Abstract

Structured illumination (SI) using non-uniform intensity patterns is well-known for improving lateral resolution in microscopy. Here, we propose a multiplexed SI technique for recovering images with higher lateral resolution and with higher dimensional information at the same time. In this framework, we use unknown non-uniform intensity patterns for incoherent sample illumination and use the corresponding acquisitions for image recovery. In the first example, we use the reported framework to recover sample images with higher lateral resolution and separate different sections of the sample along the z-direction. In the second example, we recover the sample images with higher lateral resolution and separate the images at different spectral bands. The reported multiplexed-SI framework may find applications in general imaging settings where higher dimensional information is mixed in 2D image measurements. It can also be used in microscopy settings for computational sectioning and multispectral imaging.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography

Siyuan Dong, Pariksheet Nanda, Radhika Shiradkar, Kaikai Guo, and Guoan Zheng
Opt. Express 22(17) 20856-20870 (2014)

Incoherent Fourier ptychographic photography using structured light

Siyuan Dong, Pariksheet Nanda, Kaikai Guo, Jun Liao, and Guoan Zheng
Photon. Res. 3(1) 19-23 (2015)

Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging

Siyuan Dong, Radhika Shiradkar, Pariksheet Nanda, and Guoan Zheng
Biomed. Opt. Express 5(6) 1757-1767 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
    [Crossref] [PubMed]
  2. M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
    [Crossref] [PubMed]
  3. E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
    [Crossref]
  4. S. Dong, P. Nanda, R. Shiradkar, K. Guo, and G. Zheng, “High-resolution fluorescence imaging via pattern-illuminated Fourier ptychography,” Opt. Express 22(17), 20856–20870 (2014).
    [Crossref] [PubMed]
  5. H. Yilmaz, E. G. van Putten, J. Bertolotti, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Speckle correlation resolution enhancement of wide-field fluorescence imaging,” Optica 2(5), 424–429 (2015).
    [Crossref]
  6. J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
    [Crossref] [PubMed]
  7. O. Wagner, A. Schwarz, A. Shemer, C. Ferreira, J. García, and Z. Zalevsky, “Superresolved imaging based on wavelength multiplexing of projected unknown speckle patterns,” Appl. Opt. 54(13), D51–D60 (2015).
    [Crossref]
  8. S. Dong, P. Nanda, K. Guo, J. Liao, and G. Zheng, “Incoherent Fourier ptychographic photography using structured light,” Photon. Res. 3(1), 19–23 (2015).
    [Crossref]
  9. C. B. Müller and J. Enderlein, “Image Scanning Microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
    [Crossref] [PubMed]
  10. G. P. J. Laporte, N. Stasio, C. J. R. Sheppard, and D. Psaltis, “Resolution enhancement in nonlinear scanning microscopy through post-detection digital computation,” Optica 1(6), 455–460 (2014).
    [Crossref]
  11. I. J. Cox, C. J. Sheppard, and T. Wilson, “Super-resolution by confocal fluorescent microscopy,” Optik (Stuttg.) 60, 391–396 (1982).
  12. A. Jost, E. Tolstik, P. Feldmann, K. Wicker, A. Sentenac, and R. Heintzmann, “Optical Sectioning and High Resolution in Single-Slice Structured Illumination Microscopy by Thick Slice Blind-SIM Reconstruction,” PLoS One 10(7), e0132174 (2015).
    [Crossref] [PubMed]
  13. R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett. 38(22), 4723–4726 (2013).
    [Crossref] [PubMed]
  14. P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71 (2013).
    [Crossref] [PubMed]
  15. D. J. Batey, D. Claus, and J. M. Rodenburg, “Information multiplexing in ptychography,” Ultramicroscopy 138, 13–21 (2014).
    [Crossref] [PubMed]
  16. S. Dong, R. Shiradkar, P. Nanda, and G. Zheng, “Spectral multiplexing and coherent-state decomposition in Fourier ptychographic imaging,” Biomed. Opt. Express 5(6), 1757–1767 (2014).
    [Crossref] [PubMed]
  17. A. M. Maiden, M. J. Humphry, and J. M. Rodenburg, “Ptychographic transmission microscopy in three dimensions using a multi-slice approach,” J. Opt. Soc. Am. A 29(8), 1606–1614 (2012).
    [Crossref] [PubMed]

2015 (4)

2014 (4)

2013 (3)

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett. 38(22), 4723–4726 (2013).
[Crossref] [PubMed]

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71 (2013).
[Crossref] [PubMed]

2012 (2)

A. M. Maiden, M. J. Humphry, and J. M. Rodenburg, “Ptychographic transmission microscopy in three dimensions using a multi-slice approach,” J. Opt. Soc. Am. A 29(8), 1606–1614 (2012).
[Crossref] [PubMed]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

2010 (1)

C. B. Müller and J. Enderlein, “Image Scanning Microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref] [PubMed]

2008 (1)

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

2000 (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

1982 (1)

I. J. Cox, C. J. Sheppard, and T. Wilson, “Super-resolution by confocal fluorescent microscopy,” Optik (Stuttg.) 60, 391–396 (1982).

Agard, D. A.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Allain, M.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Ayuk, R.

Batey, D. J.

D. J. Batey, D. Claus, and J. M. Rodenburg, “Information multiplexing in ptychography,” Ultramicroscopy 138, 13–21 (2014).
[Crossref] [PubMed]

Belkebir, K.

R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett. 38(22), 4723–4726 (2013).
[Crossref] [PubMed]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Bertolotti, J.

Cande, W. Z.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Carlton, P. M.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Choi, C.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Claus, D.

D. J. Batey, D. Claus, and J. M. Rodenburg, “Information multiplexing in ptychography,” Ultramicroscopy 138, 13–21 (2014).
[Crossref] [PubMed]

Cox, I. J.

I. J. Cox, C. J. Sheppard, and T. Wilson, “Super-resolution by confocal fluorescent microscopy,” Optik (Stuttg.) 60, 391–396 (1982).

Dong, S.

Enderlein, J.

C. B. Müller and J. Enderlein, “Image Scanning Microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref] [PubMed]

Feldmann, P.

A. Jost, E. Tolstik, P. Feldmann, K. Wicker, A. Sentenac, and R. Heintzmann, “Optical Sectioning and High Resolution in Single-Slice Structured Illumination Microscopy by Thick Slice Blind-SIM Reconstruction,” PLoS One 10(7), e0132174 (2015).
[Crossref] [PubMed]

Ferreira, C.

García, J.

Giovannini, H.

Girard, J.

R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett. 38(22), 4723–4726 (2013).
[Crossref] [PubMed]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Golubovskaya, I. N.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Guo, K.

Gustafsson, M. G.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

Heintzmann, R.

A. Jost, E. Tolstik, P. Feldmann, K. Wicker, A. Sentenac, and R. Heintzmann, “Optical Sectioning and High Resolution in Single-Slice Structured Illumination Microscopy by Thick Slice Blind-SIM Reconstruction,” PLoS One 10(7), e0132174 (2015).
[Crossref] [PubMed]

R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett. 38(22), 4723–4726 (2013).
[Crossref] [PubMed]

Humphry, M. J.

Jang, J.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Jeong, K.-H.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Jost, A.

A. Jost, E. Tolstik, P. Feldmann, K. Wicker, A. Sentenac, and R. Heintzmann, “Optical Sectioning and High Resolution in Single-Slice Structured Illumination Microscopy by Thick Slice Blind-SIM Reconstruction,” PLoS One 10(7), e0132174 (2015).
[Crossref] [PubMed]

R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett. 38(22), 4723–4726 (2013).
[Crossref] [PubMed]

Keum, D.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Lagendijk, A.

Laporte, G. P. J.

Le Moal, E.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Liao, J.

Maiden, A. M.

Mangeat, T.

Menzel, A.

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71 (2013).
[Crossref] [PubMed]

Min, J.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Mosk, A. P.

Mudry, E.

R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett. 38(22), 4723–4726 (2013).
[Crossref] [PubMed]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Müller, C. B.

C. B. Müller and J. Enderlein, “Image Scanning Microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref] [PubMed]

Nanda, P.

Nicoletti, C.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Psaltis, D.

Rodenburg, J. M.

Ryu, S.-W.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Sandeau, N.

Savatier, J.

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Schwarz, A.

Sedat, J. W.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Sentenac, A.

A. Jost, E. Tolstik, P. Feldmann, K. Wicker, A. Sentenac, and R. Heintzmann, “Optical Sectioning and High Resolution in Single-Slice Structured Illumination Microscopy by Thick Slice Blind-SIM Reconstruction,” PLoS One 10(7), e0132174 (2015).
[Crossref] [PubMed]

R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett. 38(22), 4723–4726 (2013).
[Crossref] [PubMed]

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Shao, L.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Shemer, A.

Sheppard, C. J.

I. J. Cox, C. J. Sheppard, and T. Wilson, “Super-resolution by confocal fluorescent microscopy,” Optik (Stuttg.) 60, 391–396 (1982).

Sheppard, C. J. R.

Shiradkar, R.

Stasio, N.

Thibault, P.

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71 (2013).
[Crossref] [PubMed]

Tolstik, E.

A. Jost, E. Tolstik, P. Feldmann, K. Wicker, A. Sentenac, and R. Heintzmann, “Optical Sectioning and High Resolution in Single-Slice Structured Illumination Microscopy by Thick Slice Blind-SIM Reconstruction,” PLoS One 10(7), e0132174 (2015).
[Crossref] [PubMed]

van Putten, E. G.

Vos, W. L.

Wagner, O.

Wang, C. J.

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

Wicker, K.

A. Jost, E. Tolstik, P. Feldmann, K. Wicker, A. Sentenac, and R. Heintzmann, “Optical Sectioning and High Resolution in Single-Slice Structured Illumination Microscopy by Thick Slice Blind-SIM Reconstruction,” PLoS One 10(7), e0132174 (2015).
[Crossref] [PubMed]

R. Ayuk, H. Giovannini, A. Jost, E. Mudry, J. Girard, T. Mangeat, N. Sandeau, R. Heintzmann, K. Wicker, K. Belkebir, and A. Sentenac, “Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm,” Opt. Lett. 38(22), 4723–4726 (2013).
[Crossref] [PubMed]

Wilson, T.

I. J. Cox, C. J. Sheppard, and T. Wilson, “Super-resolution by confocal fluorescent microscopy,” Optik (Stuttg.) 60, 391–396 (1982).

Ye, J. C.

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Yilmaz, H.

Zalevsky, Z.

Zheng, G.

Appl. Opt. (1)

Biomed. Opt. Express (1)

Biophys. J. (1)

M. G. Gustafsson, L. Shao, P. M. Carlton, C. J. Wang, I. N. Golubovskaya, W. Z. Cande, D. A. Agard, and J. W. Sedat, “Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination,” Biophys. J. 94(12), 4957–4970 (2008).
[Crossref] [PubMed]

J. Microsc. (1)

M. G. Gustafsson, “Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy,” J. Microsc. 198(2), 82–87 (2000).
[Crossref] [PubMed]

J. Opt. Soc. Am. A (1)

Nat. Photonics (1)

E. Mudry, K. Belkebir, J. Girard, J. Savatier, E. Le Moal, C. Nicoletti, M. Allain, and A. Sentenac, “Structured illumination microscopy using unknown speckle patterns,” Nat. Photonics 6(5), 312–315 (2012).
[Crossref]

Nature (1)

P. Thibault and A. Menzel, “Reconstructing state mixtures from diffraction measurements,” Nature 494(7435), 68–71 (2013).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Optica (2)

Optik (Stuttg.) (1)

I. J. Cox, C. J. Sheppard, and T. Wilson, “Super-resolution by confocal fluorescent microscopy,” Optik (Stuttg.) 60, 391–396 (1982).

Photon. Res. (1)

Phys. Rev. Lett. (1)

C. B. Müller and J. Enderlein, “Image Scanning Microscopy,” Phys. Rev. Lett. 104(19), 198101 (2010).
[Crossref] [PubMed]

PLoS One (1)

A. Jost, E. Tolstik, P. Feldmann, K. Wicker, A. Sentenac, and R. Heintzmann, “Optical Sectioning and High Resolution in Single-Slice Structured Illumination Microscopy by Thick Slice Blind-SIM Reconstruction,” PLoS One 10(7), e0132174 (2015).
[Crossref] [PubMed]

Sci. Rep. (1)

J. Min, J. Jang, D. Keum, S.-W. Ryu, C. Choi, K.-H. Jeong, and J. C. Ye, “Fluorescent microscopy beyond diffraction limits using speckle illumination and joint support recovery,” Sci. Rep. 3, 2075 (2013).
[Crossref] [PubMed]

Ultramicroscopy (1)

D. J. Batey, D. Claus, and J. M. Rodenburg, “Information multiplexing in ptychography,” Ultramicroscopy 138, 13–21 (2014).
[Crossref] [PubMed]

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (1007 KB)      Visualization 1
» Visualization 2: MP4 (2780 KB)      Visualization 2

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Images corresponding to different illumination patterns are used to recover resolution-enhanced images at different z sections (a) and at different wavelengths (b).

Fig. 2
Fig. 2

Image recovery of different z sections using the multiplexed-SI scheme. (a) The low-resolution acquisition under unknown speckle illumination and its Fourier spectrum. (b1) and (c1): the input ground truth at two different z sections. (b2) and (c2): the recovered images using the multiplexed-SI. (b3) and (c3): the recovered speckles at two different z-sections. The MSE is plotted as a function as noise (d1), pattern number (d2), and loop number (d3).

Fig. 3
Fig. 3

Image recovery of different spectral bands using the multiplexed-SI scheme. (a) The low-resolution acquisition under unknown speckle illumination. Inset shows the corresponding Fourier spectrum. The recovered images (b) and speckles (c) using the multiplexed-SI with 50 loops. (d) The recovered color image by combining three channels. (e) The input ground truth.

Fig. 4
Fig. 4

Experimental validation of the multiplexed-SI scheme. (a) The experimental setup. A video projector is used to project translated unknown color speckles on the sample. (b) The raw monochromatic acquisition of the color object (Visualization 1). (c) The images under uniform illumination. The multiplexed-SI recovered images (d) and speckle patterns (e). We used 20 loops for recovery. (f) The ground truth of the object. (g) Lines traces of (c4), (d4), and (f).

Fig. 5
Fig. 5

(a) Imaging setup, where a two-layer was used as the object. (b) The captured raw image with 0.005 NA, representing incoherent mixture of the two sections (Visualization 2). Uniform-illuminated, our recovery, ground truth of layer 1 (c1)-(c3) and layer 2 (d1)-(d3). We used 30 loops in the recovery process. (e) Line traces of small features in (c1)-(c3).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( I n )= m OT F m ( I obj_m P mn )
I tm update = I tm I n m I tm
( I pm updated )=( I pm )+OT F m ( ( I tm updated )( I tm ) )
I obj_m updated = I obj_m + P mn (max( P mn )) 2 ( I pm updated I pm )
P mn updated = P mn + I obj_m updated (max( I obj_m updated )) 2 ( I pm updated I pm )

Metrics