Abstract

An all-optical packet switching using bistable photonic crystal nanocavity memories was demonstrated for the first time. Nanocavity-waveguide coupling systems were configured for 1 × 1, 1 × 2, and 1 × 3 switches for 10-Gb/s optical packet, and they were all operated with an optical bias power of only a few μW. The power is several magnitudes lower than that of previously reported all-optical packet switches incorporating all-optical memories. A theoretical investigation indicated the optimum design for reducing the power consumption even further, and for realizing a higher data-rate capability and higher extinction. A small footprint and integrability are also features of our switches, which make them attractive for constructing an all-optical packet switching subsystem with a view to realizing optical routing on a chip.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
All-optical memory based on injection-locking bistability in photonic crystal lasers

Chin-Hui Chen, Shinji Matsuo, Kengo Nozaki, Akihiko Shinya, Tomonari Sato, Yoshihiro Kawaguchi, Hisashi Sumikura, and Masaya Notomi
Opt. Express 19(4) 3387-3395 (2011)

25-channel all-optical gate switches realized by integrating silicon photonic crystal nanocavities

Kengo Nozaki, Eiichi Kuramochi, Akihiko Shinya, and Masaya Notomi
Opt. Express 22(12) 14263-14274 (2014)

All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal

Akihiko Shinya, Shinji Matsuo, Yosia, Takasumi Tanabe, Eiichi Kuramochi, Tomonari Sato, Takaaki Kakitsuka, and Masaya Notomi
Opt. Express 16(23) 19382-19387 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
    [Crossref]
  2. A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
    [Crossref]
  3. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
    [Crossref]
  4. T. Hirooka, M. Okazaki, T. Hirano, P. Y. Guan, M. Nakazawa, and S. Nakamura, “All-Optical Demultiplexing of 640-Gb/s OTDM-DPSK Signal Using a Semiconductor SMZ Switch,” IEEE Photonics Technol. Lett. 21(20), 1574–1576 (2009).
    [Crossref]
  5. S. C. Nicholes, M. L. Masanovic, B. Jevremovic, E. Lively, L. A. Coldren, and D. J. Blumenthal, “An 8 x 8 InP Monolithic Tunable Optical Router (MOTOR) Packet Forwarding Chip,” J. Lightwave Technol. 28(4), 641–650 (2010).
    [Crossref]
  6. T. Tanemura, K. Takeda, and Y. Nakano, “Wavelength-multiplexed optical packet switching using InP phased-array switch,” Opt. Express 17(11), 9454–9459 (2009).
    [Crossref] [PubMed]
  7. K. Takeda, M. Takenaka, M. Raburn, Y. Kanema, J. S. Barton, X. L. Song, and Y. Nakano, “Dynamic operation of all-optical flip-flops with distributed Bragg reflectors for self-routing of 10-Gbit/s optical packets,” Jpn. J. Appl. Phys. 46(3A), 1028–1032 (2007).
    [Crossref]
  8. S. Tanaka, S. H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, “Monolithically Integrated 8:1 SOA Gate Switch With Large Extinction Ratio and Wide Input Power Dynamic Range,” IEEE J. Quantum Electron. 45(9), 1155–1162 (2009).
    [Crossref]
  9. N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical Networks-on-Chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
    [Crossref] [PubMed]
  10. A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband Operation of Nanophotonic Router for Silicon Photonic Networks-on-Chip,” IEEE Photonics Technol. Lett. 22(12), 926–928 (2010).
    [Crossref]
  11. M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, and Y. A. Vlasov, “Non-Blocking 4x4 Electro-Optic Silicon Switch for On-Chip Photonic Networks,” Opt. Express 19(1), 47–54 (2011).
    [Crossref] [PubMed]
  12. K. Huybrechts, T. Tanemura, Y. Nakano, R. Baets, and G. Morthier, “40-Gb/s All-Optical Packet Switching With a Distributed-Feedback Laser as All-Optical Flip-Flop,” IEEE Photonics Technol. Lett. 21(11), 703–705 (2009).
    [Crossref]
  13. L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
    [Crossref]
  14. K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
    [Crossref]
  15. A. Shinya, S. Matsuo, T. Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express 16(23), 19382–19387 (2008).
    [Crossref] [PubMed]
  16. C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
    [Crossref]
  17. S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
    [Crossref]
  18. B. R. Bennett, R. A. Soref, and J. A. Delalamo, “Carrier-induced change in refractive-index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
    [Crossref]
  19. Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
    [Crossref] [PubMed]
  20. E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
    [Crossref] [PubMed]
  21. L. D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, and A. De Rossi, “All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength,” Opt. Express 18(23), 23965–23972 (2010).
    [Crossref] [PubMed]
  22. K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
    [Crossref]
  23. K. Nozaki, E. Kuramochi, A. Shinya, and M. Notomi, “25-channel all-optical gate switches realized by integrating silicon photonic crystal nanocavities,” Opt. Express 22(12), 14263–14274 (2014).
    [Crossref] [PubMed]
  24. E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
    [Crossref]
  25. E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Large Q factor enhancement of Ln nanocavity by a unified hole-shifting rule ” in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Kyoto, WI2–2 (2013).

2014 (4)

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

K. Nozaki, E. Kuramochi, A. Shinya, and M. Notomi, “25-channel all-optical gate switches realized by integrating silicon photonic crystal nanocavities,” Opt. Express 22(12), 14263–14274 (2014).
[Crossref] [PubMed]

2013 (1)

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

2012 (1)

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

2011 (1)

2010 (6)

S. C. Nicholes, M. L. Masanovic, B. Jevremovic, E. Lively, L. A. Coldren, and D. J. Blumenthal, “An 8 x 8 InP Monolithic Tunable Optical Router (MOTOR) Packet Forwarding Chip,” J. Lightwave Technol. 28(4), 641–650 (2010).
[Crossref]

L. D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, and A. De Rossi, “All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength,” Opt. Express 18(23), 23965–23972 (2010).
[Crossref] [PubMed]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband Operation of Nanophotonic Router for Silicon Photonic Networks-on-Chip,” IEEE Photonics Technol. Lett. 22(12), 926–928 (2010).
[Crossref]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

2009 (5)

S. Tanaka, S. H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, “Monolithically Integrated 8:1 SOA Gate Switch With Large Extinction Ratio and Wide Input Power Dynamic Range,” IEEE J. Quantum Electron. 45(9), 1155–1162 (2009).
[Crossref]

K. Huybrechts, T. Tanemura, Y. Nakano, R. Baets, and G. Morthier, “40-Gb/s All-Optical Packet Switching With a Distributed-Feedback Laser as All-Optical Flip-Flop,” IEEE Photonics Technol. Lett. 21(11), 703–705 (2009).
[Crossref]

T. Hirooka, M. Okazaki, T. Hirano, P. Y. Guan, M. Nakazawa, and S. Nakamura, “All-Optical Demultiplexing of 640-Gb/s OTDM-DPSK Signal Using a Semiconductor SMZ Switch,” IEEE Photonics Technol. Lett. 21(20), 1574–1576 (2009).
[Crossref]

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[Crossref]

T. Tanemura, K. Takeda, and Y. Nakano, “Wavelength-multiplexed optical packet switching using InP phased-array switch,” Opt. Express 17(11), 9454–9459 (2009).
[Crossref] [PubMed]

2008 (3)

2007 (2)

K. Takeda, M. Takenaka, M. Raburn, Y. Kanema, J. S. Barton, X. L. Song, and Y. Nakano, “Dynamic operation of all-optical flip-flops with distributed Bragg reflectors for self-routing of 10-Gbit/s optical packets,” Jpn. J. Appl. Phys. 46(3A), 1028–1032 (2007).
[Crossref]

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

1990 (1)

B. R. Bennett, R. A. Soref, and J. A. Delalamo, “Carrier-induced change in refractive-index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Asano, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

Assefa, S.

Baets, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

K. Huybrechts, T. Tanemura, Y. Nakano, R. Baets, and G. Morthier, “40-Gb/s All-Optical Packet Switching With a Distributed-Feedback Laser as All-Optical Flip-Flop,” IEEE Photonics Technol. Lett. 21(11), 703–705 (2009).
[Crossref]

Barton, J. S.

K. Takeda, M. Takenaka, M. Raburn, Y. Kanema, J. S. Barton, X. L. Song, and Y. Nakano, “Dynamic operation of all-optical flip-flops with distributed Bragg reflectors for self-routing of 10-Gbit/s optical packets,” Jpn. J. Appl. Phys. 46(3A), 1028–1032 (2007).
[Crossref]

Bennett, B. R.

B. R. Bennett, R. A. Soref, and J. A. Delalamo, “Carrier-induced change in refractive-index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Bergman, K.

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband Operation of Nanophotonic Router for Silicon Photonic Networks-on-Chip,” IEEE Photonics Technol. Lett. 22(12), 926–928 (2010).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical Networks-on-Chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Biberman, A.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband Operation of Nanophotonic Router for Silicon Photonic Networks-on-Chip,” IEEE Photonics Technol. Lett. 22(12), 926–928 (2010).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical Networks-on-Chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

Blumenthal, D. J.

Boucaud, P.

Carloni, L. P.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Checoury, X.

Chen, L.

Coldren, L. A.

Combrie, S.

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[Crossref]

Combrié, S.

De Rossi, A.

L. D. Haret, X. Checoury, Z. Han, P. Boucaud, S. Combrié, and A. De Rossi, “All-silicon photonic crystal photoconductor on silicon-on-insulator at telecom wavelength,” Opt. Express 18(23), 23965–23972 (2010).
[Crossref] [PubMed]

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[Crossref]

de Vries, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Delalamo, J. A.

B. R. Bennett, R. A. Soref, and J. A. Delalamo, “Carrier-induced change in refractive-index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Doany, F. E.

Ekawa, M.

S. Tanaka, S. H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, “Monolithically Integrated 8:1 SOA Gate Switch With Large Extinction Ratio and Wide Input Power Dynamic Range,” IEEE J. Quantum Electron. 45(9), 1155–1162 (2009).
[Crossref]

Geluk, E. J.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Green, W. M. J.

Guan, P. Y.

T. Hirooka, M. Okazaki, T. Hirano, P. Y. Guan, M. Nakazawa, and S. Nakamura, “All-Optical Demultiplexing of 640-Gb/s OTDM-DPSK Signal Using a Semiconductor SMZ Switch,” IEEE Photonics Technol. Lett. 21(20), 1574–1576 (2009).
[Crossref]

Han, Z.

Haret, L. D.

Hasebe, K.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

Hirano, T.

T. Hirooka, M. Okazaki, T. Hirano, P. Y. Guan, M. Nakazawa, and S. Nakamura, “All-Optical Demultiplexing of 640-Gb/s OTDM-DPSK Signal Using a Semiconductor SMZ Switch,” IEEE Photonics Technol. Lett. 21(20), 1574–1576 (2009).
[Crossref]

Hirooka, T.

T. Hirooka, M. Okazaki, T. Hirano, P. Y. Guan, M. Nakazawa, and S. Nakamura, “All-Optical Demultiplexing of 640-Gb/s OTDM-DPSK Signal Using a Semiconductor SMZ Switch,” IEEE Photonics Technol. Lett. 21(20), 1574–1576 (2009).
[Crossref]

Husko, C.

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[Crossref]

Huybrechts, K.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

K. Huybrechts, T. Tanemura, Y. Nakano, R. Baets, and G. Morthier, “40-Gb/s All-Optical Packet Switching With a Distributed-Feedback Laser as All-Optical Flip-Flop,” IEEE Photonics Technol. Lett. 21(11), 703–705 (2009).
[Crossref]

Jahnes, C. V.

Jeong, S. H.

S. Tanaka, S. H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, “Monolithically Integrated 8:1 SOA Gate Switch With Large Extinction Ratio and Wide Input Power Dynamic Range,” IEEE J. Quantum Electron. 45(9), 1155–1162 (2009).
[Crossref]

Jevremovic, B.

Kakitsuka, T.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

A. Shinya, S. Matsuo, T. Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express 16(23), 19382–19387 (2008).
[Crossref] [PubMed]

Kanema, Y.

K. Takeda, M. Takenaka, M. Raburn, Y. Kanema, J. S. Barton, X. L. Song, and Y. Nakano, “Dynamic operation of all-optical flip-flops with distributed Bragg reflectors for self-routing of 10-Gbit/s optical packets,” Jpn. J. Appl. Phys. 46(3A), 1028–1032 (2007).
[Crossref]

Kash, J. A.

Kawaguchi, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Kobayashi, W.

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

Kumar, R.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Kuramochi, E.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

K. Nozaki, E. Kuramochi, A. Shinya, and M. Notomi, “25-channel all-optical gate switches realized by integrating silicon photonic crystal nanocavities,” Opt. Express 22(12), 14263–14274 (2014).
[Crossref] [PubMed]

A. Shinya, S. Matsuo, T. Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express 16(23), 19382–19387 (2008).
[Crossref] [PubMed]

Lee, B. G.

Lipson, M.

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband Operation of Nanophotonic Router for Silicon Photonic Networks-on-Chip,” IEEE Photonics Technol. Lett. 22(12), 926–928 (2010).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical Networks-on-Chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

Liu, L.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Lively, E.

Masanovic, M. L.

Matsuo, S.

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

A. Shinya, S. Matsuo, T. Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express 16(23), 19382–19387 (2008).
[Crossref] [PubMed]

Morito, K.

S. Tanaka, S. H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, “Monolithically Integrated 8:1 SOA Gate Switch With Large Extinction Ratio and Wide Input Power Dynamic Range,” IEEE J. Quantum Electron. 45(9), 1155–1162 (2009).
[Crossref]

Morthier, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

K. Huybrechts, T. Tanemura, Y. Nakano, R. Baets, and G. Morthier, “40-Gb/s All-Optical Packet Switching With a Distributed-Feedback Laser as All-Optical Flip-Flop,” IEEE Photonics Technol. Lett. 21(11), 703–705 (2009).
[Crossref]

Nagashima, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

Nakamura, S.

T. Hirooka, M. Okazaki, T. Hirano, P. Y. Guan, M. Nakazawa, and S. Nakamura, “All-Optical Demultiplexing of 640-Gb/s OTDM-DPSK Signal Using a Semiconductor SMZ Switch,” IEEE Photonics Technol. Lett. 21(20), 1574–1576 (2009).
[Crossref]

Nakano, Y.

K. Huybrechts, T. Tanemura, Y. Nakano, R. Baets, and G. Morthier, “40-Gb/s All-Optical Packet Switching With a Distributed-Feedback Laser as All-Optical Flip-Flop,” IEEE Photonics Technol. Lett. 21(11), 703–705 (2009).
[Crossref]

T. Tanemura, K. Takeda, and Y. Nakano, “Wavelength-multiplexed optical packet switching using InP phased-array switch,” Opt. Express 17(11), 9454–9459 (2009).
[Crossref] [PubMed]

K. Takeda, M. Takenaka, M. Raburn, Y. Kanema, J. S. Barton, X. L. Song, and Y. Nakano, “Dynamic operation of all-optical flip-flops with distributed Bragg reflectors for self-routing of 10-Gbit/s optical packets,” Jpn. J. Appl. Phys. 46(3A), 1028–1032 (2007).
[Crossref]

Nakazawa, M.

T. Hirooka, M. Okazaki, T. Hirano, P. Y. Guan, M. Nakazawa, and S. Nakamura, “All-Optical Demultiplexing of 640-Gb/s OTDM-DPSK Signal Using a Semiconductor SMZ Switch,” IEEE Photonics Technol. Lett. 21(20), 1574–1576 (2009).
[Crossref]

Nicholes, S. C.

Noda, S.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

Notomi, M.

K. Nozaki, E. Kuramochi, A. Shinya, and M. Notomi, “25-channel all-optical gate switches realized by integrating silicon photonic crystal nanocavities,” Opt. Express 22(12), 14263–14274 (2014).
[Crossref] [PubMed]

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

A. Shinya, S. Matsuo, T. Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express 16(23), 19382–19387 (2008).
[Crossref] [PubMed]

Nozaki, K.

K. Nozaki, E. Kuramochi, A. Shinya, and M. Notomi, “25-channel all-optical gate switches realized by integrating silicon photonic crystal nanocavities,” Opt. Express 22(12), 14263–14274 (2014).
[Crossref] [PubMed]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Okazaki, M.

T. Hirooka, M. Okazaki, T. Hirano, P. Y. Guan, M. Nakazawa, and S. Nakamura, “All-Optical Demultiplexing of 640-Gb/s OTDM-DPSK Signal Using a Semiconductor SMZ Switch,” IEEE Photonics Technol. Lett. 21(20), 1574–1576 (2009).
[Crossref]

Raburn, M.

K. Takeda, M. Takenaka, M. Raburn, Y. Kanema, J. S. Barton, X. L. Song, and Y. Nakano, “Dynamic operation of all-optical flip-flops with distributed Bragg reflectors for self-routing of 10-Gbit/s optical packets,” Jpn. J. Appl. Phys. 46(3A), 1028–1032 (2007).
[Crossref]

Raineri, F.

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[Crossref]

Regreny, P.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Roelkens, G.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Sato, T.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

A. Shinya, S. Matsuo, T. Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express 16(23), 19382–19387 (2008).
[Crossref] [PubMed]

Schow, C. L.

Segawa, T.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

Shacham, A.

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

Shah Hosseini, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Sherwood-Droz, N.

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband Operation of Nanophotonic Router for Silicon Photonic Networks-on-Chip,” IEEE Photonics Technol. Lett. 22(12), 926–928 (2010).
[Crossref]

N. Sherwood-Droz, H. Wang, L. Chen, B. G. Lee, A. Biberman, K. Bergman, and M. Lipson, “Optical 4x4 hitless slicon router for optical Networks-on-Chip (NoC),” Opt. Express 16(20), 15915–15922 (2008).
[Crossref] [PubMed]

Shinya, A.

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

K. Nozaki, E. Kuramochi, A. Shinya, and M. Notomi, “25-channel all-optical gate switches realized by integrating silicon photonic crystal nanocavities,” Opt. Express 22(12), 14263–14274 (2014).
[Crossref] [PubMed]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

A. Shinya, S. Matsuo, T. Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express 16(23), 19382–19387 (2008).
[Crossref] [PubMed]

Song, X. L.

K. Takeda, M. Takenaka, M. Raburn, Y. Kanema, J. S. Barton, X. L. Song, and Y. Nakano, “Dynamic operation of all-optical flip-flops with distributed Bragg reflectors for self-routing of 10-Gbit/s optical packets,” Jpn. J. Appl. Phys. 46(3A), 1028–1032 (2007).
[Crossref]

Sorace-Agaskar, C. M.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Soref, R. A.

B. R. Bennett, R. A. Soref, and J. A. Delalamo, “Carrier-induced change in refractive-index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

Spuesens, T.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Sugiya, T.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

Sumikura, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

Sun, J.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Suzaki, Y.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

Takahashi, R.

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

Takeda, K.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

T. Tanemura, K. Takeda, and Y. Nakano, “Wavelength-multiplexed optical packet switching using InP phased-array switch,” Opt. Express 17(11), 9454–9459 (2009).
[Crossref] [PubMed]

K. Takeda, M. Takenaka, M. Raburn, Y. Kanema, J. S. Barton, X. L. Song, and Y. Nakano, “Dynamic operation of all-optical flip-flops with distributed Bragg reflectors for self-routing of 10-Gbit/s optical packets,” Jpn. J. Appl. Phys. 46(3A), 1028–1032 (2007).
[Crossref]

Takenaka, M.

K. Takeda, M. Takenaka, M. Raburn, Y. Kanema, J. S. Barton, X. L. Song, and Y. Nakano, “Dynamic operation of all-optical flip-flops with distributed Bragg reflectors for self-routing of 10-Gbit/s optical packets,” Jpn. J. Appl. Phys. 46(3A), 1028–1032 (2007).
[Crossref]

Tanabe, T.

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

A. Shinya, S. Matsuo, T. Yosia, T. Tanabe, E. Kuramochi, T. Sato, T. Kakitsuka, and M. Notomi, “All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal,” Opt. Express 16(23), 19382–19387 (2008).
[Crossref] [PubMed]

Tanaka, S.

S. Tanaka, S. H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, “Monolithically Integrated 8:1 SOA Gate Switch With Large Extinction Ratio and Wide Input Power Dynamic Range,” IEEE J. Quantum Electron. 45(9), 1155–1162 (2009).
[Crossref]

Tanaka, Y.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

Tanemura, T.

K. Huybrechts, T. Tanemura, Y. Nakano, R. Baets, and G. Morthier, “40-Gb/s All-Optical Packet Switching With a Distributed-Feedback Laser as All-Optical Flip-Flop,” IEEE Photonics Technol. Lett. 21(11), 703–705 (2009).
[Crossref]

T. Tanemura, K. Takeda, and Y. Nakano, “Wavelength-multiplexed optical packet switching using InP phased-array switch,” Opt. Express 17(11), 9454–9459 (2009).
[Crossref] [PubMed]

Taniyama, H.

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

Timurdogan, E.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Tomabechi, S.

S. Tanaka, S. H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, “Monolithically Integrated 8:1 SOA Gate Switch With Large Extinction Ratio and Wide Input Power Dynamic Range,” IEEE J. Quantum Electron. 45(9), 1155–1162 (2009).
[Crossref]

Tran, Q. V.

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[Crossref]

Uetake, A.

S. Tanaka, S. H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, “Monolithically Integrated 8:1 SOA Gate Switch With Large Extinction Ratio and Wide Input Power Dynamic Range,” IEEE J. Quantum Electron. 45(9), 1155–1162 (2009).
[Crossref]

Upham, J.

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

Van Campenhout, J.

Van Thourhout, D.

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

Vlasov, Y. A.

Wang, H.

Watts, M. R.

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Wong, C. W.

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[Crossref]

Yamazaki, S.

S. Tanaka, S. H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, “Monolithically Integrated 8:1 SOA Gate Switch With Large Extinction Ratio and Wide Input Power Dynamic Range,” IEEE J. Quantum Electron. 45(9), 1155–1162 (2009).
[Crossref]

Yang, M.

Yosia, T.

Appl. Phys. Lett. (1)

C. Husko, A. De Rossi, S. Combrie, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009).
[Crossref]

IEEE J. Quantum Electron. (2)

B. R. Bennett, R. A. Soref, and J. A. Delalamo, “Carrier-induced change in refractive-index of InP, GaAs, and InGaAsP,” IEEE J. Quantum Electron. 26(1), 113–122 (1990).
[Crossref]

S. Tanaka, S. H. Jeong, S. Yamazaki, A. Uetake, S. Tomabechi, M. Ekawa, and K. Morito, “Monolithically Integrated 8:1 SOA Gate Switch With Large Extinction Ratio and Wide Input Power Dynamic Range,” IEEE J. Quantum Electron. 45(9), 1155–1162 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (3)

A. Biberman, B. G. Lee, N. Sherwood-Droz, M. Lipson, and K. Bergman, “Broadband Operation of Nanophotonic Router for Silicon Photonic Networks-on-Chip,” IEEE Photonics Technol. Lett. 22(12), 926–928 (2010).
[Crossref]

K. Huybrechts, T. Tanemura, Y. Nakano, R. Baets, and G. Morthier, “40-Gb/s All-Optical Packet Switching With a Distributed-Feedback Laser as All-Optical Flip-Flop,” IEEE Photonics Technol. Lett. 21(11), 703–705 (2009).
[Crossref]

T. Hirooka, M. Okazaki, T. Hirano, P. Y. Guan, M. Nakazawa, and S. Nakamura, “All-Optical Demultiplexing of 640-Gb/s OTDM-DPSK Signal Using a Semiconductor SMZ Switch,” IEEE Photonics Technol. Lett. 21(20), 1574–1576 (2009).
[Crossref]

IEEE Trans. Comput. (1)

A. Shacham, K. Bergman, and L. P. Carloni, “Photonic networks-on-chip for future generations of chip multiprocessors,” IEEE Trans. Comput. 57(9), 1246–1260 (2008).
[Crossref]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

K. Takeda, M. Takenaka, M. Raburn, Y. Kanema, J. S. Barton, X. L. Song, and Y. Nakano, “Dynamic operation of all-optical flip-flops with distributed Bragg reflectors for self-routing of 10-Gbit/s optical packets,” Jpn. J. Appl. Phys. 46(3A), 1028–1032 (2007).
[Crossref]

Nat. Commun. (1)

E. Timurdogan, C. M. Sorace-Agaskar, J. Sun, E. Shah Hosseini, A. Biberman, and M. R. Watts, “An ultralow power athermal silicon modulator,” Nat. Commun. 5, 4008 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

Y. Tanaka, J. Upham, T. Nagashima, T. Sugiya, T. Asano, and S. Noda, “Dynamic control of the Q factor in a photonic crystal nanocavity,” Nat. Mater. 6(11), 862–865 (2007).
[Crossref] [PubMed]

Nat. Photonics (6)

S. Matsuo, A. Shinya, T. Kakitsuka, K. Nozaki, T. Segawa, T. Sato, Y. Kawaguchi, and M. Notomi, “High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted,” Nat. Photonics 4(9), 648–654 (2010).
[Crossref]

K. Takeda, T. Sato, A. Shinya, K. Nozaki, W. Kobayashi, H. Taniyama, M. Notomi, K. Hasebe, T. Kakitsuka, and S. Matsuo, “Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers,” Nat. Photonics 7(7), 569–575 (2013).
[Crossref]

E. Kuramochi, K. Nozaki, A. Shinya, K. Takeda, T. Sato, S. Matsuo, H. Taniyama, H. Sumikura, and M. Notomi, “Large-scale integration of wavelength-addressable all-optical memories in a photonic crystal chip,” Nat. Photonics 8(6), 474–481 (2014).
[Crossref]

K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, and M. Notomi, “Sub-femtojoule all-optical switching using a photonic-crystal nanocavity,” Nat. Photonics 4(7), 477–483 (2010).
[Crossref]

L. Liu, R. Kumar, K. Huybrechts, T. Spuesens, G. Roelkens, E. J. Geluk, T. de Vries, P. Regreny, D. Van Thourhout, R. Baets, and G. Morthier, “An ultra-small, low-power, all-optical flip-flop memory on a silicon chip,” Nat. Photonics 4(3), 182–187 (2010).
[Crossref]

K. Nozaki, A. Shinya, S. Matsuo, Y. Suzaki, T. Segawa, T. Sato, Y. Kawaguchi, R. Takahashi, and M. Notomi, “Ultralow-power all-optical RAM based on nanocavities,” Nat. Photonics 6(4), 248–252 (2012).
[Crossref]

Opt. Commun. (1)

M. Notomi, K. Nozaki, A. Shinya, S. Matsuo, and E. Kuramochi, “Toward fJ/bit optical communication in a chip,” Opt. Commun. 314, 3–17 (2014).
[Crossref]

Opt. Express (6)

Other (1)

E. Kuramochi, E. Grossman, K. Nozaki, K. Takeda, A. Shinya, H. Taniyama, and M. Notomi, “Large Q factor enhancement of Ln nanocavity by a unified hole-shifting rule ” in Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR), Kyoto, WI2–2 (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Switching schemes based on all-optical bistable cavities. The left and right figures, respectively, are schematics of the cavity-waveguide coupling configuration and the switching scheme based on the bistable action in the cavity. (a) Single cavity coupled with single I/O waveguides to construct a 1 × 1 switch. (b) Single cavity connected with a bus waveguide and a drop waveguide to construct a 1 × 2 switch. (c) Double cavities connected with a bus waveguide and drop waveguides for each cavity to construct a 1 × 3 switch.

Fig. 2
Fig. 2

Bistable response of single cavity. (a) Top view (left) and cross-sectional view (right) of a single cavity. (b) Transmission spectrum for different input optical powers. The light wavelengths for switching operation are indicated. (c) Hysteresis curves on the input-to-output power characteristics for different amounts of wavelength detuning.

Fig. 3
Fig. 3

Experimental setup for all-optical packet switching. (a) Experimental setup. LN: Lithium niobate modulator, EDFA: Erbium-doped fiber amplifier, BPF: Band-pass filter, VOA: Variable optical attenuator, DUT: Device under test. (b) Waveform for bias, reset pulse, write pulse, and data packet. (c) Magnified waveform for each injection light.

Fig. 4
Fig. 4

Gate switching of an optical packet by a single cavity. Left and right show the output waveforms of the bias light and the packet data light, respectively.

Fig. 5
Fig. 5

Single cavity coupled with bus and drop waveguides for a 1 × 2 switch. (a) Top view SEM image. (b) Transmission spectrum of through port (blue) and drop port (red). The two figures on the right show magnified spectra for the 1st and 0th cavity mode, respectively. The wavelength for bias, write pulse, and data in the switching experiment are also denoted. (c) Hysteresis curves on the input-to-output power characteristics for the drop port. Different colors denote different amounts of wavelength detuning from the resonance.

Fig. 6
Fig. 6

Port-selective switching for an optical packet with a single cavity. Left and right sides show the output waveforms of the bias light and packet data light, respectively. The upper and lower figures show the waveforms for drop port and through port, respectively.

Fig. 7
Fig. 7

Two cavities coupled with a bus waveguide and a drop waveguide for a 1 × 3 switch. (a) Top view SEM image. (b) Transmission spectrum for through port (blue), drop port 1 (red), and drop port 2 (green). The inset shows magnified spectra for the 1st cavity mode, indicating that the resonant wavelength for the two cavities is identical. (c) Hysteresis curves on the input-to-output power characteristics with different amounts of wavelength detuning. The upper and lower figures show the output for drop ports 1 and 2, respectively.

Fig. 8
Fig. 8

1 × 3 port-selective switching result obtained with two-cavity configuration. From upper to lower figures; output waveforms of optical packet for drop port 1, drop port 2, and through port are shown with magnified waveforms on the right.

Fig. 9
Fig. 9

Theoretical investigation of switching performance. (a), (b), and (c) show the drop efficiency, cavity linewidth, and bistable threshold power, respectively, for the coupling ratio between a cavity-to-drop-waveguide and a cavity-to-bus-waveguide Qdrop_c/Qbus_c. Different-colored solid lines denote different ratios between the internal cavity loss and a cavity-bus waveguide. We assumed both Qbus_c and absorption Qabs to be 1 × 105. Square plots indicate the experimental switching results in the present device. Dashed red curves are the simulated results for a design that blocks the through port (as shown by the inset) and employs the assumptions Qbus_c = 1 × 104 and Qabs = 1 × 105.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

P th c= nωV Γ η abs σ c τ c Q ,

Metrics