Abstract

We investigate power-scaling of green-diode-pumped Ti:Sapphire lasers in continuous-wave (CW) and mode-locked operation. In a first configuration with a total pump power of up to 2 W incident onto the crystal, we achieved a CW power of up to 440 mW and self-starting mode-locking with up to 200 mW average power in 68-fs pulses using semiconductor saturable absorber mirror (SESAM) as saturable absorber. In a second configuration with up to 3 W of pump power incident onto the crystal, we achieved up to 650 mW in CW operation and up to 450 mW in 58-fs pulses using Kerr-lens mode-locking (KLM). The shortest pulse duration was 39 fs, which was achieved at 350 mW average power using KLM. The mode-locked laser generates a pulse train at repetition rates around 400 MHz. No complex cooling system is required: neither the SESAM nor the Ti:Sapphire crystal is actively cooled, only air cooling is applied to the pump diodes using a small fan. Because of mass production for laser displays, we expect that prices for green laser diodes will become very favorable in the near future, opening the door for low-cost Ti:Sapphire lasers. This will be highly attractive for potential mass applications such as biomedical imaging and sensing.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultrafast diode-pumped Ti:sapphire laser with broad tunability

Jamie C. E. Coyle, Alan J. Kemp, John-Mark Hopkins, and Alexander A. Lagatsky
Opt. Express 26(6) 6826-6832 (2018)

Power scaling of a directly diode-laser-pumped Ti:sapphire laser

Peter W. Roth, David Burns, and Alan J. Kemp
Opt. Express 20(18) 20629-20634 (2012)

Multiphoton imaging with blue-diode-pumped SESAM-modelocked Ti:sapphire oscillator generating 5 nJ 82 fs pulses

Andreas Rohrbacher, Omar E. Olarte, Vesna Villamaina, Pablo Loza-Alvarez, and Bojan Resan
Opt. Express 25(9) 10677-10684 (2017)

References

  • View by:
  • |
  • |
  • |

  1. U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010).
    [Crossref]
  2. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]
  3. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
    [Crossref] [PubMed]
  4. V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69(3), 171–202 (1999).
    [Crossref]
  5. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
    [Crossref]
  6. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
    [Crossref] [PubMed]
  7. H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laser-based lidar systems,” Proc. SPIE 1714, 270 (1992).
  8. U. Keller, “Femtosecond to attosecond optics,” IEEE Photonics J. 2(2), 225–228 (2010).
    [Crossref]
  9. M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-ray pulses approaching the attosecond frontier,” Science 291(5510), 1923–1927 (2001).
    [Crossref] [PubMed]
  10. B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).
  11. A. Vernaleken, B. Schmidt, M. Wolferstetter, T. W. Hänsch, R. Holzwarth, and P. Hommelhoff, “Carrier-envelope frequency stabilization of a Ti:sapphire oscillator using different pump lasers,” Opt. Express 20(16), 18387–18396 (2012).
    [Crossref] [PubMed]
  12. N. R. Newbury and W. C. Swann, “Low-noise fiber-laser frequency combs (Invited),” J. Opt. Soc. Am. B 24(8), 1756–1770 (2007).
    [Crossref]
  13. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(2), L74–L76 (1996).
    [Crossref]
  14. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34(21), 3334–3336 (2009).
    [Crossref] [PubMed]
  15. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Direct diode-laser pumping of a mode-locked Ti:sapphire laser,” Opt. Lett. 36(2), 304–306 (2011).
    [Crossref] [PubMed]
  16. P. W. Roth, D. Burns, and A. J. Kemp, “Power scaling of a directly diode-laser-pumped Ti:sapphire laser,” Opt. Express 20(18), 20629–20634 (2012).
    [Crossref] [PubMed]
  17. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express 20(13), 13677–13683 (2012).
    [Crossref] [PubMed]
  18. M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
    [Crossref] [PubMed]
  19. S. Masui, T. Miyoshi, T. Yanamoto, and S. Nagahama, “1 W AlInGaN Based Green Laser Diodes,” in CLEO Pacific Rim (IEEE, 2013), pp. 1–2.
  20. S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
    [Crossref]
  21. H. Tanaka, R. Sawada, R. Kariyama, A. Hosaka, K. Hirosawa, and F. Kannari, “Power scaling of modelocked Ti:sapphire laser pumped by high power InGaN green laser diode,” in CLEO Europe (OSA, 2015), paper CA_6_2.
  22. M. Hoffmann, S. Schilt, and T. Südmeyer, “CEO stabilization of a femtosecond laser using a SESAM as fast opto-optical modulator,” Opt. Express 21(24), 30054–30064 (2013).
    [Crossref] [PubMed]

2014 (1)

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

2013 (2)

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

M. Hoffmann, S. Schilt, and T. Südmeyer, “CEO stabilization of a femtosecond laser using a SESAM as fast opto-optical modulator,” Opt. Express 21(24), 30054–30064 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (1)

2010 (2)

U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010).
[Crossref]

U. Keller, “Femtosecond to attosecond optics,” IEEE Photonics J. 2(2), 225–228 (2010).
[Crossref]

2009 (1)

2008 (1)

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).

2007 (1)

2001 (2)

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-ray pulses approaching the attosecond frontier,” Science 291(5510), 1923–1927 (2001).
[Crossref] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

1999 (1)

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69(3), 171–202 (1999).
[Crossref]

1996 (3)

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(2), L74–L76 (1996).
[Crossref]

C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
[Crossref]

1992 (1)

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laser-based lidar systems,” Proc. SPIE 1714, 270 (1992).

1986 (1)

Backus, S.

Baev, V. M.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69(3), 171–202 (1999).
[Crossref]

Burns, D.

Chilla, J.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).

Coadou, E.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).

Corkum, P. B.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-ray pulses approaching the attosecond frontier,” Science 291(5510), 1923–1927 (2001).
[Crossref] [PubMed]

Drescher, M.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-ray pulses approaching the attosecond frontier,” Science 291(5510), 1923–1927 (2001).
[Crossref] [PubMed]

Drexler, W.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Durfee, C.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

Durfee, C. G.

Fry, A.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).

Fujimoto, J. G.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Garlick, J.

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Hänsch, T. W.

Hentschel, M.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-ray pulses approaching the attosecond frontier,” Science 291(5510), 1923–1927 (2001).
[Crossref] [PubMed]

Heritier, J.-M.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).

Hill, S.

Hirosawa, K.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Hoffmann, M.

Holzwarth, R.

Hommelhoff, P.

Hosaka, A.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Iwasa, N.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(2), L74–L76 (1996).
[Crossref]

Kannari, F.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Kapteyn, H.

Kärtner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Kawauchi, H.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Keller, U.

U. Keller, “Femtosecond to attosecond optics,” IEEE Photonics J. 2(2), 225–228 (2010).
[Crossref]

U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010).
[Crossref]

Kemp, A. J.

Kienberger, R.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-ray pulses approaching the attosecond frontier,” Science 291(5510), 1923–1927 (2001).
[Crossref] [PubMed]

Kirchner, M.

Kiyoku, H.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(2), L74–L76 (1996).
[Crossref]

Kneipp, H.

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laser-based lidar systems,” Proc. SPIE 1714, 270 (1992).

Kolenda, J.

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laser-based lidar systems,” Proc. SPIE 1714, 270 (1992).

Krausz, F.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-ray pulses approaching the attosecond frontier,” Science 291(5510), 1923–1927 (2001).
[Crossref] [PubMed]

Latz, T.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69(3), 171–202 (1999).
[Crossref]

Maclean, A. J.

Matsushita, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(2), L74–L76 (1996).
[Crossref]

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Moulton, P. F.

Murnane, M.

Nagahama, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(2), L74–L76 (1996).
[Crossref]

Nakamura, S.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(2), L74–L76 (1996).
[Crossref]

Newbury, N. R.

Petersen, S.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).

Rairoux, P.

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laser-based lidar systems,” Proc. SPIE 1714, 270 (1992).

Reider, G. A.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-ray pulses approaching the attosecond frontier,” Science 291(5510), 1923–1927 (2001).
[Crossref] [PubMed]

Resan, B.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).

Roth, P. W.

Sawai, S.

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

Schilt, S.

Schmidt, B.

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Senoh, M.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(2), L74–L76 (1996).
[Crossref]

Shea, K.

Shear, J. B.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Spielmann, C.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-ray pulses approaching the attosecond frontier,” Science 291(5510), 1923–1927 (2001).
[Crossref] [PubMed]

Squier, J.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

Squier, J. A.

Stein, B.

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laser-based lidar systems,” Proc. SPIE 1714, 270 (1992).

Storz, T.

Südmeyer, T.

Sugimoto, Y.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(2), L74–L76 (1996).
[Crossref]

Swann, W. C.

Taft, G.

Tempea, G.

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-ray pulses approaching the attosecond frontier,” Science 291(5510), 1923–1927 (2001).
[Crossref] [PubMed]

Thomas, A.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).

Toschek, P. E.

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69(3), 171–202 (1999).
[Crossref]

Tulloch, W.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).

Vernaleken, A.

Viselga, R.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).

Walther, P.

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).

Webb, W. W.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
[Crossref]

Weidauer, D.

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laser-based lidar systems,” Proc. SPIE 1714, 270 (1992).

Williams, R. M.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Woeste, L. H.

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laser-based lidar systems,” Proc. SPIE 1714, 270 (1992).

Wolf, J.-P.

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laser-based lidar systems,” Proc. SPIE 1714, 270 (1992).

Wolferstetter, M.

Xu, C.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
[Crossref]

Yamada, T.

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(2), L74–L76 (1996).
[Crossref]

Young, M. D.

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

Zipfel, W.

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Appl. Phys. B (2)

U. Keller, “Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight,” Appl. Phys. B 100(1), 15–28 (2010).
[Crossref]

V. M. Baev, T. Latz, and P. E. Toschek, “Laser intracavity absorption spectroscopy,” Appl. Phys. B 69(3), 171–202 (1999).
[Crossref]

Appl. Phys. Express (1)

S. Sawai, A. Hosaka, H. Kawauchi, K. Hirosawa, and F. Kannari, “Demonstration of a Ti:sapphire mode-locked laser pumped directly with a green diode laser,” Appl. Phys. Express 7(2), 022702 (2014).
[Crossref]

IEEE Photonics J. (1)

U. Keller, “Femtosecond to attosecond optics,” IEEE Photonics J. 2(2), 225–228 (2010).
[Crossref]

J. Microsc. (1)

M. D. Young, S. Backus, C. Durfee, and J. Squier, “Multiphoton imaging with a direct-diode pumped femtosecond Ti:sapphire laser,” J. Microsc. 249(2), 83–86 (2013).
[Crossref] [PubMed]

J. Opt. Soc. Am. B (3)

Jpn. J. Appl. Phys. (1)

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, “InGaN-based multi-quantum-well-structure laser diodes,” Jpn. J. Appl. Phys. 35(2), L74–L76 (1996).
[Crossref]

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kärtner, J. S. Schuman, and J. G. Fujimoto, “Ultrahigh-resolution ophthalmic optical coherence tomography,” Nat. Med. 7(4), 502–507 (2001).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Proc. Natl. Acad. Sci. U.S.A. (1)

C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, and W. W. Webb, “Multiphoton fluorescence excitation: new spectral windows for biological nonlinear microscopy,” Proc. Natl. Acad. Sci. U.S.A. 93(20), 10763–10768 (1996).
[Crossref] [PubMed]

Proc. SPIE (2)

H. Kneipp, J. Kolenda, P. Rairoux, B. Stein, D. Weidauer, J.-P. Wolf, and L. H. Woeste, “Ti:sapphire-laser-based lidar systems,” Proc. SPIE 1714, 270 (1992).

B. Resan, E. Coadou, S. Petersen, A. Thomas, P. Walther, R. Viselga, J.-M. Heritier, J. Chilla, W. Tulloch, and A. Fry, “Ultrashort pulse Ti:sapphire oscillators pumped by optically pumped semiconductor (OPS) pump lasers,” Proc. SPIE 6871, 687116 (2008).

Science (1)

M. Drescher, M. Hentschel, R. Kienberger, G. Tempea, C. Spielmann, G. A. Reider, P. B. Corkum, and F. Krausz, “X-ray pulses approaching the attosecond frontier,” Science 291(5510), 1923–1927 (2001).
[Crossref] [PubMed]

Other (2)

S. Masui, T. Miyoshi, T. Yanamoto, and S. Nagahama, “1 W AlInGaN Based Green Laser Diodes,” in CLEO Pacific Rim (IEEE, 2013), pp. 1–2.

H. Tanaka, R. Sawada, R. Kariyama, A. Hosaka, K. Hirosawa, and F. Kannari, “Power scaling of modelocked Ti:sapphire laser pumped by high power InGaN green laser diode,” in CLEO Europe (OSA, 2015), paper CA_6_2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Cavity picture with pump beam drawn in green and the oscillating laser beam in red. Laser setup for (b) CW, (c) SESAM mode-locked operation, (d) KLM operation.
Fig. 2
Fig. 2 Results for SESAM mode-locked operation with 200 mW output power for 2 W pump power. (a) Auto-correlation trace (solid, black: measurement; dashed, red: fit to auto-correlation of sech2). (b) Optical spectrum (solid, blue: measurement; dashed, red: fit to sech2). (c) RF spectrum around the repetition rate measured with a resolution bandwidth (RBW) of 30 kHz. Inset: enlarged RF spectrum up to 1.2 GHz.
Fig. 3
Fig. 3 Results for KLM operation with 350 mW output power for 3 W pump power. (a) Auto-correlation trace (solid, black: measurement; dashed, red: fit to auto-correlation of sech2). (b) Optical spectrum (solid, black: measurement; dashed, red: fit to sech2). (c) RF spectrum around the repetition rate measured with an RBW of 3 kHz. Inset: enlarged RF spectrum up to 1.5 GHz.
Fig. 4
Fig. 4 Results for KLM operation with 450 mW output power for 3 W pump power. (a) Auto-correlation trace (solid, black: measurement; dashed, red: fit to auto-correlation of sech2). (b) Optical spectrum (solid, black: measurement; dashed, red: fit to sech2). (c) RF spectrum around the repetition rate measured with an RBW of 30 kHz. Inset: enlarged RF spectrum up to 1.5 GHz.

Tables (2)

Tables Icon

Table 1 Comparison of CW Ti:Sapphire DPSSL Performances

Tables Icon

Table 2 Comparison of Mode-Locked Ti:Sapphire DPSSL Performances

Metrics