Abstract

We present an integrated label-free biosensor based on surface plasmon resonance (SPR) and Faradaic electrochemical impedance spectroscopy (f-EIS) sensing modalities, for the simultaneous detection of biological analytes. Analyte detection is based on the angular spectroscopy of surface plasmon resonance and the extraction of charge transfer resistance values from reduction-oxidation reactions at the gold surface, as responses to functionalized surface binding events. To collocate the measurement areas and fully integrate the modalities, holographically exposed thin-film gold SPR-transducer gratings are patterned into coplanar electrodes for tandem impedance sensing. Mutual non-interference between plasmonic and electrochemical measurement processes is shown, and using our scalable and compact detection system, we experimentally demonstrate biotinylated surface capture of neutravidin concentrations as low as 10 nM detection, with a 5.5 nM limit of detection.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Near field detector for integrated surface plasmon resonance biosensor applications

Mihail Bora, Kemal Çelebi, Jorge Zuniga, Colin Watson, Kaveh M. Milaninia, and Marc A. Baldo
Opt. Express 17(1) 329-336 (2009)

Development of a highly specific amine-terminated aptamer functionalized surface plasmon resonance biosensor for blood protein detection

Rui Zheng, Byung-Wook Park, Dong-Shik Kim, and Brent D. Cameron
Biomed. Opt. Express 2(9) 2731-2740 (2011)

Micro-capillary-based self-referencing surface plasmon resonance biosensor for determination of transferrin

Shimeng Chen, Yun Liu, Zigeng Liu, Shuwen Chu, and Wei Peng
Appl. Opt. 55(30) 8571-8575 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [Crossref] [PubMed]
  2. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
    [Crossref] [PubMed]
  3. J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: opportunities and challenges,” Electroanalysis 19(12), 1239–1257 (2007).
    [Crossref] [PubMed]
  4. C.-S. Lee, S. K. Kim, and M. Kim, “Ion-sensitive field-effect transistor for biological sensing,” Sensors (Basel) 9(9), 7111–7131 (2009).
    [Crossref] [PubMed]
  5. J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6(4), 203–215 (2011).
    [Crossref] [PubMed]
  6. T. Špringer, M. Bocková, and J. Homola, “Label-free biosensing in complex media: a referencing approach,” Anal. Chem. 85(12), 5637–5640 (2013).
    [Crossref] [PubMed]
  7. P. Breuil, “Multisensors: measurements and behavior models,” in Chemical Sensors and Biosensors (Wiley, 2013), 211–233.
  8. P. M. Kosaka, V. Pini, J. J. Ruz, R. A. da Silva, M. U. González, D. Ramos, M. Calleja, and J. Tamayo, “Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor,” Nat. Nanotechnol. 9(12), 1047–1053 (2014).
    [Crossref] [PubMed]
  9. J. Lu, W. Wang, S. Wang, X. Shan, J. Li, and N. Tao, “Plasmonic-based electrochemical impedance spectroscopy: application to molecular binding,” Anal. Chem. 84(1), 327–333 (2012).
    [Crossref] [PubMed]
  10. C. Polonschii, S. David, S. Gáspár, M. Gheorghiu, M. Rosu-Hamzescu, and E. Gheorghiu, “Complementarity of EIS and SPR to reveal specific and nonspecific binding when interrogating a model bioaffinity sensor; perspective offered by plasmonic based EIS,” Anal. Chem. 86(17), 8553–8562 (2014).
    [Crossref] [PubMed]
  11. H. Raether, Surface Plasmons on Rough and Smooth Surfaces and on Gratings (Springer, 1998)
  12. E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces,” Nano Lett. 10(3), 813–820 (2010).
    [Crossref] [PubMed]
  13. R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
    [Crossref]
  14. J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B Chem. 129(1), 303–310 (2008).
    [Crossref]
  15. D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, and D. U. Sauer, “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation,” J. Power Sources 196(12), 5334–5341 (2011).
    [Crossref]
  16. E. Katz and I. Willner, “biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and,” Electroanalysis 15(11), 913–947 (2003).
    [Crossref]
  17. K. J. Foley, X. Shan, and N. J. Tao, “Surface impedance imaging technique,” Anal. Chem. 80(13), 5146–5151 (2008).
    [Crossref] [PubMed]
  18. U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
    [Crossref]
  19. L. Liu, J. Guo, Y. He, P. Zhang, Y. Zhang, and J. Guo, “Study on the despeckle methods in angular surface plasmon resonance imaging sensors,” Plasmonics 10(3), 729–737 (2015).
    [Crossref]
  20. G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008).
    [Crossref]
  21. H. W. Wen, T. R. Decory, W. Borejsza-Wysocki, and R. A. Durst, “Investigation of NeutrAvidin-tagged liposomal nanovesicles as universal detection reagents for bioanalytical assays,” Talanta 68(4), 1264–1272 (2006).
    [Crossref] [PubMed]
  22. T. T. Nguyen, K. L. Sly, and J. C. Conboy, “Comparison of the energetics of avidin, streptavidin, neutrAvidin, and anti-biotin antibody binding to biotinylated lipid bilayer examined by second-harmonic generation,” Anal. Chem. 84(1), 201–208 (2012).
    [Crossref] [PubMed]
  23. R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
    [Crossref] [PubMed]
  24. T. Bryan, X. Luo, P. R. Bueno, and J. J. Davis, “An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood,” Biosens. Bioelectron. 39(1), 94–98 (2013).
    [Crossref] [PubMed]
  25. H. Qi, C. Wang, and N. Cheng, “Label-free electrochemical impedance spectroscopy biosensor for the determination of human immunoglobulin G,” Mikrochim. Acta 170(1-2), 33–38 (2010).
    [Crossref]

2015 (1)

L. Liu, J. Guo, Y. He, P. Zhang, Y. Zhang, and J. Guo, “Study on the despeckle methods in angular surface plasmon resonance imaging sensors,” Plasmonics 10(3), 729–737 (2015).
[Crossref]

2014 (2)

C. Polonschii, S. David, S. Gáspár, M. Gheorghiu, M. Rosu-Hamzescu, and E. Gheorghiu, “Complementarity of EIS and SPR to reveal specific and nonspecific binding when interrogating a model bioaffinity sensor; perspective offered by plasmonic based EIS,” Anal. Chem. 86(17), 8553–8562 (2014).
[Crossref] [PubMed]

P. M. Kosaka, V. Pini, J. J. Ruz, R. A. da Silva, M. U. González, D. Ramos, M. Calleja, and J. Tamayo, “Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor,” Nat. Nanotechnol. 9(12), 1047–1053 (2014).
[Crossref] [PubMed]

2013 (3)

T. Špringer, M. Bocková, and J. Homola, “Label-free biosensing in complex media: a referencing approach,” Anal. Chem. 85(12), 5637–5640 (2013).
[Crossref] [PubMed]

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

T. Bryan, X. Luo, P. R. Bueno, and J. J. Davis, “An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood,” Biosens. Bioelectron. 39(1), 94–98 (2013).
[Crossref] [PubMed]

2012 (2)

T. T. Nguyen, K. L. Sly, and J. C. Conboy, “Comparison of the energetics of avidin, streptavidin, neutrAvidin, and anti-biotin antibody binding to biotinylated lipid bilayer examined by second-harmonic generation,” Anal. Chem. 84(1), 201–208 (2012).
[Crossref] [PubMed]

J. Lu, W. Wang, S. Wang, X. Shan, J. Li, and N. Tao, “Plasmonic-based electrochemical impedance spectroscopy: application to molecular binding,” Anal. Chem. 84(1), 327–333 (2012).
[Crossref] [PubMed]

2011 (2)

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6(4), 203–215 (2011).
[Crossref] [PubMed]

D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, and D. U. Sauer, “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation,” J. Power Sources 196(12), 5334–5341 (2011).
[Crossref]

2010 (2)

E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces,” Nano Lett. 10(3), 813–820 (2010).
[Crossref] [PubMed]

H. Qi, C. Wang, and N. Cheng, “Label-free electrochemical impedance spectroscopy biosensor for the determination of human immunoglobulin G,” Mikrochim. Acta 170(1-2), 33–38 (2010).
[Crossref]

2009 (1)

C.-S. Lee, S. K. Kim, and M. Kim, “Ion-sensitive field-effect transistor for biological sensing,” Sensors (Basel) 9(9), 7111–7131 (2009).
[Crossref] [PubMed]

2008 (3)

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008).
[Crossref]

K. J. Foley, X. Shan, and N. J. Tao, “Surface impedance imaging technique,” Anal. Chem. 80(13), 5146–5151 (2008).
[Crossref] [PubMed]

J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B Chem. 129(1), 303–310 (2008).
[Crossref]

2007 (2)

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[Crossref] [PubMed]

J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: opportunities and challenges,” Electroanalysis 19(12), 1239–1257 (2007).
[Crossref] [PubMed]

2006 (2)

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[Crossref]

H. W. Wen, T. R. Decory, W. Borejsza-Wysocki, and R. A. Durst, “Investigation of NeutrAvidin-tagged liposomal nanovesicles as universal detection reagents for bioanalytical assays,” Talanta 68(4), 1264–1272 (2006).
[Crossref] [PubMed]

2003 (2)

E. Katz and I. Willner, “biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and,” Electroanalysis 15(11), 913–947 (2003).
[Crossref]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

1968 (1)

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Andre, D.

D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, and D. U. Sauer, “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation,” J. Power Sources 196(12), 5334–5341 (2011).
[Crossref]

Arakawa, E.

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Arlett, J. L.

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6(4), 203–215 (2011).
[Crossref] [PubMed]

Bocková, M.

T. Špringer, M. Bocková, and J. Homola, “Label-free biosensing in complex media: a referencing approach,” Anal. Chem. 85(12), 5637–5640 (2013).
[Crossref] [PubMed]

Borejsza-Wysocki, W.

H. W. Wen, T. R. Decory, W. Borejsza-Wysocki, and R. A. Durst, “Investigation of NeutrAvidin-tagged liposomal nanovesicles as universal detection reagents for bioanalytical assays,” Talanta 68(4), 1264–1272 (2006).
[Crossref] [PubMed]

Borel, P. I.

Bryan, T.

T. Bryan, X. Luo, P. R. Bueno, and J. J. Davis, “An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood,” Biosens. Bioelectron. 39(1), 94–98 (2013).
[Crossref] [PubMed]

Bueno, P. R.

T. Bryan, X. Luo, P. R. Bueno, and J. J. Davis, “An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood,” Biosens. Bioelectron. 39(1), 94–98 (2013).
[Crossref] [PubMed]

Calleja, M.

P. M. Kosaka, V. Pini, J. J. Ruz, R. A. da Silva, M. U. González, D. Ramos, M. Calleja, and J. Tamayo, “Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor,” Nat. Nanotechnol. 9(12), 1047–1053 (2014).
[Crossref] [PubMed]

Campbell, K.

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[Crossref]

Cheng, N.

H. Qi, C. Wang, and N. Cheng, “Label-free electrochemical impedance spectroscopy biosensor for the determination of human immunoglobulin G,” Mikrochim. Acta 170(1-2), 33–38 (2010).
[Crossref]

Conboy, J. C.

T. T. Nguyen, K. L. Sly, and J. C. Conboy, “Comparison of the energetics of avidin, streptavidin, neutrAvidin, and anti-biotin antibody binding to biotinylated lipid bilayer examined by second-harmonic generation,” Anal. Chem. 84(1), 201–208 (2012).
[Crossref] [PubMed]

Cowan, J.

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

da Silva, R. A.

P. M. Kosaka, V. Pini, J. J. Ruz, R. A. da Silva, M. U. González, D. Ramos, M. Calleja, and J. Tamayo, “Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor,” Nat. Nanotechnol. 9(12), 1047–1053 (2014).
[Crossref] [PubMed]

Daniels, J. S.

J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: opportunities and challenges,” Electroanalysis 19(12), 1239–1257 (2007).
[Crossref] [PubMed]

David, S.

C. Polonschii, S. David, S. Gáspár, M. Gheorghiu, M. Rosu-Hamzescu, and E. Gheorghiu, “Complementarity of EIS and SPR to reveal specific and nonspecific binding when interrogating a model bioaffinity sensor; perspective offered by plasmonic based EIS,” Anal. Chem. 86(17), 8553–8562 (2014).
[Crossref] [PubMed]

Davis, C. C.

E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces,” Nano Lett. 10(3), 813–820 (2010).
[Crossref] [PubMed]

Davis, J. J.

T. Bryan, X. Luo, P. R. Bueno, and J. J. Davis, “An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood,” Biosens. Bioelectron. 39(1), 94–98 (2013).
[Crossref] [PubMed]

Decory, T. R.

H. W. Wen, T. R. Decory, W. Borejsza-Wysocki, and R. A. Durst, “Investigation of NeutrAvidin-tagged liposomal nanovesicles as universal detection reagents for bioanalytical assays,” Talanta 68(4), 1264–1272 (2006).
[Crossref] [PubMed]

Dostálek, J.

J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B Chem. 129(1), 303–310 (2008).
[Crossref]

Durst, R. A.

H. W. Wen, T. R. Decory, W. Borejsza-Wysocki, and R. A. Durst, “Investigation of NeutrAvidin-tagged liposomal nanovesicles as universal detection reagents for bioanalytical assays,” Talanta 68(4), 1264–1272 (2006).
[Crossref] [PubMed]

Endo, H.

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

Fainman, Y.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008).
[Crossref]

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[Crossref]

Foley, K. J.

K. J. Foley, X. Shan, and N. J. Tao, “Surface impedance imaging technique,” Anal. Chem. 80(13), 5146–5151 (2008).
[Crossref] [PubMed]

Frandsen, L. H.

Gáspár, S.

C. Polonschii, S. David, S. Gáspár, M. Gheorghiu, M. Rosu-Hamzescu, and E. Gheorghiu, “Complementarity of EIS and SPR to reveal specific and nonspecific binding when interrogating a model bioaffinity sensor; perspective offered by plasmonic based EIS,” Anal. Chem. 86(17), 8553–8562 (2014).
[Crossref] [PubMed]

Gheorghiu, E.

C. Polonschii, S. David, S. Gáspár, M. Gheorghiu, M. Rosu-Hamzescu, and E. Gheorghiu, “Complementarity of EIS and SPR to reveal specific and nonspecific binding when interrogating a model bioaffinity sensor; perspective offered by plasmonic based EIS,” Anal. Chem. 86(17), 8553–8562 (2014).
[Crossref] [PubMed]

Gheorghiu, M.

C. Polonschii, S. David, S. Gáspár, M. Gheorghiu, M. Rosu-Hamzescu, and E. Gheorghiu, “Complementarity of EIS and SPR to reveal specific and nonspecific binding when interrogating a model bioaffinity sensor; perspective offered by plasmonic based EIS,” Anal. Chem. 86(17), 8553–8562 (2014).
[Crossref] [PubMed]

González, M. U.

P. M. Kosaka, V. Pini, J. J. Ruz, R. A. da Silva, M. U. González, D. Ramos, M. Calleja, and J. Tamayo, “Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor,” Nat. Nanotechnol. 9(12), 1047–1053 (2014).
[Crossref] [PubMed]

Groisman, A.

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[Crossref]

Guo, J.

L. Liu, J. Guo, Y. He, P. Zhang, Y. Zhang, and J. Guo, “Study on the despeckle methods in angular surface plasmon resonance imaging sensors,” Plasmonics 10(3), 729–737 (2015).
[Crossref]

L. Liu, J. Guo, Y. He, P. Zhang, Y. Zhang, and J. Guo, “Study on the despeckle methods in angular surface plasmon resonance imaging sensors,” Plasmonics 10(3), 729–737 (2015).
[Crossref]

Hamm, R.

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

He, Y.

L. Liu, J. Guo, Y. He, P. Zhang, Y. Zhang, and J. Guo, “Study on the despeckle methods in angular surface plasmon resonance imaging sensors,” Plasmonics 10(3), 729–737 (2015).
[Crossref]

Homola, J.

T. Špringer, M. Bocková, and J. Homola, “Label-free biosensing in complex media: a referencing approach,” Anal. Chem. 85(12), 5637–5640 (2013).
[Crossref] [PubMed]

J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B Chem. 129(1), 303–310 (2008).
[Crossref]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Hwang, E.

E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces,” Nano Lett. 10(3), 813–820 (2010).
[Crossref] [PubMed]

Hwang, G. M.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008).
[Crossref]

Izumi, M.

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

Katz, E.

E. Katz and I. Willner, “biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and,” Electroanalysis 15(11), 913–947 (2003).
[Crossref]

Kim, M.

C.-S. Lee, S. K. Kim, and M. Kim, “Ion-sensitive field-effect transistor for biological sensing,” Sensors (Basel) 9(9), 7111–7131 (2009).
[Crossref] [PubMed]

Kim, S. K.

C.-S. Lee, S. K. Kim, and M. Kim, “Ion-sensitive field-effect transistor for biological sensing,” Sensors (Basel) 9(9), 7111–7131 (2009).
[Crossref] [PubMed]

Kjems, J.

Kosaka, P. M.

P. M. Kosaka, V. Pini, J. J. Ruz, R. A. da Silva, M. U. González, D. Ramos, M. Calleja, and J. Tamayo, “Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor,” Nat. Nanotechnol. 9(12), 1047–1053 (2014).
[Crossref] [PubMed]

Kristensen, M.

Lee, C.-S.

C.-S. Lee, S. K. Kim, and M. Kim, “Ion-sensitive field-effect transistor for biological sensing,” Sensors (Basel) 9(9), 7111–7131 (2009).
[Crossref] [PubMed]

Levy, U.

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[Crossref]

Li, J.

J. Lu, W. Wang, S. Wang, X. Shan, J. Li, and N. Tao, “Plasmonic-based electrochemical impedance spectroscopy: application to molecular binding,” Anal. Chem. 84(1), 327–333 (2012).
[Crossref] [PubMed]

Liu, L.

L. Liu, J. Guo, Y. He, P. Zhang, Y. Zhang, and J. Guo, “Study on the despeckle methods in angular surface plasmon resonance imaging sensors,” Plasmonics 10(3), 729–737 (2015).
[Crossref]

Lu, J.

J. Lu, W. Wang, S. Wang, X. Shan, J. Li, and N. Tao, “Plasmonic-based electrochemical impedance spectroscopy: application to molecular binding,” Anal. Chem. 84(1), 327–333 (2012).
[Crossref] [PubMed]

Luo, X.

T. Bryan, X. Luo, P. R. Bueno, and J. J. Davis, “An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood,” Biosens. Bioelectron. 39(1), 94–98 (2013).
[Crossref] [PubMed]

Meiler, M.

D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, and D. U. Sauer, “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation,” J. Power Sources 196(12), 5334–5341 (2011).
[Crossref]

Mookherjea, S.

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[Crossref]

Mullen, E. H.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008).
[Crossref]

Myers, E. B.

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6(4), 203–215 (2011).
[Crossref] [PubMed]

Nguyen, T. T.

T. T. Nguyen, K. L. Sly, and J. C. Conboy, “Comparison of the energetics of avidin, streptavidin, neutrAvidin, and anti-biotin antibody binding to biotinylated lipid bilayer examined by second-harmonic generation,” Anal. Chem. 84(1), 201–208 (2012).
[Crossref] [PubMed]

Ohno, R.

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

Ohnuki, H.

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

Pang, L.

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008).
[Crossref]

Pini, V.

P. M. Kosaka, V. Pini, J. J. Ruz, R. A. da Silva, M. U. González, D. Ramos, M. Calleja, and J. Tamayo, “Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor,” Nat. Nanotechnol. 9(12), 1047–1053 (2014).
[Crossref] [PubMed]

Polonschii, C.

C. Polonschii, S. David, S. Gáspár, M. Gheorghiu, M. Rosu-Hamzescu, and E. Gheorghiu, “Complementarity of EIS and SPR to reveal specific and nonspecific binding when interrogating a model bioaffinity sensor; perspective offered by plasmonic based EIS,” Anal. Chem. 86(17), 8553–8562 (2014).
[Crossref] [PubMed]

Pourmand, N.

J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: opportunities and challenges,” Electroanalysis 19(12), 1239–1257 (2007).
[Crossref] [PubMed]

Qi, H.

H. Qi, C. Wang, and N. Cheng, “Label-free electrochemical impedance spectroscopy biosensor for the determination of human immunoglobulin G,” Mikrochim. Acta 170(1-2), 33–38 (2010).
[Crossref]

Ramos, D.

P. M. Kosaka, V. Pini, J. J. Ruz, R. A. da Silva, M. U. González, D. Ramos, M. Calleja, and J. Tamayo, “Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor,” Nat. Nanotechnol. 9(12), 1047–1053 (2014).
[Crossref] [PubMed]

Ritchie, R.

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Rosu-Hamzescu, M.

C. Polonschii, S. David, S. Gáspár, M. Gheorghiu, M. Rosu-Hamzescu, and E. Gheorghiu, “Complementarity of EIS and SPR to reveal specific and nonspecific binding when interrogating a model bioaffinity sensor; perspective offered by plasmonic based EIS,” Anal. Chem. 86(17), 8553–8562 (2014).
[Crossref] [PubMed]

Roukes, M. L.

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6(4), 203–215 (2011).
[Crossref] [PubMed]

Ruz, J. J.

P. M. Kosaka, V. Pini, J. J. Ruz, R. A. da Silva, M. U. González, D. Ramos, M. Calleja, and J. Tamayo, “Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor,” Nat. Nanotechnol. 9(12), 1047–1053 (2014).
[Crossref] [PubMed]

Sauer, D. U.

D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, and D. U. Sauer, “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation,” J. Power Sources 196(12), 5334–5341 (2011).
[Crossref]

Shan, X.

J. Lu, W. Wang, S. Wang, X. Shan, J. Li, and N. Tao, “Plasmonic-based electrochemical impedance spectroscopy: application to molecular binding,” Anal. Chem. 84(1), 327–333 (2012).
[Crossref] [PubMed]

K. J. Foley, X. Shan, and N. J. Tao, “Surface impedance imaging technique,” Anal. Chem. 80(13), 5146–5151 (2008).
[Crossref] [PubMed]

Skivesen, N.

Sly, K. L.

T. T. Nguyen, K. L. Sly, and J. C. Conboy, “Comparison of the energetics of avidin, streptavidin, neutrAvidin, and anti-biotin antibody binding to biotinylated lipid bilayer examined by second-harmonic generation,” Anal. Chem. 84(1), 201–208 (2012).
[Crossref] [PubMed]

Smolyaninov, I. I.

E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces,” Nano Lett. 10(3), 813–820 (2010).
[Crossref] [PubMed]

Soczka-Guth, T.

D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, and D. U. Sauer, “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation,” J. Power Sources 196(12), 5334–5341 (2011).
[Crossref]

Špringer, T.

T. Špringer, M. Bocková, and J. Homola, “Label-free biosensing in complex media: a referencing approach,” Anal. Chem. 85(12), 5637–5640 (2013).
[Crossref] [PubMed]

Steiner, K.

D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, and D. U. Sauer, “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation,” J. Power Sources 196(12), 5334–5341 (2011).
[Crossref]

Tamayo, J.

P. M. Kosaka, V. Pini, J. J. Ruz, R. A. da Silva, M. U. González, D. Ramos, M. Calleja, and J. Tamayo, “Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor,” Nat. Nanotechnol. 9(12), 1047–1053 (2014).
[Crossref] [PubMed]

Tao, N.

J. Lu, W. Wang, S. Wang, X. Shan, J. Li, and N. Tao, “Plasmonic-based electrochemical impedance spectroscopy: application to molecular binding,” Anal. Chem. 84(1), 327–333 (2012).
[Crossref] [PubMed]

Tao, N. J.

K. J. Foley, X. Shan, and N. J. Tao, “Surface impedance imaging technique,” Anal. Chem. 80(13), 5146–5151 (2008).
[Crossref] [PubMed]

Têtu, A.

Tsuya, D.

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

Wang, C.

H. Qi, C. Wang, and N. Cheng, “Label-free electrochemical impedance spectroscopy biosensor for the determination of human immunoglobulin G,” Mikrochim. Acta 170(1-2), 33–38 (2010).
[Crossref]

Wang, H.

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

Wang, S.

J. Lu, W. Wang, S. Wang, X. Shan, J. Li, and N. Tao, “Plasmonic-based electrochemical impedance spectroscopy: application to molecular binding,” Anal. Chem. 84(1), 327–333 (2012).
[Crossref] [PubMed]

Wang, W.

J. Lu, W. Wang, S. Wang, X. Shan, J. Li, and N. Tao, “Plasmonic-based electrochemical impedance spectroscopy: application to molecular binding,” Anal. Chem. 84(1), 327–333 (2012).
[Crossref] [PubMed]

Wen, H. W.

H. W. Wen, T. R. Decory, W. Borejsza-Wysocki, and R. A. Durst, “Investigation of NeutrAvidin-tagged liposomal nanovesicles as universal detection reagents for bioanalytical assays,” Talanta 68(4), 1264–1272 (2006).
[Crossref] [PubMed]

Willner, I.

E. Katz and I. Willner, “biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and,” Electroanalysis 15(11), 913–947 (2003).
[Crossref]

Wimmer, C.

D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, and D. U. Sauer, “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation,” J. Power Sources 196(12), 5334–5341 (2011).
[Crossref]

Yokoyama, T.

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

Zhang, P.

L. Liu, J. Guo, Y. He, P. Zhang, Y. Zhang, and J. Guo, “Study on the despeckle methods in angular surface plasmon resonance imaging sensors,” Plasmonics 10(3), 729–737 (2015).
[Crossref]

Zhang, Y.

L. Liu, J. Guo, Y. He, P. Zhang, Y. Zhang, and J. Guo, “Study on the despeckle methods in angular surface plasmon resonance imaging sensors,” Plasmonics 10(3), 729–737 (2015).
[Crossref]

Anal. Bioanal. Chem. (1)

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[Crossref] [PubMed]

Anal. Chem. (5)

T. Špringer, M. Bocková, and J. Homola, “Label-free biosensing in complex media: a referencing approach,” Anal. Chem. 85(12), 5637–5640 (2013).
[Crossref] [PubMed]

J. Lu, W. Wang, S. Wang, X. Shan, J. Li, and N. Tao, “Plasmonic-based electrochemical impedance spectroscopy: application to molecular binding,” Anal. Chem. 84(1), 327–333 (2012).
[Crossref] [PubMed]

C. Polonschii, S. David, S. Gáspár, M. Gheorghiu, M. Rosu-Hamzescu, and E. Gheorghiu, “Complementarity of EIS and SPR to reveal specific and nonspecific binding when interrogating a model bioaffinity sensor; perspective offered by plasmonic based EIS,” Anal. Chem. 86(17), 8553–8562 (2014).
[Crossref] [PubMed]

K. J. Foley, X. Shan, and N. J. Tao, “Surface impedance imaging technique,” Anal. Chem. 80(13), 5146–5151 (2008).
[Crossref] [PubMed]

T. T. Nguyen, K. L. Sly, and J. C. Conboy, “Comparison of the energetics of avidin, streptavidin, neutrAvidin, and anti-biotin antibody binding to biotinylated lipid bilayer examined by second-harmonic generation,” Anal. Chem. 84(1), 201–208 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

U. Levy, K. Campbell, A. Groisman, S. Mookherjea, and Y. Fainman, “On-chip microfluidic tuning of an optical microring resonator,” Appl. Phys. Lett. 88(11), 111107 (2006).
[Crossref]

Biosens. Bioelectron. (2)

R. Ohno, H. Ohnuki, H. Wang, T. Yokoyama, H. Endo, D. Tsuya, and M. Izumi, “Electrochemical impedance spectroscopy biosensor with interdigitated electrode for detection of human immunoglobulin A,” Biosens. Bioelectron. 40(1), 422–426 (2013).
[Crossref] [PubMed]

T. Bryan, X. Luo, P. R. Bueno, and J. J. Davis, “An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood,” Biosens. Bioelectron. 39(1), 94–98 (2013).
[Crossref] [PubMed]

Electroanalysis (2)

E. Katz and I. Willner, “biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and,” Electroanalysis 15(11), 913–947 (2003).
[Crossref]

J. S. Daniels and N. Pourmand, “Label-free impedance biosensors: opportunities and challenges,” Electroanalysis 19(12), 1239–1257 (2007).
[Crossref] [PubMed]

IEEE Sens. J. (1)

G. M. Hwang, L. Pang, E. H. Mullen, and Y. Fainman, “Plasmonic sensing of biological analytes through nanoholes,” IEEE Sens. J. 8(12), 2074–2079 (2008).
[Crossref]

J. Power Sources (1)

D. Andre, M. Meiler, K. Steiner, C. Wimmer, T. Soczka-Guth, and D. U. Sauer, “Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation,” J. Power Sources 196(12), 5334–5341 (2011).
[Crossref]

Mikrochim. Acta (1)

H. Qi, C. Wang, and N. Cheng, “Label-free electrochemical impedance spectroscopy biosensor for the determination of human immunoglobulin G,” Mikrochim. Acta 170(1-2), 33–38 (2010).
[Crossref]

Nano Lett. (1)

E. Hwang, I. I. Smolyaninov, and C. C. Davis, “Surface plasmon polariton enhanced fluorescence from quantum dots on nanostructured metal surfaces,” Nano Lett. 10(3), 813–820 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

J. L. Arlett, E. B. Myers, and M. L. Roukes, “Comparative advantages of mechanical biosensors,” Nat. Nanotechnol. 6(4), 203–215 (2011).
[Crossref] [PubMed]

P. M. Kosaka, V. Pini, J. J. Ruz, R. A. da Silva, M. U. González, D. Ramos, M. Calleja, and J. Tamayo, “Detection of cancer biomarkers in serum using a hybrid mechanical and optoplasmonic nanosensor,” Nat. Nanotechnol. 9(12), 1047–1053 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (1)

R. Ritchie, E. Arakawa, J. Cowan, and R. Hamm, “Surface-plasmon resonance effect in grating diffraction,” Phys. Rev. Lett. 21(22), 1530–1533 (1968).
[Crossref]

Plasmonics (1)

L. Liu, J. Guo, Y. He, P. Zhang, Y. Zhang, and J. Guo, “Study on the despeckle methods in angular surface plasmon resonance imaging sensors,” Plasmonics 10(3), 729–737 (2015).
[Crossref]

Sens. Actuators B Chem. (1)

J. Dostálek and J. Homola, “Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observation of biomolecular interactions,” Sens. Actuators B Chem. 129(1), 303–310 (2008).
[Crossref]

Sensors (Basel) (1)

C.-S. Lee, S. K. Kim, and M. Kim, “Ion-sensitive field-effect transistor for biological sensing,” Sensors (Basel) 9(9), 7111–7131 (2009).
[Crossref] [PubMed]

Talanta (1)

H. W. Wen, T. R. Decory, W. Borejsza-Wysocki, and R. A. Durst, “Investigation of NeutrAvidin-tagged liposomal nanovesicles as universal detection reagents for bioanalytical assays,” Talanta 68(4), 1264–1272 (2006).
[Crossref] [PubMed]

Other (2)

P. Breuil, “Multisensors: measurements and behavior models,” in Chemical Sensors and Biosensors (Wiley, 2013), 211–233.

H. Raether, Surface Plasmons on Rough and Smooth Surfaces and on Gratings (Springer, 1998)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The angular interrogation of plasmons at the grating surface. The surface is functionalized by a ligand protein for capture of a sample biomarker (green). Note the presence of non-specific biomarkers (red, purple) that can interfere with specific binding. A focused beam contains an angular bandwidth corresponding to the numerical aperture (NA) of the focusing objective. Within the bandwidth, angles which match the grating-modified mode matching condition excite propagating surface plasmons ( k spp ) which are then sensitive to binding events on the suface (the illustrated colored biomarkers). Measuring the return bandwidth in specular reflection, the excitation angles are manifest as dark fringes corresponding to resonant absorption. As binding events occur, SPR resonance shifts, and the dark angular fringes projected onto the detector array will shift accordingly.

Fig. 2
Fig. 2

EIS works by applying a small voltage signal across the electrodes in an electrochemical cell and measuring the generated current signal as the frequency of the excitation signal is varied to produce an impedance spectrum similar to the ones shown in the Nyquist plots above (a). In f-EIS, the binding events from a label-free immunoassay increase the charge transfer resistance (Rct) of the electrochemical cell by blocking the redox molecules from reacting with the surface. Rct is calculated by fitting the impedance spectrum to Randles Circuit model shown in (b). Visually, an increase in Rct can be seen in the Nyquist plot as an increase in the radius of the semicircle portion of the curve.

Fig. 3
Fig. 3

The SPR - f-EIS transducer substrate overlays a gold electrode pattern onto a holographically exposed glass/resist film stack. The periodicity of the plasmonic grating was determined by the grating equation and numerical calculation for a design minimizing the excitation angle for a 785nm source at a gold-water interface (n = 1.33), while avoiding the poor plasmonic coupling efficiency of near-normal incidence excitation brought on by standing wave formation. The thickness of the gold was experimentally swept from 20nm to 200nm to maximize efficiency at the designed excitation angle. Good absorption contrast was found for 75nm of gold, which is necessary for sensitive centroid detection. Each grating area is roughly 1mm in lateral width, and are spaced 2mm apart. Co-planar electrodes are paired length wise (the longer length of the substrate), and form a 1mm gap. The overlap between the electrode and the grating form the interrogation area for SPR and f-EIS. Microfluidic channels from the PDMS chip are mounted parallel to the grating-electrode, and overlap a pair and corresponding gap. The optical beam is cylindrically focused to a vertical line with respect to the image.

Fig. 4
Fig. 4

The system was designed for scalability; that is, the optical path geometry is rectangular, with orthogonal incidence and propagation angles, evident in the schematic (a). In the physical implementation (b), the sample (top, orange) is mounted at the end of the optical arm (red), and an impedance potentiometer (bottom, orange) is attached to the sample via leads (top, orange). Two fluidic pumps (black) drive an SPR - f-EIS channel and an SPR-reference channel.

Fig. 5
Fig. 5

The full angular spectrum ( ± 14°) afforded by the objective and projected onto a 3.75um pixel camera is shown (a) with evident SPR excitation fringes for diluted ethylene glycol (second channel from the bottom). The inset shows a length-wise cross section of the channel representing the angular absorption spectrum. The faint fringes outside the channels correspond to partial SPR excitation for the PDMS/gold interface. Since the cylindrical curvature of the lens is in the lateral direction (x), only the vertical (y) direction can be resolved as an image by an imaging cylindrical lens. The SPR excitation angle is tracked (b) for a ladder of ethylene glycol dilutions (right) and the extracted 3σ limit of detection for bulk refractive index change is 9 x 10−5 RIU.

Fig. 6
Fig. 6

Voltammograms measured with CV (a) and EIS spectrum (b) made with the Ferro/Ferri solutions in the microfluidic channel.

Fig. 7
Fig. 7

Tandem f-EIS - SPR baseline measurements to calibrate mutual interference. (a) An EIS baseline for charge transfer resistance (black) was obtained with the means and 3σ (limit of detection) for both resistance without (blue) and with (red) SPR interrogation. (b) An SPR baseline for resonance angle position (black, sampled for clarity) was obtained with running means and 3σ for both angle without (blue) and with (red) f-EIS measurement.

Fig. 8
Fig. 8

(a) Neutravidin immunoassay sensogram for tandem SPR - f-EIS measurements. f-EIS sweeps for 3 min with 2 min waiting intervals, and SPR measurements are taken appx. every 5 seconds; SPR (green) and f-EIS (blue) detections of neutravidin capture clearly corroborate by relative signal amplitude change. The initial transience at 10nM is due to residue removal and stabilizes to equilibrium after appx. 10 min. (b) Semi-log equilibrium binding response curve for SPR shows limit of detection (3σ) to be appx. 5.5 nM.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

k spp = ω c o ϵ 1 ϵ 2 ϵ 1 + ϵ 2
ω c o sin θ i = k spp +m 2π Λ g
Z(ω)= R S +( 1 (jω) m C dl )||( R ct + R W (jω) 0.5 )

Metrics