Abstract

We demonstrate the extension of the measurement range of Brillouin optical time-domain analysis (BOTDA) sensors using a distributed Brillouin amplifier (DBA). The technique is based on injecting a DBA pump wave in the fiber to generate an additional Brillouin interaction that amplifies the BOTDA pump pulses and compensates optical fiber attenuation. This amplification does not introduce any significant noise to the BOTDA’s probe wave due to the inherent directionality of the Brillouin gain. Additionally, we deploy a differential pulse-width pair measurement method to avoid measurement errors due to the interplay between the self-phase modulation effect and the changes in the temporal shape of the pulses induced by the transient behavior of Brillouin gain. Experimental proof-of-concept results in a 50-km fiber link demonstrate full compensation of the fiber’s attenuation with no penalty on the signal-to-noise ratio of the detected signal.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin optical time-domain analysis sensor with pump pulse amplification

Juan José Mompó, Javier Urricelqui, and Alayn Loayssa
Opt. Express 24(12) 12672-12681 (2016)

Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification

Young Hoon Kim and Kwang Yong Song
Opt. Express 25(13) 14098-14105 (2017)

Effects of pump pulse extinction ratio in Brillouin optical time-domain analysis sensors

Haritz Iribas, Jon Mariñelarena, Cheng Feng, Javier Urricelqui, Thomas Schneider, and Alayn Loayssa
Opt. Express 25(22) 27896-27912 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performance of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
    [Crossref]
  2. S. M. Foaleng, F. Rodríguez-Barrios, S. Martín-López, M. González-Herráez, and L. Thévenaz, “Detrimental effect of self–phase modulation on the performance of Brillouin distributed fiber sensors,” Opt. Lett. 36(2), 97–99 (2011).
    [Crossref] [PubMed]
  3. Y. Dong, L. Chen, and X. Bao, “Extending the sensing range of Brillouin optical time–domain analysis combining frequency–division multiplexing and in–line EDFAs,” J. Lightwave Technol. 30(8), 1161–1167 (2012).
    [Crossref]
  4. A. Zornoza, R. A. Pérez-Herrera, C. Elosúa, S. Díaz, C. Bariain, A. Loayssa, and M. Lopez-Amo, “Long–range hybrid network with point and distributed Brillouin sensors using Raman amplification,” Opt. Express 18(9), 9531–9541 (2010).
    [Crossref] [PubMed]
  5. X. Angulo-Vinuesa, S. Martín-López, J. Nuño, P. Corredera, J. D. Ania-Castañón, L. Thévenaz, and M. González-Herráez, “Raman–assisted Brillouin distributed temperature sensor over 100 km featuring 2 m resolution and 1.2 C uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
    [Crossref]
  6. N. A. Olsson and J. P. Van Der Ziel, “Fibre Brillouin amplifier with electronically controlled bandwidth,” Electron. Lett. 22(9), 488–490 (1986).
    [Crossref]
  7. A. Zadok, A. Eyal, and M. Tur, “Gigahertz–wide optically reconfigurable filters using stimulated Brillouin scattering,” J. Lightwave Technol. 25(8), 2168–2174 (2007).
    [Crossref]
  8. X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
    [Crossref]
  9. J. Urricelqui, M. Sagues, and A. Loayssa, “Synthesis of Brillouin frequency shift profiles to compensate nonlocal effects and Brillouin induced noise in BOTDA sensors,” Opt. Express 22(15), 18195–18202 (2014).
    [Crossref] [PubMed]
  10. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
    [Crossref] [PubMed]
  11. L. Zou, X. Bao, S. Yang, L. Chen, and F. Ravet, “Effect of Brillouin slow light on distributed Brillouin fiber sensors,” Opt. Lett. 31(18), 2698–2700 (2006).
    [Crossref] [PubMed]
  12. J. C. Beugnot, M. Tur, S. F. Mafang, and L. Thévenaz, “Distributed Brillouin sensing with sub–meter spatial resolution: modeling and processing,” Opt. Express 19(8), 7381–7397 (2011).
    [Crossref] [PubMed]
  13. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse–width pair BOTDA for high spatial resolution sensing,” Opt. Express 16(26), 21616–21625 (2008).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

2012 (2)

2011 (3)

2010 (1)

2008 (1)

2007 (1)

2006 (1)

1995 (1)

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[Crossref]

1986 (1)

N. A. Olsson and J. P. Van Der Ziel, “Fibre Brillouin amplifier with electronically controlled bandwidth,” Electron. Lett. 22(9), 488–490 (1986).
[Crossref]

Angulo-Vinuesa, X.

Ania-Castañón, J. D.

Bao, X.

Bariain, C.

Beugnot, J. C.

Chen, L.

Corredera, P.

Dhliwayo, J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[Crossref]

Díaz, S.

Dong, Y.

Elosúa, C.

Eyal, A.

Foaleng, S. M.

González-Herráez, M.

Heron, N.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[Crossref]

Jackson, D. A.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[Crossref]

Li, W.

Li, Y.

Lin, J.

Loayssa, A.

Lopez-Amo, M.

Mafang, S. F.

Martín-López, S.

Nuño, J.

Olsson, N. A.

N. A. Olsson and J. P. Van Der Ziel, “Fibre Brillouin amplifier with electronically controlled bandwidth,” Electron. Lett. 22(9), 488–490 (1986).
[Crossref]

Pérez-Herrera, R. A.

Ravet, F.

Rodríguez-Barrios, F.

Sagues, M.

Thévenaz, L.

Tur, M.

Urricelqui, J.

Van Der Ziel, J. P.

N. A. Olsson and J. P. Van Der Ziel, “Fibre Brillouin amplifier with electronically controlled bandwidth,” Electron. Lett. 22(9), 488–490 (1986).
[Crossref]

Webb, D. J.

X. Bao, J. Dhliwayo, N. Heron, D. J. Webb, and D. A. Jackson, “Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering,” J. Lightwave Technol. 13(7), 1340–1348 (1995).
[Crossref]

Yang, S.

Zadok, A.

Zornoza, A.

Zou, L.

Electron. Lett. (1)

N. A. Olsson and J. P. Van Der Ziel, “Fibre Brillouin amplifier with electronically controlled bandwidth,” Electron. Lett. 22(9), 488–490 (1986).
[Crossref]

J. Lightwave Technol. (4)

Opt. Express (5)

Opt. Lett. (2)

Proc. SPIE (1)

S. M. Foaleng and L. Thévenaz, “Impact of Raman scattering and modulation instability on the performance of Brillouin sensors,” Proc. SPIE 7753, 77539V (2011).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Fundamentals of the technique, showing the spectra of the optical waves present in the fiber for a DBA-assisted BOTDA.
Fig. 2
Fig. 2 (a) Local Brillouin gain experienced by the pump pulses at each location of the fiber and (b) total gain experienced by the pulses in their propagation for each location of the fiber. νL0 is the wavelength of the DBA pump wave when no modulation is applied. Simulation parameters are: Brillouin gain 1.1 · 10−11m/W, Brillouin linewidth 30MHz, effective area is 8 · 10−11 m2 and the injected optical pump pulse and DBA pump are 100mW and 4.7mW, respectively.
Fig. 3
Fig. 3 Experimental setup for the DBA–assisted BOTDA sensor.
Fig. 4
Fig. 4 Measured distribution of the Brillouin spectra when the DBA is turned (a) off and (b) on for 55-ns pulses.
Fig. 5
Fig. 5 Optical power of pump pulses at the output of the fiber. Two pulses of 40 ns (red) and 55 ns (blue) are depicted at the output of the fiber with the DBA turned off (dashed line, right vertical axis) and on (solid line, left vertical axis).
Fig. 6
Fig. 6 Measured BOTDA traces when the DBA is switched off (red–dotted line) and on (black–solid line).
Fig. 7
Fig. 7 Measured Brillouin spectra at the first (black–solid line) and final (red–dashed line) section using (a) the conventional BOTDA technique and (b) the DBA–assisted technique.
Fig. 8
Fig. 8 SNR evolution for the DBA–assisted technique (black–solid line) and the conventional BOTDA sensor (red–dotted line).
Fig. 9
Fig. 9 BFS distribution measured (a) along the whole lenght of fiber and (b) at the last kilometers, using DBA for 15-ns (blue), 30-ns (red) and 40-ns (black) pulses and DPP of 40/55-ns (purple), and without DBA amplification for 40–ns pulses (green). Brillouin gain spectra (c) measured at the last kilometers using DBA for 15-ns (blue) and DPP of 40/55-ns (purple).
Fig. 10
Fig. 10 Brillouin gain spectra at the input (solid–black line) and output (medium–dashed red line) of the fiber link, for the DBA-assisted BOTDA deploying DPP using 40-ns and 55-ns pulses. Detection noise (long dashed black) without DBA.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d P P d z = [ g B ( Δ ν DBA ) P L g B ( Δ ν ) P S ] P P A eff α P P
d P S d z = g B ( Δ ν ) A eff P P P S + α P S
d P L d z = g B ( Δ ν DBA ) A eff P P P L + α P L
Δ ν DBA ( z ) = ν P ν L ( z ) + BFS ( z )
P P ( z ) = P P ( 0 ) exp [ 0 z g B ( Δ ν DBA ) A eff P L ( L ) exp ( α ( L z ) ) d x ] exp [ g B ( Δ ν ) A eff P S ( L ) exp ( α L ) ( exp ( α z ) 1 ) α ] exp [ α z ]

Metrics