crossref] [PubMed]

Opt. Lett. (7)

Optica (1)

Phys. Rev. A (1)

I. Coddington, W. Swann, and N. Newbury, “Coherent dual-comb spectroscopy at high signal-to-noise ratio,” Phys. Rev. A 82(4), 043817 (2010).
[Crossref]

Phys. Rev. Lett. (1)

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100(1), 013902 (2008).
[Crossref] [PubMed]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref] [PubMed]

Other (4)

G. Millot, S. Pitois, M. Yan, T. Hovannysyan, A. Bendahmane, T. W. Hänsch, and N. Picqué, “Frequency-agile dual-comb spectroscopy,” Arxiv 1505.07213 (2015).

T. Nishikawa, A. Ishizawa, M. Yan, H. Gotoh, T. Hänsch, and N. Picqué, “Broadband Dual-comb Spectroscopy with Cascaded-electro-optic-modulator-based Frequency Combs,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW3G.2.
[Crossref]

A. Ishizawa, T. Nishikawa, M. Yan, G. Millot, H. Gotoh, T. Hänsch, and N. Picqué, “Optical Frequency Combs of Multi-GHz Line-spacing for Real-time Multi-heterodyne Spectroscopy,” in CLEO: 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SW1G.7.
[Crossref]

K. Beha, D. C. Cole, F. N. Baynes, P. Del’Haye, A. Rolland, T. M. Fortier, F. Quinlan, S. A. Diddams, and S. B. Papp, “Towards self-referencing a 10-GHz electro-optic comb,” ED-1a.3 Mon Proc. CLEO Europe (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) In the frequency domain, the multiheterodyne interference of two combs is interpreted as a downconversion of optical frequencies. The result is two interlaced combs in the radio-frequency domain. The radio frequencies are labeled by pairs of numbers that identify the beat between the mother optical comb lines u' and u ' i (i = −2,…,2). (b) Schematic of the experimental setup. Basically, it consists of a fiber heterodyne interferometer, being the signal and the local oscillator two electro-optic frequency combs fed by a high-power continuous-wave laser. The spectroscopy sample is an optical pulse shaper that allows us to synthesize the optical lines of the signal comb with a spectral resolution compatible with the repetition rate of the comb. (c) Optical spectrum at the output of the reference comb generator. Measured autocorrelation trace after compression (red line) and expected autocorrelation calculated assuming a flat spectral phase (blue line).
Fig. 2
Fig. 2 Example of an arbitrary optical waveform characterization of a train of pulses with cubic phase. (a) Voltage measured by the oscilloscope during 10 µs (5% of the total record length). The periodicity of the recorded signal can be observed in the zoomed image included in the lower inset. (b) Intensity profile inside a 20-ps time window corresponding to the programmed spectral phase. The red profile is formed by the set of curves calculated from the recovered spectral phases corresponding to 2500 individual waveforms. The programmed phase profile is shown on the left. The green curve is the temporal signal recorded by a commercial optical sampling scope with limited temporal resolution (1 ps).
Fig. 3
Fig. 3 Single-interferogram characterization of a 100% duty factor waveform. (a) Phase profile imparted onto the signal spectrum by the pulse shaper (blue curve) and spectral phases obtained from a single interferogram (arbitrarily chosen at half the temporal trace under analysis). (b) Standard deviation of the recovered phase for each comb line. (c) Autocorrelation function corresponding to the waveform generated by the line-by-line shaping. (d) 2500 overlaid intensity profiles built from the electrooptic dual-comb measurements. (e) Mean phase error and spectral signal-to-noise ratio when coherent averaging is performed. The points correspond to experimental data and the dashed lines are a theoretical fit.
Fig. 4
Fig. 4 Analysis of the system sensitivity in a pre-amplified detection scheme. The plot shows the mean phase error as a function of the signal power for three different effective refresh rates. The shadowed zone corresponds to signal pulses that on average have only a few photons. The recovered phase for P s = −50 dBm (at 25 kHz effective refresh rate) is included in the inset. In this graph, the match of the phase values with the programmed curve is lower than the pulse shaper accuracy (0.1 rad) along the bandwidth of the comb.

Metrics