Abstract

Rainbow refractometry can measure the refractive index and the size of a droplet simultaneously. The refractive index measurement is extracted from the absolute rainbow scattering angle. Accordingly, the angular calibration is vital for accurate measurements. A new optical design of the one-dimensional rainbow technique is proposed by using a one-dimensional spatial filter in the Fourier domain. The relationship between the scattering angle and the CCD pixel of a recorded rainbow image can be accurately determined by a simple calibration. Moreover, only the light perpendicularly incident on the lens in the angle (φ) direction is selected, which exactly matches the classical inversion algorithm used in rainbow refractometry. Both standard and global one-dimensional rainbow techniques are implemented with the proposed optical design, and are successfully applied to measure the refractive index and the size of a line of n-heptane droplets.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Composition measurements of binary mixture droplets by rainbow refractometry

J. Wilms and B. Weigand
Appl. Opt. 46(11) 2109-2118 (2007)

Global rainbow thermometry for droplet-temperature measurement

J. P. A. J. van Beeck, D. Giannoulis, L. Zimmer, and M. L. Riethmuller
Opt. Lett. 24(23) 1696-1698 (1999)

References

  • View by:
  • |
  • |
  • |

  1. H. C. Hulst and H. Van De Hulst, Light Scattering by Small Particles (Courier Corporation, 1957).
  2. P. L. Marston and G. Kaduchak, “Generalized rainbows and unfolded glories of oblate drops: organization for multiple internal reflections and extension of cusps into Alexander’s dark band,” Appl. Opt. 33, 4702–4713 (1994).
    [Crossref] [PubMed]
  3. J. A. Adam, “The mathematical physics of rainbows and glories,” Phys. Rep. 356, 229–365 (2002).
    [Crossref]
  4. J. A. Lock, C. L. Adler, and R. W. Fleet, “Rainbows in the grass. I. External-reflection rainbows from pendant droplets,” Appl. Opt. 47, H203–H213 (2008).
    [Crossref] [PubMed]
  5. Q.-C. Shang, Z.-S. Wu, T. Qu, Z.-J. Li, L. Bai, and L. Gong, “Analysis of rainbow scattering by a chiral sphere,” Opt. Express 21, 21879–21888 (2013).
    [Crossref] [PubMed]
  6. N. Roth, K. Anders, and A. Frohn, “Refractive-index measurements for the correction of particle sizing methods,” Appl. Opt. 30, 4960–4965 (1991).
    [Crossref] [PubMed]
  7. J. P. A. J. van Beeck and M. L. Riethmuller, “Rainbow phenomena applied to the measurement of droplet size and velocity and to the detection of nonsphericity,” Appl. Opt. 35, 2259–2266 (1996).
    [Crossref] [PubMed]
  8. H. Yu, F. Xu, and C. Tropea, “Spheroidal droplet measurements based on generalized rainbow patterns,” J. Quant. Spectrosc. Radiat. Transfer 126, 105–112 (2013).
    [Crossref]
  9. H. Yu, F. Xu, and C. Tropea, “Optical caustics associated with the primary rainbow of oblate droplets: simulation and application in non-sphericity measurement,” Opt. Express 21, 25761–25771 (2013).
    [Crossref] [PubMed]
  10. S. Saengkaew, T. Charinpanikul, C. Laurent, Y. Biscos, G. Lavergne, G. Gouesbet, and G. Gréhan, “Processing of individual rainbow signals,” Exp. Fluids 48, 111–119 (2010).
    [Crossref]
  11. J. Van Beeck, D. Giannoulis, L. Zimmer, and M. Riethmuller, “Global rainbow thermometry for droplet-temperature measurement,” Opt. Lett. 24, 1696–1698 (1999).
    [Crossref]
  12. X. Wu, H. Jiang, Y. Wu, J. Song, G. Gréhan, S. Saengkaew, L. Chen, X. Gao, and K. Cen, “One-dimensional rainbow thermometry system by using slit apertures,” Opt. Lett. 39, 638–641 (2014).
    [Crossref] [PubMed]
  13. J. van Beeck, M. Riethmuller, G. Lavergne, Y. Biscos, and A. Atthasit, “Processing droplet temperature measurement data obtained with rainbow thermometry,” in Optical Diagnostics for Fluids, Solids, and Combustion (SPIE, 2001), 251–264.
    [Crossref]
  14. J. P. A. J. van Beeck, L. Zimmer, and M. L. Riethmuller, “Global rainbow thermometry for mean temperature and size measurement of spray droplets,” Part. Part. Syst. Char. 18, 196–204 (2001).
    [Crossref]
  15. M. R. Vetrano, J. Petrus Antonius Johannes van Beeck, and M. L. Riethmuller, “Global rainbow thermometry: improvements in the data inversion algorithm and validation technique in liquid-liquid suspension,” Appl. Opt. 43, 3600–3607 (2004).
    [Crossref] [PubMed]
  16. M. R. Vetrano, J. P. A. Johannes van Beeck, and M. L. Riethmuller, “Assessment of refractive index gradients by standard rainbow thermometry,” Appl. Opt. 44, 7275–7281 (2005).
    [Crossref] [PubMed]
  17. M. R. Vetrano, J. P. Antonius Johannes van Beeck, and M. L. Riethmuller, “Generalization of the rainbow Airy theory to nonuniform spheres,” Opt. Lett. 30, 658–660 (2005).
    [Crossref] [PubMed]
  18. H. Nussenzveig, “High-frequency scattering by a transparent sphere. II. theory of the tainbow and the glory,” J. Math. Phys. 10, 125–176 (1969).
    [Crossref]
  19. H. M. Nussenzveig, “Complex angular momentum theory of the rainbow and the glory,” J. Opt. Soc. Am. 69, 1068–1079 (1979).
    [Crossref]
  20. S. Saengkaew, T. Charinpanitkul, H. Vanisri, W. Tanthapanichakoon, L. Mees, G. Gouesbet, and G. Gréhan, “Rainbow refractrometry: on the validity domain of Airy’s and Nussenzveig’s theories,” Opt. Commun. 259, 7–13 (2006).
    [Crossref]
  21. P. Lemaitre, E. Porcheron, G. Gréhan, and L. Bouilloux, “Development of a global rainbow refractometry technique to measure the temperature of spray droplets in a large containment vessel,” Meas. Sci. Technol. 17, 1299–1306 (2006).
    [Crossref]
  22. C. Letty, B. Renou, J. Reveillon, S. Saengkaew, and G. Gréhan, “Experimental study of droplet temperature in a two-phase heptane/air V-flame,” Combust. Flame 160, 1803–1811 (2013).
    [Crossref]
  23. M. Ouboukhlik, S. Saengkaew, M.-C. Fournier-Salaün, L. Estel, and G. Gréhan, “Local measurement of mass transfer in a reactive spray for CO2 capture,” Can. J. Chem. Eng. 93, 419–426 (2015).
    [Crossref]
  24. F. Song, C. Xu, S. Wang, and Y. Yan, “An optimization scheme for the measurement of liquid jet parameters with rainbow refractometry based on Debye theory,” Opt. Commun. 305, 204–211 (2013).
    [Crossref]
  25. F. Song, C. Xu, and S. Wang, “Twin primary rainbows scattering by a liquid-filled capillary,” Opt. Commun. 332, 96–102 (2014).
    [Crossref]
  26. S. Meunier-Guttin-Cluzel, S. Saengkaew, and G. Gréhan, “Réfractométrie d’Arc-en-ciel Global: Analyse de mélanges de gouttes par algorithme génétique,” in Congrès Francophone de Techniques Laser, (2010).
  27. X. Wu, Y. Wu, S. Saengkaew, S. Meunier-Guttin-Cluzel, G. Gréhan, L. Chen, and K. Cen, “Concentration and composition measurement of sprays with a global rainbow technique,” Meas. Sci. Technol. 23, 125302 (2012).
    [Crossref]
  28. S. Saengkaew, G. Godard, J. Blaisot, and G. Gréhan, “Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets,” Exp. Fluids 47, 839–848 (2009).
    [Crossref]
  29. J. Wang, G. Gréhan, Y. Han, S. Saengkaew, and G. Gouesbet, “Numerical study of global rainbow technique: sensitivity to non-sphericity of droplets,” Exp. Fluids 51, 149–159 (2011).
    [Crossref]
  30. M. Vetrano, S. Gauthier, J. van Beeck, P. Boulet, and J. M. Buchlin, “Characterization of a non-isothermal water spray by global rainbow thermometry,” Exp. Fluids 40, 15–22 (2006).
    [Crossref]
  31. Y. Wu, X. Wu, S. Saengkaew, H. Jiang, Q. Hong, G. Gréhan, and K. Cen, “Concentration and size measurements of sprays with global rainbow technique,” Acta Physica Sinica 62, 90703 (2013).
  32. J. Promvongsa, Y. Wu, G. Gréhan, S. Saengkaew, B. Fungtammasan, and P. Vallikul, “One-Dimensional Rainbow Technique to Characterize the Evaporation at Ambient Temperature and Evaporation in a Flame of Monodis-persed Droplets,” in 7th European Combustion Meeting (ECM2015), pp. 1–5.
  33. A. Blanco, A. Gayol, D. Goméz, and J. M. Navaza, “Temperature dependence of thermophysical properties of ethanol + n-hexane + n-heptane,” Phys. Chem. Liq. 51, 381–403 (2013).
    [Crossref]

2015 (1)

M. Ouboukhlik, S. Saengkaew, M.-C. Fournier-Salaün, L. Estel, and G. Gréhan, “Local measurement of mass transfer in a reactive spray for CO2 capture,” Can. J. Chem. Eng. 93, 419–426 (2015).
[Crossref]

2014 (2)

2013 (7)

Q.-C. Shang, Z.-S. Wu, T. Qu, Z.-J. Li, L. Bai, and L. Gong, “Analysis of rainbow scattering by a chiral sphere,” Opt. Express 21, 21879–21888 (2013).
[Crossref] [PubMed]

H. Yu, F. Xu, and C. Tropea, “Spheroidal droplet measurements based on generalized rainbow patterns,” J. Quant. Spectrosc. Radiat. Transfer 126, 105–112 (2013).
[Crossref]

H. Yu, F. Xu, and C. Tropea, “Optical caustics associated with the primary rainbow of oblate droplets: simulation and application in non-sphericity measurement,” Opt. Express 21, 25761–25771 (2013).
[Crossref] [PubMed]

F. Song, C. Xu, S. Wang, and Y. Yan, “An optimization scheme for the measurement of liquid jet parameters with rainbow refractometry based on Debye theory,” Opt. Commun. 305, 204–211 (2013).
[Crossref]

Y. Wu, X. Wu, S. Saengkaew, H. Jiang, Q. Hong, G. Gréhan, and K. Cen, “Concentration and size measurements of sprays with global rainbow technique,” Acta Physica Sinica 62, 90703 (2013).

A. Blanco, A. Gayol, D. Goméz, and J. M. Navaza, “Temperature dependence of thermophysical properties of ethanol + n-hexane + n-heptane,” Phys. Chem. Liq. 51, 381–403 (2013).
[Crossref]

C. Letty, B. Renou, J. Reveillon, S. Saengkaew, and G. Gréhan, “Experimental study of droplet temperature in a two-phase heptane/air V-flame,” Combust. Flame 160, 1803–1811 (2013).
[Crossref]

2012 (1)

X. Wu, Y. Wu, S. Saengkaew, S. Meunier-Guttin-Cluzel, G. Gréhan, L. Chen, and K. Cen, “Concentration and composition measurement of sprays with a global rainbow technique,” Meas. Sci. Technol. 23, 125302 (2012).
[Crossref]

2011 (1)

J. Wang, G. Gréhan, Y. Han, S. Saengkaew, and G. Gouesbet, “Numerical study of global rainbow technique: sensitivity to non-sphericity of droplets,” Exp. Fluids 51, 149–159 (2011).
[Crossref]

2010 (1)

S. Saengkaew, T. Charinpanikul, C. Laurent, Y. Biscos, G. Lavergne, G. Gouesbet, and G. Gréhan, “Processing of individual rainbow signals,” Exp. Fluids 48, 111–119 (2010).
[Crossref]

2009 (1)

S. Saengkaew, G. Godard, J. Blaisot, and G. Gréhan, “Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets,” Exp. Fluids 47, 839–848 (2009).
[Crossref]

2008 (1)

2006 (3)

M. Vetrano, S. Gauthier, J. van Beeck, P. Boulet, and J. M. Buchlin, “Characterization of a non-isothermal water spray by global rainbow thermometry,” Exp. Fluids 40, 15–22 (2006).
[Crossref]

S. Saengkaew, T. Charinpanitkul, H. Vanisri, W. Tanthapanichakoon, L. Mees, G. Gouesbet, and G. Gréhan, “Rainbow refractrometry: on the validity domain of Airy’s and Nussenzveig’s theories,” Opt. Commun. 259, 7–13 (2006).
[Crossref]

P. Lemaitre, E. Porcheron, G. Gréhan, and L. Bouilloux, “Development of a global rainbow refractometry technique to measure the temperature of spray droplets in a large containment vessel,” Meas. Sci. Technol. 17, 1299–1306 (2006).
[Crossref]

2005 (2)

2004 (1)

2002 (1)

J. A. Adam, “The mathematical physics of rainbows and glories,” Phys. Rep. 356, 229–365 (2002).
[Crossref]

2001 (1)

J. P. A. J. van Beeck, L. Zimmer, and M. L. Riethmuller, “Global rainbow thermometry for mean temperature and size measurement of spray droplets,” Part. Part. Syst. Char. 18, 196–204 (2001).
[Crossref]

1999 (1)

1996 (1)

1994 (1)

1991 (1)

1979 (1)

1969 (1)

H. Nussenzveig, “High-frequency scattering by a transparent sphere. II. theory of the tainbow and the glory,” J. Math. Phys. 10, 125–176 (1969).
[Crossref]

Adam, J. A.

J. A. Adam, “The mathematical physics of rainbows and glories,” Phys. Rep. 356, 229–365 (2002).
[Crossref]

Adler, C. L.

Anders, K.

Antonius Johannes van Beeck, J. P.

Atthasit, A.

J. van Beeck, M. Riethmuller, G. Lavergne, Y. Biscos, and A. Atthasit, “Processing droplet temperature measurement data obtained with rainbow thermometry,” in Optical Diagnostics for Fluids, Solids, and Combustion (SPIE, 2001), 251–264.
[Crossref]

Bai, L.

Biscos, Y.

S. Saengkaew, T. Charinpanikul, C. Laurent, Y. Biscos, G. Lavergne, G. Gouesbet, and G. Gréhan, “Processing of individual rainbow signals,” Exp. Fluids 48, 111–119 (2010).
[Crossref]

J. van Beeck, M. Riethmuller, G. Lavergne, Y. Biscos, and A. Atthasit, “Processing droplet temperature measurement data obtained with rainbow thermometry,” in Optical Diagnostics for Fluids, Solids, and Combustion (SPIE, 2001), 251–264.
[Crossref]

Blaisot, J.

S. Saengkaew, G. Godard, J. Blaisot, and G. Gréhan, “Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets,” Exp. Fluids 47, 839–848 (2009).
[Crossref]

Blanco, A.

A. Blanco, A. Gayol, D. Goméz, and J. M. Navaza, “Temperature dependence of thermophysical properties of ethanol + n-hexane + n-heptane,” Phys. Chem. Liq. 51, 381–403 (2013).
[Crossref]

Bouilloux, L.

P. Lemaitre, E. Porcheron, G. Gréhan, and L. Bouilloux, “Development of a global rainbow refractometry technique to measure the temperature of spray droplets in a large containment vessel,” Meas. Sci. Technol. 17, 1299–1306 (2006).
[Crossref]

Boulet, P.

M. Vetrano, S. Gauthier, J. van Beeck, P. Boulet, and J. M. Buchlin, “Characterization of a non-isothermal water spray by global rainbow thermometry,” Exp. Fluids 40, 15–22 (2006).
[Crossref]

Buchlin, J. M.

M. Vetrano, S. Gauthier, J. van Beeck, P. Boulet, and J. M. Buchlin, “Characterization of a non-isothermal water spray by global rainbow thermometry,” Exp. Fluids 40, 15–22 (2006).
[Crossref]

Cen, K.

X. Wu, H. Jiang, Y. Wu, J. Song, G. Gréhan, S. Saengkaew, L. Chen, X. Gao, and K. Cen, “One-dimensional rainbow thermometry system by using slit apertures,” Opt. Lett. 39, 638–641 (2014).
[Crossref] [PubMed]

Y. Wu, X. Wu, S. Saengkaew, H. Jiang, Q. Hong, G. Gréhan, and K. Cen, “Concentration and size measurements of sprays with global rainbow technique,” Acta Physica Sinica 62, 90703 (2013).

X. Wu, Y. Wu, S. Saengkaew, S. Meunier-Guttin-Cluzel, G. Gréhan, L. Chen, and K. Cen, “Concentration and composition measurement of sprays with a global rainbow technique,” Meas. Sci. Technol. 23, 125302 (2012).
[Crossref]

Charinpanikul, T.

S. Saengkaew, T. Charinpanikul, C. Laurent, Y. Biscos, G. Lavergne, G. Gouesbet, and G. Gréhan, “Processing of individual rainbow signals,” Exp. Fluids 48, 111–119 (2010).
[Crossref]

Charinpanitkul, T.

S. Saengkaew, T. Charinpanitkul, H. Vanisri, W. Tanthapanichakoon, L. Mees, G. Gouesbet, and G. Gréhan, “Rainbow refractrometry: on the validity domain of Airy’s and Nussenzveig’s theories,” Opt. Commun. 259, 7–13 (2006).
[Crossref]

Chen, L.

X. Wu, H. Jiang, Y. Wu, J. Song, G. Gréhan, S. Saengkaew, L. Chen, X. Gao, and K. Cen, “One-dimensional rainbow thermometry system by using slit apertures,” Opt. Lett. 39, 638–641 (2014).
[Crossref] [PubMed]

X. Wu, Y. Wu, S. Saengkaew, S. Meunier-Guttin-Cluzel, G. Gréhan, L. Chen, and K. Cen, “Concentration and composition measurement of sprays with a global rainbow technique,” Meas. Sci. Technol. 23, 125302 (2012).
[Crossref]

Estel, L.

M. Ouboukhlik, S. Saengkaew, M.-C. Fournier-Salaün, L. Estel, and G. Gréhan, “Local measurement of mass transfer in a reactive spray for CO2 capture,” Can. J. Chem. Eng. 93, 419–426 (2015).
[Crossref]

Fleet, R. W.

Fournier-Salaün, M.-C.

M. Ouboukhlik, S. Saengkaew, M.-C. Fournier-Salaün, L. Estel, and G. Gréhan, “Local measurement of mass transfer in a reactive spray for CO2 capture,” Can. J. Chem. Eng. 93, 419–426 (2015).
[Crossref]

Frohn, A.

Fungtammasan, B.

J. Promvongsa, Y. Wu, G. Gréhan, S. Saengkaew, B. Fungtammasan, and P. Vallikul, “One-Dimensional Rainbow Technique to Characterize the Evaporation at Ambient Temperature and Evaporation in a Flame of Monodis-persed Droplets,” in 7th European Combustion Meeting (ECM2015), pp. 1–5.

Gao, X.

Gauthier, S.

M. Vetrano, S. Gauthier, J. van Beeck, P. Boulet, and J. M. Buchlin, “Characterization of a non-isothermal water spray by global rainbow thermometry,” Exp. Fluids 40, 15–22 (2006).
[Crossref]

Gayol, A.

A. Blanco, A. Gayol, D. Goméz, and J. M. Navaza, “Temperature dependence of thermophysical properties of ethanol + n-hexane + n-heptane,” Phys. Chem. Liq. 51, 381–403 (2013).
[Crossref]

Giannoulis, D.

Godard, G.

S. Saengkaew, G. Godard, J. Blaisot, and G. Gréhan, “Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets,” Exp. Fluids 47, 839–848 (2009).
[Crossref]

Goméz, D.

A. Blanco, A. Gayol, D. Goméz, and J. M. Navaza, “Temperature dependence of thermophysical properties of ethanol + n-hexane + n-heptane,” Phys. Chem. Liq. 51, 381–403 (2013).
[Crossref]

Gong, L.

Gouesbet, G.

J. Wang, G. Gréhan, Y. Han, S. Saengkaew, and G. Gouesbet, “Numerical study of global rainbow technique: sensitivity to non-sphericity of droplets,” Exp. Fluids 51, 149–159 (2011).
[Crossref]

S. Saengkaew, T. Charinpanikul, C. Laurent, Y. Biscos, G. Lavergne, G. Gouesbet, and G. Gréhan, “Processing of individual rainbow signals,” Exp. Fluids 48, 111–119 (2010).
[Crossref]

S. Saengkaew, T. Charinpanitkul, H. Vanisri, W. Tanthapanichakoon, L. Mees, G. Gouesbet, and G. Gréhan, “Rainbow refractrometry: on the validity domain of Airy’s and Nussenzveig’s theories,” Opt. Commun. 259, 7–13 (2006).
[Crossref]

Gréhan, G.

M. Ouboukhlik, S. Saengkaew, M.-C. Fournier-Salaün, L. Estel, and G. Gréhan, “Local measurement of mass transfer in a reactive spray for CO2 capture,” Can. J. Chem. Eng. 93, 419–426 (2015).
[Crossref]

X. Wu, H. Jiang, Y. Wu, J. Song, G. Gréhan, S. Saengkaew, L. Chen, X. Gao, and K. Cen, “One-dimensional rainbow thermometry system by using slit apertures,” Opt. Lett. 39, 638–641 (2014).
[Crossref] [PubMed]

C. Letty, B. Renou, J. Reveillon, S. Saengkaew, and G. Gréhan, “Experimental study of droplet temperature in a two-phase heptane/air V-flame,” Combust. Flame 160, 1803–1811 (2013).
[Crossref]

Y. Wu, X. Wu, S. Saengkaew, H. Jiang, Q. Hong, G. Gréhan, and K. Cen, “Concentration and size measurements of sprays with global rainbow technique,” Acta Physica Sinica 62, 90703 (2013).

X. Wu, Y. Wu, S. Saengkaew, S. Meunier-Guttin-Cluzel, G. Gréhan, L. Chen, and K. Cen, “Concentration and composition measurement of sprays with a global rainbow technique,” Meas. Sci. Technol. 23, 125302 (2012).
[Crossref]

J. Wang, G. Gréhan, Y. Han, S. Saengkaew, and G. Gouesbet, “Numerical study of global rainbow technique: sensitivity to non-sphericity of droplets,” Exp. Fluids 51, 149–159 (2011).
[Crossref]

S. Saengkaew, T. Charinpanikul, C. Laurent, Y. Biscos, G. Lavergne, G. Gouesbet, and G. Gréhan, “Processing of individual rainbow signals,” Exp. Fluids 48, 111–119 (2010).
[Crossref]

S. Saengkaew, G. Godard, J. Blaisot, and G. Gréhan, “Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets,” Exp. Fluids 47, 839–848 (2009).
[Crossref]

P. Lemaitre, E. Porcheron, G. Gréhan, and L. Bouilloux, “Development of a global rainbow refractometry technique to measure the temperature of spray droplets in a large containment vessel,” Meas. Sci. Technol. 17, 1299–1306 (2006).
[Crossref]

S. Saengkaew, T. Charinpanitkul, H. Vanisri, W. Tanthapanichakoon, L. Mees, G. Gouesbet, and G. Gréhan, “Rainbow refractrometry: on the validity domain of Airy’s and Nussenzveig’s theories,” Opt. Commun. 259, 7–13 (2006).
[Crossref]

S. Meunier-Guttin-Cluzel, S. Saengkaew, and G. Gréhan, “Réfractométrie d’Arc-en-ciel Global: Analyse de mélanges de gouttes par algorithme génétique,” in Congrès Francophone de Techniques Laser, (2010).

J. Promvongsa, Y. Wu, G. Gréhan, S. Saengkaew, B. Fungtammasan, and P. Vallikul, “One-Dimensional Rainbow Technique to Characterize the Evaporation at Ambient Temperature and Evaporation in a Flame of Monodis-persed Droplets,” in 7th European Combustion Meeting (ECM2015), pp. 1–5.

Han, Y.

J. Wang, G. Gréhan, Y. Han, S. Saengkaew, and G. Gouesbet, “Numerical study of global rainbow technique: sensitivity to non-sphericity of droplets,” Exp. Fluids 51, 149–159 (2011).
[Crossref]

Hong, Q.

Y. Wu, X. Wu, S. Saengkaew, H. Jiang, Q. Hong, G. Gréhan, and K. Cen, “Concentration and size measurements of sprays with global rainbow technique,” Acta Physica Sinica 62, 90703 (2013).

Hulst, H. C.

H. C. Hulst and H. Van De Hulst, Light Scattering by Small Particles (Courier Corporation, 1957).

Jiang, H.

X. Wu, H. Jiang, Y. Wu, J. Song, G. Gréhan, S. Saengkaew, L. Chen, X. Gao, and K. Cen, “One-dimensional rainbow thermometry system by using slit apertures,” Opt. Lett. 39, 638–641 (2014).
[Crossref] [PubMed]

Y. Wu, X. Wu, S. Saengkaew, H. Jiang, Q. Hong, G. Gréhan, and K. Cen, “Concentration and size measurements of sprays with global rainbow technique,” Acta Physica Sinica 62, 90703 (2013).

Johannes van Beeck, J. P. A.

Kaduchak, G.

Laurent, C.

S. Saengkaew, T. Charinpanikul, C. Laurent, Y. Biscos, G. Lavergne, G. Gouesbet, and G. Gréhan, “Processing of individual rainbow signals,” Exp. Fluids 48, 111–119 (2010).
[Crossref]

Lavergne, G.

S. Saengkaew, T. Charinpanikul, C. Laurent, Y. Biscos, G. Lavergne, G. Gouesbet, and G. Gréhan, “Processing of individual rainbow signals,” Exp. Fluids 48, 111–119 (2010).
[Crossref]

J. van Beeck, M. Riethmuller, G. Lavergne, Y. Biscos, and A. Atthasit, “Processing droplet temperature measurement data obtained with rainbow thermometry,” in Optical Diagnostics for Fluids, Solids, and Combustion (SPIE, 2001), 251–264.
[Crossref]

Lemaitre, P.

P. Lemaitre, E. Porcheron, G. Gréhan, and L. Bouilloux, “Development of a global rainbow refractometry technique to measure the temperature of spray droplets in a large containment vessel,” Meas. Sci. Technol. 17, 1299–1306 (2006).
[Crossref]

Letty, C.

C. Letty, B. Renou, J. Reveillon, S. Saengkaew, and G. Gréhan, “Experimental study of droplet temperature in a two-phase heptane/air V-flame,” Combust. Flame 160, 1803–1811 (2013).
[Crossref]

Li, Z.-J.

Lock, J. A.

Marston, P. L.

Mees, L.

S. Saengkaew, T. Charinpanitkul, H. Vanisri, W. Tanthapanichakoon, L. Mees, G. Gouesbet, and G. Gréhan, “Rainbow refractrometry: on the validity domain of Airy’s and Nussenzveig’s theories,” Opt. Commun. 259, 7–13 (2006).
[Crossref]

Meunier-Guttin-Cluzel, S.

X. Wu, Y. Wu, S. Saengkaew, S. Meunier-Guttin-Cluzel, G. Gréhan, L. Chen, and K. Cen, “Concentration and composition measurement of sprays with a global rainbow technique,” Meas. Sci. Technol. 23, 125302 (2012).
[Crossref]

S. Meunier-Guttin-Cluzel, S. Saengkaew, and G. Gréhan, “Réfractométrie d’Arc-en-ciel Global: Analyse de mélanges de gouttes par algorithme génétique,” in Congrès Francophone de Techniques Laser, (2010).

Navaza, J. M.

A. Blanco, A. Gayol, D. Goméz, and J. M. Navaza, “Temperature dependence of thermophysical properties of ethanol + n-hexane + n-heptane,” Phys. Chem. Liq. 51, 381–403 (2013).
[Crossref]

Nussenzveig, H.

H. Nussenzveig, “High-frequency scattering by a transparent sphere. II. theory of the tainbow and the glory,” J. Math. Phys. 10, 125–176 (1969).
[Crossref]

Nussenzveig, H. M.

Ouboukhlik, M.

M. Ouboukhlik, S. Saengkaew, M.-C. Fournier-Salaün, L. Estel, and G. Gréhan, “Local measurement of mass transfer in a reactive spray for CO2 capture,” Can. J. Chem. Eng. 93, 419–426 (2015).
[Crossref]

Petrus Antonius Johannes van Beeck, J.

Porcheron, E.

P. Lemaitre, E. Porcheron, G. Gréhan, and L. Bouilloux, “Development of a global rainbow refractometry technique to measure the temperature of spray droplets in a large containment vessel,” Meas. Sci. Technol. 17, 1299–1306 (2006).
[Crossref]

Promvongsa, J.

J. Promvongsa, Y. Wu, G. Gréhan, S. Saengkaew, B. Fungtammasan, and P. Vallikul, “One-Dimensional Rainbow Technique to Characterize the Evaporation at Ambient Temperature and Evaporation in a Flame of Monodis-persed Droplets,” in 7th European Combustion Meeting (ECM2015), pp. 1–5.

Qu, T.

Renou, B.

C. Letty, B. Renou, J. Reveillon, S. Saengkaew, and G. Gréhan, “Experimental study of droplet temperature in a two-phase heptane/air V-flame,” Combust. Flame 160, 1803–1811 (2013).
[Crossref]

Reveillon, J.

C. Letty, B. Renou, J. Reveillon, S. Saengkaew, and G. Gréhan, “Experimental study of droplet temperature in a two-phase heptane/air V-flame,” Combust. Flame 160, 1803–1811 (2013).
[Crossref]

Riethmuller, M.

J. Van Beeck, D. Giannoulis, L. Zimmer, and M. Riethmuller, “Global rainbow thermometry for droplet-temperature measurement,” Opt. Lett. 24, 1696–1698 (1999).
[Crossref]

J. van Beeck, M. Riethmuller, G. Lavergne, Y. Biscos, and A. Atthasit, “Processing droplet temperature measurement data obtained with rainbow thermometry,” in Optical Diagnostics for Fluids, Solids, and Combustion (SPIE, 2001), 251–264.
[Crossref]

Riethmuller, M. L.

Roth, N.

Saengkaew, S.

M. Ouboukhlik, S. Saengkaew, M.-C. Fournier-Salaün, L. Estel, and G. Gréhan, “Local measurement of mass transfer in a reactive spray for CO2 capture,” Can. J. Chem. Eng. 93, 419–426 (2015).
[Crossref]

X. Wu, H. Jiang, Y. Wu, J. Song, G. Gréhan, S. Saengkaew, L. Chen, X. Gao, and K. Cen, “One-dimensional rainbow thermometry system by using slit apertures,” Opt. Lett. 39, 638–641 (2014).
[Crossref] [PubMed]

C. Letty, B. Renou, J. Reveillon, S. Saengkaew, and G. Gréhan, “Experimental study of droplet temperature in a two-phase heptane/air V-flame,” Combust. Flame 160, 1803–1811 (2013).
[Crossref]

Y. Wu, X. Wu, S. Saengkaew, H. Jiang, Q. Hong, G. Gréhan, and K. Cen, “Concentration and size measurements of sprays with global rainbow technique,” Acta Physica Sinica 62, 90703 (2013).

X. Wu, Y. Wu, S. Saengkaew, S. Meunier-Guttin-Cluzel, G. Gréhan, L. Chen, and K. Cen, “Concentration and composition measurement of sprays with a global rainbow technique,” Meas. Sci. Technol. 23, 125302 (2012).
[Crossref]

J. Wang, G. Gréhan, Y. Han, S. Saengkaew, and G. Gouesbet, “Numerical study of global rainbow technique: sensitivity to non-sphericity of droplets,” Exp. Fluids 51, 149–159 (2011).
[Crossref]

S. Saengkaew, T. Charinpanikul, C. Laurent, Y. Biscos, G. Lavergne, G. Gouesbet, and G. Gréhan, “Processing of individual rainbow signals,” Exp. Fluids 48, 111–119 (2010).
[Crossref]

S. Saengkaew, G. Godard, J. Blaisot, and G. Gréhan, “Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets,” Exp. Fluids 47, 839–848 (2009).
[Crossref]

S. Saengkaew, T. Charinpanitkul, H. Vanisri, W. Tanthapanichakoon, L. Mees, G. Gouesbet, and G. Gréhan, “Rainbow refractrometry: on the validity domain of Airy’s and Nussenzveig’s theories,” Opt. Commun. 259, 7–13 (2006).
[Crossref]

S. Meunier-Guttin-Cluzel, S. Saengkaew, and G. Gréhan, “Réfractométrie d’Arc-en-ciel Global: Analyse de mélanges de gouttes par algorithme génétique,” in Congrès Francophone de Techniques Laser, (2010).

J. Promvongsa, Y. Wu, G. Gréhan, S. Saengkaew, B. Fungtammasan, and P. Vallikul, “One-Dimensional Rainbow Technique to Characterize the Evaporation at Ambient Temperature and Evaporation in a Flame of Monodis-persed Droplets,” in 7th European Combustion Meeting (ECM2015), pp. 1–5.

Shang, Q.-C.

Song, F.

F. Song, C. Xu, and S. Wang, “Twin primary rainbows scattering by a liquid-filled capillary,” Opt. Commun. 332, 96–102 (2014).
[Crossref]

F. Song, C. Xu, S. Wang, and Y. Yan, “An optimization scheme for the measurement of liquid jet parameters with rainbow refractometry based on Debye theory,” Opt. Commun. 305, 204–211 (2013).
[Crossref]

Song, J.

Tanthapanichakoon, W.

S. Saengkaew, T. Charinpanitkul, H. Vanisri, W. Tanthapanichakoon, L. Mees, G. Gouesbet, and G. Gréhan, “Rainbow refractrometry: on the validity domain of Airy’s and Nussenzveig’s theories,” Opt. Commun. 259, 7–13 (2006).
[Crossref]

Tropea, C.

H. Yu, F. Xu, and C. Tropea, “Optical caustics associated with the primary rainbow of oblate droplets: simulation and application in non-sphericity measurement,” Opt. Express 21, 25761–25771 (2013).
[Crossref] [PubMed]

H. Yu, F. Xu, and C. Tropea, “Spheroidal droplet measurements based on generalized rainbow patterns,” J. Quant. Spectrosc. Radiat. Transfer 126, 105–112 (2013).
[Crossref]

Vallikul, P.

J. Promvongsa, Y. Wu, G. Gréhan, S. Saengkaew, B. Fungtammasan, and P. Vallikul, “One-Dimensional Rainbow Technique to Characterize the Evaporation at Ambient Temperature and Evaporation in a Flame of Monodis-persed Droplets,” in 7th European Combustion Meeting (ECM2015), pp. 1–5.

van Beeck, J.

M. Vetrano, S. Gauthier, J. van Beeck, P. Boulet, and J. M. Buchlin, “Characterization of a non-isothermal water spray by global rainbow thermometry,” Exp. Fluids 40, 15–22 (2006).
[Crossref]

J. Van Beeck, D. Giannoulis, L. Zimmer, and M. Riethmuller, “Global rainbow thermometry for droplet-temperature measurement,” Opt. Lett. 24, 1696–1698 (1999).
[Crossref]

J. van Beeck, M. Riethmuller, G. Lavergne, Y. Biscos, and A. Atthasit, “Processing droplet temperature measurement data obtained with rainbow thermometry,” in Optical Diagnostics for Fluids, Solids, and Combustion (SPIE, 2001), 251–264.
[Crossref]

van Beeck, J. P. A. J.

J. P. A. J. van Beeck, L. Zimmer, and M. L. Riethmuller, “Global rainbow thermometry for mean temperature and size measurement of spray droplets,” Part. Part. Syst. Char. 18, 196–204 (2001).
[Crossref]

J. P. A. J. van Beeck and M. L. Riethmuller, “Rainbow phenomena applied to the measurement of droplet size and velocity and to the detection of nonsphericity,” Appl. Opt. 35, 2259–2266 (1996).
[Crossref] [PubMed]

Van De Hulst, H.

H. C. Hulst and H. Van De Hulst, Light Scattering by Small Particles (Courier Corporation, 1957).

Vanisri, H.

S. Saengkaew, T. Charinpanitkul, H. Vanisri, W. Tanthapanichakoon, L. Mees, G. Gouesbet, and G. Gréhan, “Rainbow refractrometry: on the validity domain of Airy’s and Nussenzveig’s theories,” Opt. Commun. 259, 7–13 (2006).
[Crossref]

Vetrano, M.

M. Vetrano, S. Gauthier, J. van Beeck, P. Boulet, and J. M. Buchlin, “Characterization of a non-isothermal water spray by global rainbow thermometry,” Exp. Fluids 40, 15–22 (2006).
[Crossref]

Vetrano, M. R.

Wang, J.

J. Wang, G. Gréhan, Y. Han, S. Saengkaew, and G. Gouesbet, “Numerical study of global rainbow technique: sensitivity to non-sphericity of droplets,” Exp. Fluids 51, 149–159 (2011).
[Crossref]

Wang, S.

F. Song, C. Xu, and S. Wang, “Twin primary rainbows scattering by a liquid-filled capillary,” Opt. Commun. 332, 96–102 (2014).
[Crossref]

F. Song, C. Xu, S. Wang, and Y. Yan, “An optimization scheme for the measurement of liquid jet parameters with rainbow refractometry based on Debye theory,” Opt. Commun. 305, 204–211 (2013).
[Crossref]

Wu, X.

X. Wu, H. Jiang, Y. Wu, J. Song, G. Gréhan, S. Saengkaew, L. Chen, X. Gao, and K. Cen, “One-dimensional rainbow thermometry system by using slit apertures,” Opt. Lett. 39, 638–641 (2014).
[Crossref] [PubMed]

Y. Wu, X. Wu, S. Saengkaew, H. Jiang, Q. Hong, G. Gréhan, and K. Cen, “Concentration and size measurements of sprays with global rainbow technique,” Acta Physica Sinica 62, 90703 (2013).

X. Wu, Y. Wu, S. Saengkaew, S. Meunier-Guttin-Cluzel, G. Gréhan, L. Chen, and K. Cen, “Concentration and composition measurement of sprays with a global rainbow technique,” Meas. Sci. Technol. 23, 125302 (2012).
[Crossref]

Wu, Y.

X. Wu, H. Jiang, Y. Wu, J. Song, G. Gréhan, S. Saengkaew, L. Chen, X. Gao, and K. Cen, “One-dimensional rainbow thermometry system by using slit apertures,” Opt. Lett. 39, 638–641 (2014).
[Crossref] [PubMed]

Y. Wu, X. Wu, S. Saengkaew, H. Jiang, Q. Hong, G. Gréhan, and K. Cen, “Concentration and size measurements of sprays with global rainbow technique,” Acta Physica Sinica 62, 90703 (2013).

X. Wu, Y. Wu, S. Saengkaew, S. Meunier-Guttin-Cluzel, G. Gréhan, L. Chen, and K. Cen, “Concentration and composition measurement of sprays with a global rainbow technique,” Meas. Sci. Technol. 23, 125302 (2012).
[Crossref]

J. Promvongsa, Y. Wu, G. Gréhan, S. Saengkaew, B. Fungtammasan, and P. Vallikul, “One-Dimensional Rainbow Technique to Characterize the Evaporation at Ambient Temperature and Evaporation in a Flame of Monodis-persed Droplets,” in 7th European Combustion Meeting (ECM2015), pp. 1–5.

Wu, Z.-S.

Xu, C.

F. Song, C. Xu, and S. Wang, “Twin primary rainbows scattering by a liquid-filled capillary,” Opt. Commun. 332, 96–102 (2014).
[Crossref]

F. Song, C. Xu, S. Wang, and Y. Yan, “An optimization scheme for the measurement of liquid jet parameters with rainbow refractometry based on Debye theory,” Opt. Commun. 305, 204–211 (2013).
[Crossref]

Xu, F.

H. Yu, F. Xu, and C. Tropea, “Optical caustics associated with the primary rainbow of oblate droplets: simulation and application in non-sphericity measurement,” Opt. Express 21, 25761–25771 (2013).
[Crossref] [PubMed]

H. Yu, F. Xu, and C. Tropea, “Spheroidal droplet measurements based on generalized rainbow patterns,” J. Quant. Spectrosc. Radiat. Transfer 126, 105–112 (2013).
[Crossref]

Yan, Y.

F. Song, C. Xu, S. Wang, and Y. Yan, “An optimization scheme for the measurement of liquid jet parameters with rainbow refractometry based on Debye theory,” Opt. Commun. 305, 204–211 (2013).
[Crossref]

Yu, H.

H. Yu, F. Xu, and C. Tropea, “Spheroidal droplet measurements based on generalized rainbow patterns,” J. Quant. Spectrosc. Radiat. Transfer 126, 105–112 (2013).
[Crossref]

H. Yu, F. Xu, and C. Tropea, “Optical caustics associated with the primary rainbow of oblate droplets: simulation and application in non-sphericity measurement,” Opt. Express 21, 25761–25771 (2013).
[Crossref] [PubMed]

Zimmer, L.

J. P. A. J. van Beeck, L. Zimmer, and M. L. Riethmuller, “Global rainbow thermometry for mean temperature and size measurement of spray droplets,” Part. Part. Syst. Char. 18, 196–204 (2001).
[Crossref]

J. Van Beeck, D. Giannoulis, L. Zimmer, and M. Riethmuller, “Global rainbow thermometry for droplet-temperature measurement,” Opt. Lett. 24, 1696–1698 (1999).
[Crossref]

Acta Physica Sinica (1)

Y. Wu, X. Wu, S. Saengkaew, H. Jiang, Q. Hong, G. Gréhan, and K. Cen, “Concentration and size measurements of sprays with global rainbow technique,” Acta Physica Sinica 62, 90703 (2013).

Appl. Opt. (6)

Can. J. Chem. Eng. (1)

M. Ouboukhlik, S. Saengkaew, M.-C. Fournier-Salaün, L. Estel, and G. Gréhan, “Local measurement of mass transfer in a reactive spray for CO2 capture,” Can. J. Chem. Eng. 93, 419–426 (2015).
[Crossref]

Combust. Flame (1)

C. Letty, B. Renou, J. Reveillon, S. Saengkaew, and G. Gréhan, “Experimental study of droplet temperature in a two-phase heptane/air V-flame,” Combust. Flame 160, 1803–1811 (2013).
[Crossref]

Exp. Fluids (4)

S. Saengkaew, G. Godard, J. Blaisot, and G. Gréhan, “Experimental analysis of global rainbow technique: sensitivity of temperature and size distribution measurements to non-spherical droplets,” Exp. Fluids 47, 839–848 (2009).
[Crossref]

J. Wang, G. Gréhan, Y. Han, S. Saengkaew, and G. Gouesbet, “Numerical study of global rainbow technique: sensitivity to non-sphericity of droplets,” Exp. Fluids 51, 149–159 (2011).
[Crossref]

M. Vetrano, S. Gauthier, J. van Beeck, P. Boulet, and J. M. Buchlin, “Characterization of a non-isothermal water spray by global rainbow thermometry,” Exp. Fluids 40, 15–22 (2006).
[Crossref]

S. Saengkaew, T. Charinpanikul, C. Laurent, Y. Biscos, G. Lavergne, G. Gouesbet, and G. Gréhan, “Processing of individual rainbow signals,” Exp. Fluids 48, 111–119 (2010).
[Crossref]

J. Math. Phys. (1)

H. Nussenzveig, “High-frequency scattering by a transparent sphere. II. theory of the tainbow and the glory,” J. Math. Phys. 10, 125–176 (1969).
[Crossref]

J. Opt. Soc. Am. (1)

J. Quant. Spectrosc. Radiat. Transfer (1)

H. Yu, F. Xu, and C. Tropea, “Spheroidal droplet measurements based on generalized rainbow patterns,” J. Quant. Spectrosc. Radiat. Transfer 126, 105–112 (2013).
[Crossref]

Meas. Sci. Technol. (2)

P. Lemaitre, E. Porcheron, G. Gréhan, and L. Bouilloux, “Development of a global rainbow refractometry technique to measure the temperature of spray droplets in a large containment vessel,” Meas. Sci. Technol. 17, 1299–1306 (2006).
[Crossref]

X. Wu, Y. Wu, S. Saengkaew, S. Meunier-Guttin-Cluzel, G. Gréhan, L. Chen, and K. Cen, “Concentration and composition measurement of sprays with a global rainbow technique,” Meas. Sci. Technol. 23, 125302 (2012).
[Crossref]

Opt. Commun. (3)

F. Song, C. Xu, S. Wang, and Y. Yan, “An optimization scheme for the measurement of liquid jet parameters with rainbow refractometry based on Debye theory,” Opt. Commun. 305, 204–211 (2013).
[Crossref]

F. Song, C. Xu, and S. Wang, “Twin primary rainbows scattering by a liquid-filled capillary,” Opt. Commun. 332, 96–102 (2014).
[Crossref]

S. Saengkaew, T. Charinpanitkul, H. Vanisri, W. Tanthapanichakoon, L. Mees, G. Gouesbet, and G. Gréhan, “Rainbow refractrometry: on the validity domain of Airy’s and Nussenzveig’s theories,” Opt. Commun. 259, 7–13 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (3)

Part. Part. Syst. Char. (1)

J. P. A. J. van Beeck, L. Zimmer, and M. L. Riethmuller, “Global rainbow thermometry for mean temperature and size measurement of spray droplets,” Part. Part. Syst. Char. 18, 196–204 (2001).
[Crossref]

Phys. Chem. Liq. (1)

A. Blanco, A. Gayol, D. Goméz, and J. M. Navaza, “Temperature dependence of thermophysical properties of ethanol + n-hexane + n-heptane,” Phys. Chem. Liq. 51, 381–403 (2013).
[Crossref]

Phys. Rep. (1)

J. A. Adam, “The mathematical physics of rainbows and glories,” Phys. Rep. 356, 229–365 (2002).
[Crossref]

Other (4)

H. C. Hulst and H. Van De Hulst, Light Scattering by Small Particles (Courier Corporation, 1957).

J. van Beeck, M. Riethmuller, G. Lavergne, Y. Biscos, and A. Atthasit, “Processing droplet temperature measurement data obtained with rainbow thermometry,” in Optical Diagnostics for Fluids, Solids, and Combustion (SPIE, 2001), 251–264.
[Crossref]

S. Meunier-Guttin-Cluzel, S. Saengkaew, and G. Gréhan, “Réfractométrie d’Arc-en-ciel Global: Analyse de mélanges de gouttes par algorithme génétique,” in Congrès Francophone de Techniques Laser, (2010).

J. Promvongsa, Y. Wu, G. Gréhan, S. Saengkaew, B. Fungtammasan, and P. Vallikul, “One-Dimensional Rainbow Technique to Characterize the Evaporation at Ambient Temperature and Evaporation in a Flame of Monodis-persed Droplets,” in 7th European Combustion Meeting (ECM2015), pp. 1–5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Optical setup of ORT-2 and its comparison to ORT-1: side (a) and top (b) view of ORT-1; c-d. optical setup of ORT-2 using Fourier domain filtering, with side (c) and top (d) view of ORT-2.
Fig. 2
Fig. 2 Typical rainbow calibration signal. (a) A panorama of images of the reflected laser sheet at five different angles in angular-pixel calibration; (b) The calibrated 2D angle-pixel relation.
Fig. 3
Fig. 3 Standard one-dimensional rainbow signal.
Fig. 4
Fig. 4 Results of measurements of the droplet line with one-dimensional standard rainbow technique. (a) Comparison of the measured and inversed rainbow curve, refractive index n = 1.3940, diameter d = 99.7μm; (b) Statistics on the measured refractive indices; (c) Statistics on the measured diameters.
Fig. 5
Fig. 5 Demonstration of one-dimensional global rainbow technique. (a) Global rainbow image of a line of droplet in a flame; (b) Rainbow signal at different heights and an example (subfigure) of rainbow signal processing; (c) Measured refractive index along the height.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

g 1 ( ε , η ) = i exp [ i π ε 2 + η 2 λ f ( 1 z f ) ] G ( ε λ f , η λ f ) , w i t h | η | < a ,
| φ y | < a f .
g 2 ( u , v ) = 1 M g 0 ( u M , v M ) ,
Δ θ Δ x 2 z 0.086 ° .

Metrics